
University of Utah CS/EE 6710 Digital VLSI Design, Fall 2003

1

Automatically Generated VLSI Memory
(December 2003)

Allen TANNER, Jerry TAN, and Scott HOLMES

Abstract—Data storage devices (memories) of
various sizes are required for most interesting
integrated circuit designs. This paper describes an
automatic set of tools for creating read only
memory (ROM) and static random access memory
(SRAM) for use in small-scale integrated circuit
projects. These tools are intended for use by
university students learning integrated circuit
design.

Index Terms—Student VLSI design, SRAM
generation, ROM generation, Automatic VLSI
circuit generation.

I. INTRODUCTION
 ost major universities now teach Very Large
Scale Integrated (VLSI) design courses as

part of their engineering curriculum. These
courses typically involve a significant project
component, where the students design a complete
integrated circuit. By any metric, designing a
complete, ready-to-fabricate circuit is a major

undertaking. Meaningful projects tend to cluster
around specialized controllers based on ALUs
with supporting functional blocks. One of the
difficulties students face, is that most interesting
projects require storage in the form of either read
only memory (ROM) or static random access
memory (SRAM). Creating circuits to implement
these memory devices is a significant undertaking
which may detract from the overall project.

Manuscript submitted December 8, 2003. This work is submitted in

partial fulfillment of the requirements of the University of Utah, CS6710,
Digital VLSI Design Course, taught by Dr. Erik Brunvand of the University
of Utah Computer Science Department. The work was supported by the
University of Utah CADE lab.

A. Tanner is graduate student at the University of Utah, Physics

Department . (telephone: 801-588-1705, e-mail: atanner@ es.com).

J. Tan, BSEE UofU 2002, is a graduate student at the University of Utah,

Electrical Engineering., UT 80108 USA (telephone: 801-706-4693, e-mail:
ctan001@earthlink.net). He has previously worked at Agilent Technologies
as an intern constructing a CDMA Wireless Phone Test Station.

S. Holmes, BSEE NAU 2003, is a graduate student at the University of

Utah, Electrical Engineering., UT 80108 USA (e-mail:
seh8@dana.ucc.nau.edu). He is working of a micro fuel cell for his MS
project.

This effort is intended to provide a set of tools

and techniques to allow university students to
create ROM and SRAM structures in a convenient,
reliable way. With these structures in place, more
interesting and meaningful student projects will be
possible.

The University of Utah CS6710 Digital VLSI

Design Course is licensed to use the NCSU suite
of Cadence tools. The CMOS devices are
designed using the AMI 0.6 micron design rules.
The projects are fabricated at MOSIS.

 The VLSI memories that are automatically

generated are compatible with the Cadence tools,
the AMI 0.6 micron process and the MOSIS
fabrication rules.

In order to construct either ROM or SRAM

memories, a basic storage cell must be created and
surrounded with infrastructure, e.g. address
decoders, word drivers, pull-ups, amplifiers and
power hookups. The user selects the memory
configuration (size of the SRAM as well as size

M

University of Utah CS/EE 6710 Digital VLSI Design, Fall 2003

2

and contents of the ROM) and this configuration is
translated by a Java program, makemem, into a
circuit layout and Verilog structural file. These
files are imported into Cadence for use by the
students in their projects.

II. GOALS

A. Usability
A student learning to make VLSI circuits is

faced with the daunting task of learning and using
several complex tools. These tools evolved over
many years to meet the needs of the VLSI design
industry. They were written by many different
authors and as a result each has its own quirky
interface. Typically, the tools all have a GUI
based on menu windows offering a bewildering
array of choices. The choices offered in these
menus, often have subtle consequences that are
difficult for the naïve student to predict. It is not
unusual for a student to make a menu selection
only to find out, many steps later, that the wrong
choice was made and several hours work must be
repeated.

The goal of our project is to make life easier for

the students and allow them to make more
meaningful projects.

