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Abstract—Data storage devices (memories) of 
various sizes are required for most interesting 
integrated circuit designs.  This paper describes an 
automatic set of tools for creating read only 
memory (ROM) and static random access memory 
(SRAM) for use in small-scale integrated circuit 
projects. These tools are intended for use by 
university students learning integrated circuit 
design. 
 

Index Terms—Student VLSI design, SRAM 
generation, ROM generation, Automatic VLSI 
circuit generation. 

I. INTRODUCTION 
 ost major universities now teach Very Large 
Scale Integrated (VLSI) design courses as 

part of their engineering curriculum.  These 
courses typically involve a significant project 
component, where the students design a complete 
integrated circuit.  By any metric, designing a 
complete, ready-to-fabricate circuit is a major 

undertaking.  Meaningful projects tend to cluster 
around specialized controllers based on ALUs 
with supporting functional blocks.  One of the 
difficulties students face, is that most interesting 
projects require storage in the form of either read 
only memory (ROM) or static random access 
memory (SRAM).  Creating circuits to implement 
these memory devices is a significant undertaking 
which may detract from the overall project. 
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This effort is intended to provide a set of tools 

and techniques to allow university students to 
create ROM and SRAM structures in a convenient, 
reliable way.  With these structures in place, more 
interesting and meaningful student projects will be 
possible. 

    
The University of Utah CS6710 Digital VLSI 

Design Course is licensed to use the NCSU suite 
of Cadence tools.  The CMOS devices are 
designed using the AMI 0.6 micron design rules.  
The projects are fabricated at MOSIS. 

 
  The VLSI memories that are automatically 

generated are compatible with the Cadence tools, 
the AMI 0.6 micron process and the MOSIS 
fabrication rules.  

 
In order to construct either ROM or SRAM 

memories, a basic storage cell must be created and 
surrounded with infrastructure, e.g. address 
decoders, word drivers, pull-ups, amplifiers and 
power hookups.  The user selects the memory 
configuration (size of the SRAM as well as size 

M
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and contents of the ROM) and this configuration is 
translated by a Java program, makemem, into a 
circuit layout and Verilog structural file.  These 
files are imported into Cadence for use by the 
students in their projects. 
 

II. GOALS 

A. Usability 
A student learning to make VLSI circuits is 

faced with the daunting task of learning and using 
several complex tools.  These tools evolved over 
many years to meet the needs of the VLSI design 
industry.  They were written by many different 
authors and as a result each has its own quirky 
interface.  Typically, the tools all have a GUI 
based on menu windows offering a bewildering 
array of choices.  The choices offered in these 
menus, often have subtle consequences that are 
difficult for the naïve student to predict.  It is not 
unusual for a student to make a menu selection 
only to find out, many steps later, that the wrong 
choice was made and several hours work must be 
repeated. 

 
The goal of our project is to make life easier for 

the students and allow them to make more 
meaningful projects.   

 
Our software, called makemem requires that the 

user provide only the essential design information 
necessary to create the memory cells.  For SRAM 
this information is the size of the memory array in 
rows and columns.  For ROM both the size and 
contents of the array are required.  The contents of 
the ROM are stored in a file and can be described 
in binary, octal or hexadecimal radices. The ROM 
file is often a primary design document, so 
descriptive headers are allowed (encouraged).  
Comments are also supported to provide 
descriptions of the ROM contents.  White space 
between data items may be used to partition the 
data into readable rows and columns.  

 
A design guide has been created that explains 

the construction of the ROM and SRAM memory 

and gives a step by step recipe. 