Our software, called makemem requires that the

user provide only the essential design information
necessary to create the memory cells. For SRAM
this information is the size of the memory array in
rows and columns. For ROM both the size and
contents of the array are required. The contents of
the ROM are stored in a file and can be described
in binary, octal or hexadecimal radices. The ROM
file is often a primary design document, so
descriptive headers are allowed (encouraged).
Comments are also supported to provide
descriptions of the ROM contents. White space
between data items may be used to partition the
data into readable rows and columns.

A design guide has been created that explains

the construction of the ROM and SRAM memory

and gives a step by step recipe.

B. Safety
The software produces layouts, schematics and

symbols that the students will use in their project
designs. It is important that these products be very
robust. We have extensively tested many
configurations of both ROM and SRAM. We have
designed both very large configurations, e.g.
1024x4 (much too large for student projects) and
very small configurations (1x2) searching for
pathologies. In addition to testing at the size
margins, we have tested many of the common
configurations, 16x16, 32x8, 32x128, etc. In
addition to these pedestrian configurations, we
have tested exotic configurations such as 17x6,
9x8 trying to look in all the corners of the design
where nasty bugs often lurk. It should not be
surprising that there were indeed problems in
several of these strange places.

We tested all of the supported address lengths

from 1 to 6 address bits. For each address bit
length we examined configurations with both them
maximum and minimum number of rows. For
instance, with five address bits any number of
rows between 17 and 32 can be configured. We
tested configurations with both the minimum 17
rows and the maximum 32 rows. Each of these
configuration exercises used the entire process
from creating files with makemem, importing into
Cadence, verifying the layout and schematic with
DRC, Extract and LVS. Many configurations
have undergone analog testing. We also created a
Verilog memory test for the SRAM memory.

The ROM and SRAM configurations have been

thoroughly tested and are ready for inclusion in
student projects. However, it is assumed that the
students using either ROM or SRAM will
understand the VLSI designers mantra, “What has
not been tested, will not work.” and they will
exercise the ROM and SRAM functions in their
projects as part of normal design verification.

Given our extensive testing and the project
verification that a finished design should be
subject to prior to fabrication, we are convinced

University of Utah CS/EE 6710 Digital VLSI Design, Fall 2003

3

that our ROM and SRAM memories can safely be
included in student VLSI design projects.

C. Simplicity

The makemem software is intended to be very

simple to use. We have a bias against the Cadence
style GUI with its complex set of choices. The
bias predates our exposure to Cadence but was
certainly reinforced by the using the Cadence tools
over a period of several months. For this reason
we have chosen to use a command line interpreter
(CLI) style interface.

The following is the command line required to

use makemem to create a 32x8 SRAM

>makemem –s 32 8

Similarly, makemem can be used to create a

ROM file:

>makemem –r myFile

The contents of the ROM are specified in the

file myFile.rom which is stored in the working
directory.

The size of the ROM is also stored in that file.

In the course of developing and testing makemem,
the user interface was refined to make it simple to
use. The original implementation required the
user to specify the ROM size and the Cadence cell
names. A typical session looked like:

>makemem –r myFile –s 32 128 –n Smyfile Rmyfile

Where the –s command specified the size and

the –n command specified the Cadence top cell
names. We found that the information on the size
of the ROM was redundant (it is encoded in the
data file) and the cell names were always the
same, except when we had typos (which caused
lots of confusion) so the interface was changed to
default to the size of the ROM specified in the file
and making the cell names the same as the ROM

file with a capital S and a capital R prepended.
(More about these two files later.) A sophisticated
user can override the defaults using command line
options.

During a review of the design, it was suggested

that a log file be created. The program makemem
logs pertinent information and sends this log to the
console. Rather than create a separate set of
controls (or defaults with overriding controls)
logging uses the piping features of the operating
system. To create a log in file myROM.log the
user can enter:

>makemem –r myFile > myROM.log

We feel this is a simpler (better) user interface,

than the Cadence style which is to put a log with a
mystery name in a mystery directory.