B. Safety 
The software produces layouts, schematics and 

symbols that the students will use in their project 
designs.  It is important that these products be very 
robust. We have extensively tested many 
configurations of both ROM and SRAM.  We have 
designed both very large configurations, e.g. 
1024x4 (much too large for student projects) and 
very small configurations (1x2) searching for 
pathologies. In addition to testing at the size 
margins, we have tested many of the common 
configurations, 16x16, 32x8, 32x128, etc.  In 
addition to these pedestrian configurations, we 
have tested exotic configurations such as 17x6, 
9x8 trying to look in all the corners of the design 
where nasty bugs often lurk.  It should not be 
surprising that there were indeed problems in 
several of these strange places. 

 
We tested all of the supported address lengths 

from 1 to 6 address bits. For each address bit 
length we examined configurations with both them 
maximum and minimum number of rows. For 
instance, with five address bits any number of 
rows between 17 and 32 can be configured.  We 
tested configurations with both the minimum 17 
rows and the maximum 32 rows.  Each of these 
configuration exercises used the entire process 
from creating files with makemem, importing into 
Cadence, verifying the layout and schematic with 
DRC, Extract and LVS.  Many configurations 
have undergone analog testing.  We also created a 
Verilog memory test for the SRAM memory. 

 
The ROM and SRAM configurations have been 

thoroughly tested and are ready for inclusion in 
student projects.  However, it is assumed that the 
students using either ROM or SRAM will 
understand the VLSI designers mantra, “What has 
not been tested, will not work.” and they will 
exercise the ROM and SRAM functions in their 
projects as part of normal design verification.  

Given our extensive testing and the project 
verification that a finished design should be 
subject to prior to fabrication, we are convinced 
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that our ROM and SRAM memories can safely be 
included in student VLSI design projects. 

 

C. Simplicity 
 
The makemem software is intended to be very 

simple to use.  We have a bias against the Cadence 
style GUI with its complex set of choices.  The 
bias predates our exposure to Cadence but was 
certainly reinforced by the using the Cadence tools 
over a period of several months.  For this reason 
we have chosen to use a command line interpreter 
(CLI) style interface. 

 
The following is the command line required to 

use makemem to create a 32x8 SRAM 
 
>makemem –s 32 8 
 
Similarly, makemem can be used to create a 

ROM file: 
 
>makemem –r myFile 
 
The contents of the ROM are specified in the 

file myFile.rom which is stored in the working 
directory. 

 
The size of the ROM is also stored in that file.  

In the course of developing and testing makemem, 
the user interface was refined to make it simple to 
use.  The original implementation required the 
user to specify the ROM size and the Cadence cell 
names.  A typical session looked like: 

 
>makemem –r myFile –s 32 128 –n Smyfile Rmyfile 
 
Where the –s command specified the size and 

the –n command specified the Cadence top cell 
names. We found that the information on the size 
of the ROM was redundant (it is encoded in the 
data file) and the cell names were always the 
same, except when we had typos (which caused 
lots of confusion) so the interface was changed to 
default to the size of the ROM specified in the file 
and making the cell names the same as the ROM 

file with a capital S and a capital R prepended. 
(More about these two files later.)  A sophisticated 
user can override the defaults using command line 
options. 

 
During a review of the design, it was suggested 

that a log file be created.  The program makemem 
logs pertinent information and sends this log to the 
console.  Rather than create a separate set of 
controls (or defaults with overriding controls) 
logging uses the piping features of the operating 
system.  To create a log in file myROM.log the 
user can enter: 

 
>makemem –r myFile > myROM.log 
 
We feel this is a simpler (better) user interface, 

than the Cadence style which is to put a log with a 
mystery name in a mystery directory. 

 
 

D. Portability 
The tools were designed for use by the 

university students in a university environment.  
Specifically, in the NCSU Cadence, AMI 0.6 
micron, MOSIS environment.  Portability was not 
a primary requirement.  However, makemem is 
written in Java and will run on both Unix and 
Windows (both were used extensively during the 
development).  The library of cells that are used to 
make the memory structures are specific to 
Cadence tools and AMI 0.6 micron process but 
they would serve as an excellent starting point 
should they need to be ported to other design tools 
or to other fabrication targets. 

 

III. READ ONLY MEMORY 
A. Introduction 

Read Only Memory (ROM) is an important 
ingredient in modern computer design.  It finds 
application storing data items that do not change. 
For instance, many commercial microprocessors 
intended for control applications can be purchased 
with ROM containing a fixed program.  
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Arithmetic processing also uses ROM for tables 
containing seed values of important functions.  
These seeds are expanded to the precision required 
by the application. 

   

B. ROM Array 
There are many ways to construct ROM storage 

devices.  We have chosen a simple method where 
each bit in the ROM is assigned a fixed location in 
an array of rows and columns.  At each location an 
Nmos transistor is used to represent a “one” bit 
and the lack of a transistor represents a “zero” bit.  
Figure one shows a 4x4 ROM with an Nmos 
transistor at every location.  This ROM would 
contain all “one” bits. 

 
 
 

 
 
 
 
 
 
 
 

C. Detailed Description 
The row drivers drive only one row at a time.  

All the gates in a row of the Nmos ROM cell 
transistors are attached to the same row driver.  
When that row is driven, the transistors in that row 
each make a connection between a column and 

ground.  This connection pulls the entire column 
to ground.  Cells which do not have the Nmos 
transistors in them do not make the connection and 
the column is not pulled to ground.  At the top of 
each column, is a Pmos transistor that pulls the 
column to Vdd.  The Nmos transistors and the 
Pmos transistors compete for logic level of the 
column.  Both the Nmos and the Pmos transistors 
are minimum size but the beta of the Nmos 
transistors is 2 to 3 times greater than the Pmos 
transistors, so the Nmos transistors win the contest 
and pull the entire column to ground.   

The logic levels created by the contest between 
the Nmos and Pmos transistors are not very good, 
so an amplifier (inverter) is placed at the base of 
the each column to clean up the signal. 

D. Performance 
The ROM structure is very fast. The ROM 

timing begins when a valid address is presented to 
an address decoder circuit.  Only four gates (two 
inverters, a nand-gate and the row driver nor-gate) 
delay the signal.  The Nmos transistor witches 
quickly and there is a single inverter at the bottom 
of the column.  Measurements included in the 
appendix indicate that the address to data out time 
is (hard to measure) but on the order of two 
nanoseconds for modest sized ROMS (32 
columns).  As the ROMS grow in size the 
capacitance of the word lines grow in significance.  
We have measured several large configurations to 
determine the effect of having many columns. 

Pmos pullup 
transistors 

Row 
Drivers 

 
ROM configuration 
(rows x columns) 

Read Timing 
Address to Output 

Nmos ROM  
cells 

64x32 2.2 ns 
32x128 2.9 ns 

Output 
amplifiers 4x1024 10.8 ns 

 
The number of rows in the ROM structure also 

contributes to the maximum speed.  However, we 
have limited the maximum number of rows to 64 
and the variation in timing between 1 row and 64 
is very slight, so the variation due to the ROM 
height is not considered when calculating ROM 
timing 
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E. Address Glitches 
Our ROM does produce glitches (short duration 

and possibly ill-formed pulses) at the output.  
These arise when address transitions cause 
unintended word decodes.  For instance, the 
transition from 01 to 10 must either pass 
momentarily through 00 or 11.  The fast decoder 
circuits will respond and produce short pulses on 
the word decode lines 00 or 11.  These glitches are 
unavoidable (commercial ROMS also produce 
them) without complex timing schemes which 
would defeat the purpose of providing an easy to 
use ROM device. 

F. Additional features 
The ROM devices have two additional features 

that may be very useful. 
A ROM can be equipped with a set of pass-

transistor gates to implement a tristate output buss.  
The size of this bus can be specified separately 
from the size of the ROM and so that a ROM with 
many columns can have those columns grouped 
into a smaller size (easier to handle) buss.  For 
instance a 128 column ROM can either produce 
128 separate outputs or it can be configured to 
produce 8 output bits under the control of 16 tri-
state enable inputs.  This feature can either be 
specified in the ROM contents file or as a CLI 
option. 