D. Portability
The tools were designed for use by the

university students in a university environment.
Specifically, in the NCSU Cadence, AMI 0.6
micron, MOSIS environment. Portability was not
a primary requirement. However, makemem is
written in Java and will run on both Unix and
Windows (both were used extensively during the
development). The library of cells that are used to
make the memory structures are specific to
Cadence tools and AMI 0.6 micron process but
they would serve as an excellent starting point
should they need to be ported to other design tools
or to other fabrication targets.

III. READ ONLY MEMORY
A. Introduction

Read Only Memory (ROM) is an important
ingredient in modern computer design. It finds
application storing data items that do not change.
For instance, many commercial microprocessors
intended for control applications can be purchased
with ROM containing a fixed program.

University of Utah CS/EE 6710 Digital VLSI Design, Fall 2003

4

Arithmetic processing also uses ROM for tables
containing seed values of important functions.
These seeds are expanded to the precision required
by the application.

B. ROM Array
There are many ways to construct ROM storage

devices. We have chosen a simple method where
each bit in the ROM is assigned a fixed location in
an array of rows and columns. At each location an
Nmos transistor is used to represent a “one” bit
and the lack of a transistor represents a “zero” bit.
Figure one shows a 4x4 ROM with an Nmos
transistor at every location. This ROM would
contain all “one” bits.

C. Detailed Description
The row drivers drive only one row at a time.

All the gates in a row of the Nmos ROM cell
transistors are attached to the same row driver.
When that row is driven, the transistors in that row
each make a connection between a column and

ground. This connection pulls the entire column
to ground. Cells which do not have the Nmos
transistors in them do not make the connection and
the column is not pulled to ground. At the top of
each column, is a Pmos transistor that pulls the
column to Vdd. The Nmos transistors and the
Pmos transistors compete for logic level of the
column. Both the Nmos and the Pmos transistors
are minimum size but the beta of the Nmos
transistors is 2 to 3 times greater than the Pmos
transistors, so the Nmos transistors win the contest
and pull the entire column to ground.

The logic levels created by the contest between
the Nmos and Pmos transistors are not very good,
so an amplifier (inverter) is placed at the base of
the each column to clean up the signal.

D. Performance
The ROM structure is very fast. The ROM

timing begins when a valid address is presented to
an address decoder circuit. Only four gates (two
inverters, a nand-gate and the row driver nor-gate)
delay the signal. The Nmos transistor witches
quickly and there is a single inverter at the bottom
of the column. Measurements included in the
appendix indicate that the address to data out time
is (hard to measure) but on the order of two
nanoseconds for modest sized ROMS (32
columns). As the ROMS grow in size the
capacitance of the word lines grow in significance.
We have measured several large configurations to
determine the effect of having many columns.

Pmos pullup
transistors

Row
Drivers

ROM configuration
(rows x columns)

Read Timing
Address to Output

Nmos ROM
cells

64x32 2.2 ns
32x128 2.9 ns

Output
amplifiers 4x1024 10.8 ns

The number of rows in the ROM structure also

contributes to the maximum speed. However, we
have limited the maximum number of rows to 64
and the variation in timing between 1 row and 64
is very slight, so the variation due to the ROM
height is not considered when calculating ROM
timing

University of Utah CS/EE 6710 Digital VLSI Design, Fall 2003

5

E. Address Glitches
Our ROM does produce glitches (short duration

and possibly ill-formed pulses) at the output.
These arise when address transitions cause
unintended word decodes. For instance, the
transition from 01 to 10 must either pass
momentarily through 00 or 11. The fast decoder
circuits will respond and produce short pulses on
the word decode lines 00 or 11. These glitches are
unavoidable (commercial ROMS also produce
them) without complex timing schemes which
would defeat the purpose of providing an easy to
use ROM device.