The ROM layout is produced in two pieces.  
One is called the structure and the other is the 
dockable ROM array.  The intent of this feature is 
that the user will specify the size of the ROM (and 
thus the structure) early in the design cycle.  This 
structure will include the address decoders, the 
row drivers, the Pmos pull-ups and the output 
amplifiers.  This structure will most likely not 
change and it can be incorporated into the final 
layout.  The contents of the ROM are another 
matter, they are stored in the Nmos transistor array 
which is created separately by makemem.  This 
will allow the user to change the ROM contents 
very late in the design process to make final 
adjustments without disturbing the final layout. 

G. Limitations 
The basic Nmos cell is 2.7μ wide by 6μ tall. 

These dimensions force the nor-gate word drivers 

to be 6μ tall and the column amplifiers to be 2.7μ 
wide. Figure 2 shows a 4096 bit ROM configured 
in 16 rows and 24 columns.  The columns are 
further grouped into an 6-bit tristate bus.  Larger 
ROM configurations are but MOSIS imposes 
sever size limitations. The maximum number of 
rows currently implemented is 64.   

 
 
 
Any number of rows (1-64) and any number of 

columns can be generated.  However the width of 
the tristate busses must be an even number.  That 
is, if you try to make a 5 bit tristate buss, 
makemem will issue an error and terminate. 

 

Address 
Decoder 

Tristate buss

Column 
amplifiers

If the number of columns is not evenly divisible 
by the tri-state group size, makemem will make as 
many groups as it can and put the remainder in the 
last group. For instance, 30 columns in groups of 8 
will produce 3 complete groups of 8 and a final 
group of 6. The final group will be filled from the 
low order bit.  This will all work fine provided the 
user does not try to do anything with the bits that 
do not exist. 
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IV. SRAM MEMORY 
A. Introduction 

Static Random Access Memory (SRAM) is 
widely used in integrated circuits.  All of the 
popular microprocessors have elaborate on-chip 
caching schemes for improved performance.  All 
of these caches use SRAM.  Fifo and other high 
performance storage devices also tend to be based 
on SRAMs or SRAM technology.  SRAM is more 
complex than ROM and tremendous design efforts 
have gone into making it smaller, more reliable 
and faster. 

   

B. SRAM cell 
The primary focus of SRAM design is to make a 

read/write storage device with as few transistors in 
as small an area as possible.  Exotic processing 
and other tricks are used to accomplish this.  In 
fact, very serious companies (Intel, Micron and 
others) who have at one point in their history been 
primary SRAM suppliers eventually have decide 
that making SRAMs is too big a distraction from 
their main business and have exited the market.  
Industry lore has it that once an engineer has gone 
over to the dark side (SRAM or even worse, 
DRAM) they never come back. 

 
The basic SRAM cell uses six transistors in the 

configuration shown in figure 3. 
 

 
 
Data is stored in the latch made by the pair of 

inverters and it is accessed by the Nmos transistors 
on the left and right of the cell. 

C. SRAM Array 
An SRAM cell is used to store each bit of the 

memory.  These cells are organized like the ROM 
cells into columns and rows.  Figure four shows 
the rows are controlled with word decode lines and 
that the columns have a pull-up at the top and an 

amplifier at the bottom.  This amplifier is more 
sophisticated than the simple inverter used by the 
ROM array.   

 

 
 
 The SRAM has two modes of operation, 

reading and writing. 
 

1) SRAM Write Operation 
The SRAM writes into the latch through the 

Nmos transistors on the left and right sides of the 
cell.  The problem is that the coupled inverters will 
resist state changes.  Their resistance is lowered by 
making them small (wimpy) and by overpowering 
them with a hefty write driver in the column 
amplifier.  

 
 
 
 
 
 
 

2) SRAM Read Operation 
The SRAM reads the value stored in the latch 

using a differential amplifier. The wimpy 
transistors in the SRAM cell do not produce good 
logic levels because 1) they have funny sizes (so 
we can write into them), 2) they have to pass 
through Nmos transistors which have non-ideal 
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(resistive) behavior when passing a “one” value 
and 3) they may be driving a significant capacitive 
load.  The poor output levels that they produce 
must be translated into valid logic levels and a 
special amplifier is required to do the translation. 
 

Each SRAM cell produces a differential pair of 
outputs, Bit and nBit.  When the cell is storing a 
“one” the voltage on Bit is greater than the voltage 
on nBit.  Conversly, when the cell is storing a zero 
the voltage on Bit is less than the voltage on nBit.  
The differences between the Bit and nBit signals 
are sensed with a differential amplifier of standard 
CMOS design which converts the small 
differences into reliable logic levels. 
 
3) Address Glitches 

It is important that only one SRAM cell be read 
at a time.  If two cells are addressed at the same 
time, the Nmos transistors in both cells will short 
the latches in the two cells together and data in 
one or both of the cells may be changed. 

The difficulty with SRAM is the same as with 
ROM.  A simple addressing scheme produces 
glitches.  Complex schemes, involving read timing 
can avoid the glitches at the cost of unwanted 
complexity for the user. 

The solution is to design the SRAM cell to be 
“glitch tolerant.”  This involves sizing the 
transistors in the cross coupled inverter in 
proportion to the transistors in the Nmos access 
transistors.  If the Nmos transistors conduct 
poorly, they will isolate their internal latches from 
glitches produced by other cells on the Bit and 
nBit lines during address changes.  This requires 
that the write driver in the column amplifier be 
even heftier and that the differential amplifier be 
more sensitive.  Fortunately, hefty drivers and 
sensitive differential amplifiers are easy to 
construct.  

 
As this paper goes to press, we are continuing 

the investigation of the address glitch tolerance of 
our SRAM design.  Very short addresses (in the 1 
to 3 nanosecond range) appear to upset the SRAM 
cells.  Waveforms of these upsets are included in 
the technical appendix. 

 

D. Performance 
1) Read Timing 

Read timing in the SRAM is similar to the 
ROM. A valid address is presented and a short 
time later the contents of the SRAM cell will 
appear at the Q output. The primary difference is 
that the SRAM is more sensitive to the number of 
rows because the Nmos transistors associated with 
Bit and nBit are not designed to drive those signals 
poorly. 

 
SRAM configuration 
(rows x columns) 

Read Timing 
Address to Output 

4x16 2.2 ns 
4x32 3.2 ns 
16x16 2.7 ns 
4x1024 37.9 ns 

 
2) Write Timing 

Writing an SRAM requires a little care.  The 
column write driver must not drive the Bit and 
nBit lines before the addresses stabilize.  Figure 5 
shows the waveform required for writing into the 
SRAM. 

 

Shorter times are possible but they will depend on 
final layout signal quality. 

E. Verilog functional view 
Verilog test benchs are vital tools in the design 

process.  They allow the user to extensively test 
the logic of the circuits under design. The 
difficulty with Verilog is that is assumes a switch 
model of CMOS transistors.  This works fine for 
the ROM where the only accommodation to 
Verilog is to use a resistive Pmos transistor in the 
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column pullup.  However, the SRAM uses a 
differential amplifier to clean up the Bit and nBit 
signals.  This differential amplifier definitely does 
not fit the Verilog switch model.  Cadence 
provides a solution.  If a cell has a “functional” 
view defined it is used in place of the schematic 
for the Verilog simulation.  This is intended to 
allow designers to use devices like differential 
amplifiers in schematics and to describe their 
operation in terms that Verilog can handle.   

We created functional views of the SRAM cell 
and the column amplifier and changed the 
character of the signals between the cell and the 
amplifier. 