F. Additional features
The ROM devices have two additional features

that may be very useful.
A ROM can be equipped with a set of pass-

transistor gates to implement a tristate output buss.
The size of this bus can be specified separately
from the size of the ROM and so that a ROM with
many columns can have those columns grouped
into a smaller size (easier to handle) buss. For
instance a 128 column ROM can either produce
128 separate outputs or it can be configured to
produce 8 output bits under the control of 16 tri-
state enable inputs. This feature can either be
specified in the ROM contents file or as a CLI
option.

The ROM layout is produced in two pieces.
One is called the structure and the other is the
dockable ROM array. The intent of this feature is
that the user will specify the size of the ROM (and
thus the structure) early in the design cycle. This
structure will include the address decoders, the
row drivers, the Pmos pull-ups and the output
amplifiers. This structure will most likely not
change and it can be incorporated into the final
layout. The contents of the ROM are another
matter, they are stored in the Nmos transistor array
which is created separately by makemem. This
will allow the user to change the ROM contents
very late in the design process to make final
adjustments without disturbing the final layout.

G. Limitations
The basic Nmos cell is 2.7μ wide by 6μ tall.

These dimensions force the nor-gate word drivers

to be 6μ tall and the column amplifiers to be 2.7μ
wide. Figure 2 shows a 4096 bit ROM configured
in 16 rows and 24 columns. The columns are
further grouped into an 6-bit tristate bus. Larger
ROM configurations are but MOSIS imposes
sever size limitations. The maximum number of
rows currently implemented is 64.

Any number of rows (1-64) and any number of

columns can be generated. However the width of
the tristate busses must be an even number. That
is, if you try to make a 5 bit tristate buss,
makemem will issue an error and terminate.

Address
Decoder

Tristate buss

Column
amplifiers

If the number of columns is not evenly divisible
by the tri-state group size, makemem will make as
many groups as it can and put the remainder in the
last group. For instance, 30 columns in groups of 8
will produce 3 complete groups of 8 and a final
group of 6. The final group will be filled from the
low order bit. This will all work fine provided the
user does not try to do anything with the bits that
do not exist.

University of Utah CS/EE 6710 Digital VLSI Design, Fall 2003

6

IV. SRAM MEMORY
A. Introduction

Static Random Access Memory (SRAM) is
widely used in integrated circuits. All of the
popular microprocessors have elaborate on-chip
caching schemes for improved performance. All
of these caches use SRAM. Fifo and other high
performance storage devices also tend to be based
on SRAMs or SRAM technology. SRAM is more
complex than ROM and tremendous design efforts
have gone into making it smaller, more reliable
and faster.

B. SRAM cell
The primary focus of SRAM design is to make a

read/write storage device with as few transistors in
as small an area as possible. Exotic processing
and other tricks are used to accomplish this. In
fact, very serious companies (Intel, Micron and
others) who have at one point in their history been
primary SRAM suppliers eventually have decide
that making SRAMs is too big a distraction from
their main business and have exited the market.
Industry lore has it that once an engineer has gone
over to the dark side (SRAM or even worse,
DRAM) they never come back.

The basic SRAM cell uses six transistors in the

configuration shown in figure 3.

Data is stored in the latch made by the pair of

inverters and it is accessed by the Nmos transistors
on the left and right of the cell.

C. SRAM Array
An SRAM cell is used to store each bit of the

memory. These cells are organized like the ROM
cells into columns and rows. Figure four shows
the rows are controlled with word decode lines and
that the columns have a pull-up at the top and an

amplifier at the bottom. This amplifier is more
sophisticated than the simple inverter used by the
ROM array.

 The SRAM has two modes of operation,

reading and writing.

1) SRAM Write Operation
The SRAM writes into the latch through the

Nmos transistors on the left and right sides of the
cell. The problem is that the coupled inverters will
resist state changes. Their resistance is lowered by
making them small (wimpy) and by overpowering
them with a hefty write driver in the column
amplifier.

2) SRAM Read Operation
The SRAM reads the value stored in the latch

using a differential amplifier. The wimpy
transistors in the SRAM cell do not produce good
logic levels because 1) they have funny sizes (so
we can write into them), 2) they have to pass
through Nmos transistors which have non-ideal

University of Utah CS/EE 6710 Digital VLSI Design, Fall 2003

7

(resistive) behavior when passing a “one” value
and 3) they may be driving a significant capacitive
load. The poor output levels that they produce
must be translated into valid logic levels and a
special amplifier is required to do the translation.

Each SRAM cell produces a differential pair of
outputs, Bit and nBit. When the cell is storing a
“one” the voltage on Bit is greater than the voltage
on nBit. Conversly, when the cell is storing a zero
the voltage on Bit is less than the voltage on nBit.
The differences between the Bit and nBit signals
are sensed with a differential amplifier of standard
CMOS design which converts the small
differences into reliable logic levels.

3) Address Glitches

It is important that only one SRAM cell be read
at a time. If two cells are addressed at the same
time, the Nmos transistors in both cells will short
the latches in the two cells together and data in
one or both of the cells may be changed.

The difficulty with SRAM is the same as with
ROM. A simple addressing scheme produces
glitches. Complex schemes, involving read timing
can avoid the glitches at the cost of unwanted
complexity for the user.

The solution is to design the SRAM cell to be
“glitch tolerant.” This involves sizing the
transistors in the cross coupled inverter in
proportion to the transistors in the Nmos access
transistors. If the Nmos transistors conduct
poorly, they will isolate their internal latches from
glitches produced by other cells on the Bit and
nBit lines during address changes. This requires
that the write driver in the column amplifier be
even heftier and that the differential amplifier be
more sensitive. Fortunately, hefty drivers and
sensitive differential amplifiers are easy to
construct.

As this paper goes to press, we are continuing

the investigation of the address glitch tolerance of
our SRAM design. Very short addresses (in the 1
to 3 nanosecond range) appear to upset the SRAM
cells. Waveforms of these upsets are included in
the technical appendix.

D. Performance
1) Read Timing

Read timing in the SRAM is similar to the
ROM. A valid address is presented and a short
time later the contents of the SRAM cell will
appear at the Q output. The primary difference is
that the SRAM is more sensitive to the number of
rows because the Nmos transistors associated with
Bit and nBit are not designed to drive those signals
poorly.

SRAM configuration
(rows x columns)

Read Timing
Address to Output

4x16 2.2 ns
4x32 3.2 ns
16x16 2.7 ns
4x1024 37.9 ns

2) Write Timing

Writing an SRAM requires a little care. The
column write driver must not drive the Bit and
nBit lines before the addresses stabilize. Figure 5
shows the waveform required for writing into the
SRAM.

Shorter times are possible but they will depend on
final layout signal quality.

E. Verilog functional view
Verilog test benchs are vital tools in the design

process. They allow the user to extensively test
the logic of the circuits under design. The
difficulty with Verilog is that is assumes a switch
model of CMOS transistors. This works fine for
the ROM where the only accommodation to
Verilog is to use a resistive Pmos transistor in the

University of Utah CS/EE 6710 Digital VLSI Design, Fall 2003

8

column pullup. However, the SRAM uses a
differential amplifier to clean up the Bit and nBit
signals. This differential amplifier definitely does
not fit the Verilog switch model. Cadence
provides a solution. If a cell has a “functional”
view defined it is used in place of the schematic
for the Verilog simulation. This is intended to
allow designers to use devices like differential
amplifiers in schematics and to describe their
operation in terms that Verilog can handle.

We created functional views of the SRAM cell
and the column amplifier and changed the
character of the signals between the cell and the
amplifier.

Schematic
view

Functiona
l view

Use in functional view

nBit Data_IO Data path
Bit Write Write enable
Word Word Word address decode

Functional cellviews of the SRAM cells

The functional view allows SRAM devices to be

inserted in a design and tested with a Verilog test
bench.