 
Schematic 
view 

Functiona
l view 

Use in functional view 

nBit Data_IO Data path 
Bit Write Write enable 
Word Word Word address decode 

 
Functional  cellviews of the SRAM cells 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The functional view allows SRAM devices to be 

inserted in a design and tested with a Verilog test 
bench. 

 
 
 
 
 

 
 
 
 
 
 
Functional cellview of the column amplifier. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

// Verilog HDL for  
// "memCells", "SRAM_samp" "functional" 
// This functional view works with  
// the functional view of the SRAM cell 
// Bit is used to transmit WE 
// and nBit is used a data path 
module SRAM_samp (Q, Bit, nBit, RE, WE, D); 
    output Q; 
    inout Bit;    inout nBit; 
    input RE;    input WE;    input D; 
 
   bufif0(nBit, D, RE); 
    
   assign Q = nBit; 
   assign Bit = WE; 
    
endmodule 

 

F. Size 
The basic SRAM cell is 27μ wide by 6μ tall. 

This size was chosen for compatability with the 
ROM address decoder and word drivers.  The 
result is that a 32x8 memory is approximately 
300μ wide by 250μ tall and 32x16 is 600μ wide by 
250μ.  These seem to be very nice sizes for 
projects using MOSIS. 

V. JAVA 
The software for this project was written in the 

SunSoft programming language, JAVA, at the 
suggestion (insistence?) of the instructor, Erik 
Brunvand.    

 
Java is the product of SunSoft.  A public domain 

integrated development environment called 
NetBeans is available.  NetBeans provides an 
identical user interface for Java software 
development on both Windows machines and on 
Unix machines. 

// Verilog HDL for  
// "memCells", "SRAM_down" "functional" 
//  This functional view allows the SRAM cell to work 
// correctly with verilog simulations 
// which do not handle the analog nature of the device 
// The functional view is automatically substituted by  
// Cadence when it is simulating 
// 
module SRAM_down (Bit, nBit, word); 
   inout Bit;  // used as WR from the SRAM_amp cell 

i Bi // d d IO

http://java.sun.com/
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Nine classes were created to provide all the 

functions necessary to support automatic creation 
of ROM and SRAM memory devices.  These 
classes are described in the following paragraphs: 

 
1) makemem.java   

This is the main class.  The program starts 
executing this class and it invokes the other 
classes as needed.  
 

2) Process_args.java 
This class processes the command line and reads 

the file containing the ROM contents, if necessary. 
 

3) Verilog.java 
The Verilog class creates a file with a “.v” 

extension containing a Verilog structure file. The 
modules used in the structure file were all created 
with the memCells library. 
The “.v” file is imported into Cadence schematic 
and symbol cellviews using the CIW Import 
Verilog utility. 
 

4) Layout.java 
The Layout class creates a file with a “.gds” 

extension containing the two dimensional layout 
of the memory circuit. The “.gds” file is imported 
into a Cadence cellview using the CIW Import CIF 
facility. 
 

5) AddrGen.java 
This class creates the address decoder for both 

the SRAM and the ROM.  Cells from the 
memCells library are placed and connected with 
and metal one and metal two wiring.  
 

6) cifscan.java 
The cifscan class reads the memCells.gds file 

from the working directory.  This file contains all 
of the cell layouts required for both SRAM and 
ROM generation.  The memCells.gds file is 
created using the Cadence Export CIF facility.  
(The users will not have to do this export.) The 
original source for export is a cellview called 
memCells.  This cellview contains one instance of 
each of the cell layouts.  The Export CIF facility 
assigns a number to each cell and that number 
must be used for subsequent references to the cell.  
The difficulty with these numbers is that they may 

change as new cells are added to the library.  Early 
in the project the cells numbers were used as 
identifiers in the Java methods but they had to be 
changed every time a new assignment was made.  
Fortunately the Export CIF facility also includes 
the original cell name in the memCells.gds file.  
Cifscan reads the memCells.gds file and builds a 
table of the names and the assigned numbers.  This 
allows the other classes to refer to the cells by 
their names, which do not change as updates are 
made. 
 