Functional cellview of the column amplifier.

// Verilog HDL for
// "memCells", "SRAM_samp" "functional"
// This functional view works with
// the functional view of the SRAM cell
// Bit is used to transmit WE
// and nBit is used a data path
module SRAM_samp (Q, Bit, nBit, RE, WE, D);
 output Q;
 inout Bit; inout nBit;
 input RE; input WE; input D;

 bufif0(nBit, D, RE);

 assign Q = nBit;
 assign Bit = WE;

endmodule

F. Size
The basic SRAM cell is 27μ wide by 6μ tall.

This size was chosen for compatability with the
ROM address decoder and word drivers. The
result is that a 32x8 memory is approximately
300μ wide by 250μ tall and 32x16 is 600μ wide by
250μ. These seem to be very nice sizes for
projects using MOSIS.

V. JAVA
The software for this project was written in the

SunSoft programming language, JAVA, at the
suggestion (insistence?) of the instructor, Erik
Brunvand.

Java is the product of SunSoft. A public domain

integrated development environment called
NetBeans is available. NetBeans provides an
identical user interface for Java software
development on both Windows machines and on
Unix machines.

// Verilog HDL for
// "memCells", "SRAM_down" "functional"
// This functional view allows the SRAM cell to work
// correctly with verilog simulations
// which do not handle the analog nature of the device
// The functional view is automatically substituted by
// Cadence when it is simulating
//
module SRAM_down (Bit, nBit, word);
 inout Bit; // used as WR from the SRAM_amp cell

i Bi // d d IO

http://java.sun.com/

University of Utah CS/EE 6710 Digital VLSI Design, Fall 2003

9

Nine classes were created to provide all the

functions necessary to support automatic creation
of ROM and SRAM memory devices. These
classes are described in the following paragraphs:

1) makemem.java

This is the main class. The program starts
executing this class and it invokes the other
classes as needed.

2) Process_args.java
This class processes the command line and reads

the file containing the ROM contents, if necessary.

3) Verilog.java
The Verilog class creates a file with a “.v”

extension containing a Verilog structure file. The
modules used in the structure file were all created
with the memCells library.
The “.v” file is imported into Cadence schematic
and symbol cellviews using the CIW Import
Verilog utility.

4) Layout.java
The Layout class creates a file with a “.gds”

extension containing the two dimensional layout
of the memory circuit. The “.gds” file is imported
into a Cadence cellview using the CIW Import CIF
facility.

5) AddrGen.java
This class creates the address decoder for both

the SRAM and the ROM. Cells from the
memCells library are placed and connected with
and metal one and metal two wiring.

6) cifscan.java
The cifscan class reads the memCells.gds file

from the working directory. This file contains all
of the cell layouts required for both SRAM and
ROM generation. The memCells.gds file is
created using the Cadence Export CIF facility.
(The users will not have to do this export.) The
original source for export is a cellview called
memCells. This cellview contains one instance of
each of the cell layouts. The Export CIF facility
assigns a number to each cell and that number
must be used for subsequent references to the cell.
The difficulty with these numbers is that they may

change as new cells are added to the library. Early
in the project the cells numbers were used as
identifiers in the Java methods but they had to be
changed every time a new assignment was made.
Fortunately the Export CIF facility also includes
the original cell name in the memCells.gds file.
Cifscan reads the memCells.gds file and builds a
table of the names and the assigned numbers. This
allows the other classes to refer to the cells by
their names, which do not change as updates are
made.

7) IO_pads.java
This method writes a Cadence SKILL file with

the extension “.il” containing instructions for
placing the IO pads in the final layout. This
feature saved a lot of development time because it
makes the creation of complete layouts almost
completely automatic.

8) helps.java
This class contains several input and output

methods use as utilities by the other classes.

Listings of all the classes are provided in the
appendix.

VI. ADDITIONAL FEATURES, FUTURE
DIRECTIONS & IMPROVEMENTS

The tools developed for this project are

complete and ready to use. However, there are
improvements that could be made.