7) IO_pads.java 
This method writes a Cadence SKILL file with 

the extension “.il” containing instructions for 
placing the IO pads in the final layout.  This 
feature saved a lot of development time because it 
makes the creation of complete layouts almost 
completely automatic.  
 

8) helps.java 
This class contains several input and output 

methods use as utilities by the other classes. 
 

Listings of all the classes are provided in the 
appendix. 

 

VI. ADDITIONAL FEATURES, FUTURE 
DIRECTIONS & IMPROVEMENTS 

 
The tools developed for this project are 

complete and ready to use.  However, there are 
improvements that could be made. 

 
1) Increased Addressing 

The current addressing is limited to 64 rows or 
fewer.  This can be increased by making larger 
address decoder cells and integrating them into the 
makemem classes.  The cells and modifications 
that would be required to support 128 and 256 
rows are: 

 
1. 4 input nand-gate which should be called 

NAND4. 
2. 4 to 16 address decoder which should be 

called addr4. 
3. A new decoder cell called LA3toA4 
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made from the existing addr3 cell and 
the new addr4 cell. This cell would 
decode seven address bits. 

4. A new decoder cell called LA4toA4 
made from two copies of the new addr4 
cell. This cell would decode eight 
address bits. 

5. The makemem classes Layout.java and 
AddrGen.java would have modified to 
reference and locate the new address 
decoder cells.  Process_args.java 
currently checks that 64 or fewer rows 
are specified. This check would have to 
be changed. 

 
2) Smaller cell size 

The ROM and SRAM cells are fairly small 
given the process constraints.  The ROM cells 
could be decreased in height from 6.0μ to 4.8μ by 
sharing the ground connection between cells.  Of 
course, the address generators would all have to be 
shrunk to match this finer row pitch.  The cells 
also used only one of the polysilicon layers 
available.  Using the other might allow the SRAM 
cell to be made smaller. 

 
3) SRAM tristate outputs 

The ROM is equipped with tristate outputs and 
the SRAM is not.  The ROM layouts use the 
tristate feature to multiplex wide column widths 
onto smaller busses.  This is not as important in 
the SRAM because the SRAM cells are ten times 
larger than the ROM and it seems to us that very 
wide SRAM layouts are less likely to be useful. 

 
 
4) Cifscan and friends 

Makemem was written to allow the automatic 
generation of VLSI memories.  It can be adapted 
to the generation of other VLSI structures.  The 
makemem classes contain methods for creating 
busses that could be easily adapted to other uses.  
The CifScan class seems to us to be particularly 
useful.  It allows a library of cells to be created 
and then accessed by name externally.  We 
modified (simplied) the design of makemem once 
we realized the power of this capability. 

 
5) IO_Pads 

IO_Pads is a very convenient class.  It creates 
named pads in a layout.  A utility built around this 
class would allow pad rings to be more quickly 
integrated into final projects.  A simple main class 
could be created that would read a user file of pin 
numbers and pin names and use IO_Pads to create 
a SKILL code file to put pins into the pad ring.  

VII. CONCLUSION 
The Automatically Generated VLSI Memory 

tools are ready to be used by the university 
students.  In fact, two project in the current 
semester have already used the tools.   

The first project used a 32x64 ROM with an 8 
bit tristate grouping to store a sine wave for a 
pattern generator.  Integrating the ROM into their 
project took less than an hour.  In fact, the sine 
wave generator was originally billed as the most 
difficult part of the project and it became one of 
the easiest. 

The second project is a videoscore board that is 
designed to support basketball games.  It uses both 
ROM and SRAM and demonstrates a simple video 
generation scheme that may be useful to future 
VLSI students.  
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