1) Increased Addressing

The current addressing is limited to 64 rows or
fewer. This can be increased by making larger
address decoder cells and integrating them into the
makemem classes. The cells and modifications
that would be required to support 128 and 256
rows are:

1. 4 input nand-gate which should be called

NAND4.
2. 4 to 16 address decoder which should be

called addr4.
3. A new decoder cell called LA3toA4

University of Utah CS/EE 6710 Digital VLSI Design, Fall 2003

10

made from the existing addr3 cell and
the new addr4 cell. This cell would
decode seven address bits.

4. A new decoder cell called LA4toA4
made from two copies of the new addr4
cell. This cell would decode eight
address bits.

5. The makemem classes Layout.java and
AddrGen.java would have modified to
reference and locate the new address
decoder cells. Process_args.java
currently checks that 64 or fewer rows
are specified. This check would have to
be changed.

2) Smaller cell size

The ROM and SRAM cells are fairly small
given the process constraints. The ROM cells
could be decreased in height from 6.0μ to 4.8μ by
sharing the ground connection between cells. Of
course, the address generators would all have to be
shrunk to match this finer row pitch. The cells
also used only one of the polysilicon layers
available. Using the other might allow the SRAM
cell to be made smaller.

3) SRAM tristate outputs

The ROM is equipped with tristate outputs and
the SRAM is not. The ROM layouts use the
tristate feature to multiplex wide column widths
onto smaller busses. This is not as important in
the SRAM because the SRAM cells are ten times
larger than the ROM and it seems to us that very
wide SRAM layouts are less likely to be useful.

4) Cifscan and friends

Makemem was written to allow the automatic
generation of VLSI memories. It can be adapted
to the generation of other VLSI structures. The
makemem classes contain methods for creating
busses that could be easily adapted to other uses.
The CifScan class seems to us to be particularly
useful. It allows a library of cells to be created
and then accessed by name externally. We
modified (simplied) the design of makemem once
we realized the power of this capability.

5) IO_Pads

IO_Pads is a very convenient class. It creates
named pads in a layout. A utility built around this
class would allow pad rings to be more quickly
integrated into final projects. A simple main class
could be created that would read a user file of pin
numbers and pin names and use IO_Pads to create
a SKILL code file to put pins into the pad ring.

VII. CONCLUSION
The Automatically Generated VLSI Memory

tools are ready to be used by the university
students. In fact, two project in the current
semester have already used the tools.

The first project used a 32x64 ROM with an 8
bit tristate grouping to store a sine wave for a
pattern generator. Integrating the ROM into their
project took less than an hour. In fact, the sine
wave generator was originally billed as the most
difficult part of the project and it became one of
the easiest.

The second project is a videoscore board that is
designed to support basketball games. It uses both
ROM and SRAM and demonstrates a simple video
generation scheme that may be useful to future
VLSI students.

	I. INTRODUCTION
	II. Goals
	A. Usability
	B. Safety
	C. Simplicity
	D. Portability

	III. Read only Memory
	A. Introduction
	B. ROM Array
	C. Detailed Description
	D. Performance
	E. Address Glitches
	F. Additional features
	G. Limitations

	IV. SRAM Memory
	A. Introduction
	B. SRAM cell
	C. SRAM Array
	1) SRAM Write Operation
	2) SRAM Read Operation
	3) Address Glitches

	D. Performance
	1) Read Timing
	2) Write Timing

	E. Verilog functional view
	F. Size

	V. JAVA
	1) makemem.java
	2) Process_args.java
	3) Verilog.java
	4) Layout.java
	5) AddrGen.java
	6) cifscan.java
	7) IO_pads.java
	8) helps.java

	VI. Additional Features, Future Directions & Improvements
	1) Increased Addressing
	2) Smaller cell size
	3) SRAM tristate outputs
	4) Cifscan and friends
	5) IO_Pads

	VII. Conclusion

