

Synthesis and Place & Route

Synopsys design compiler

Cadence Encounter Digital

Implementation System (EDI)

CS6710 Tool Suite

Synopsys
Design Compiler

Cadence
SOC

Encounter

Cadence
Composer
Schematic

Cadence
Virtuoso
Layout

CCAR
AutoRouter

Your
Library

Verilog-XL

Verilog-XL

Behavioral
Verilog

Structural
Verilog

Circuit
Layout

LVS

Layout-XL

CSI

Design Compiler

 Synthesis of behavioral to structural
 Three ways to go:

– Type commands to the design compiler shell
Start with syn-dc and start typing

– Write a script
Use syn-script.tcl as a starting point

– Use the Design Vision GUI
Friendly menus and graphics...

Synthesis Process: Design Compiler

1. Define synthesis environment

2. Read in your behavioral RTL Verilog

3. Set synthesis constraints (speed, area, etc.)

4. Compile (synthesize) the design

5. Evaluate results (timing, area, power, ...)

Design Compiler – Basic Flow

1. Define environment
– target libraries – your cell library
– synthetic libraries – DesignWare libraries

– link libraries – libraries to link against

2. Read in your behavioral RTL Verilog
– Usually split into analyze and elaborate

3. Set constraints
– Timing – define clock, loads, etc.

Design Compiler – Basic Flow

4. Compile the design
– compile or compile_ultra
– Does the actual synthesis

5. Write out the results
– Make sure to change_names
– Write out structural verilog, report, ddc, sdc

files

Beh2str – the simplest script

> beh2str

beh2str – Synthesizes a verilog RTL code to a
structural code based on the synopsys
technology library specified

Usage: beh2str <input.v> <output.v> <libfile>

beh2str addsub.v addsub_dc.v Lib5710_00.db

Results in addsub_dc.v, addsub_dc.v.rep

addsub.v

moudle addsub (a, b, addnsub, result);

 parameter SIZE = 8; // default word size is 8

 input [SIZE-1:0] a, b; // two SIZE-bit inputs

 input addnsub; // control bit: 1 = add, 0 = sub

 output reg [SIZE:0] result; // SIZE+1 bit result

 always @(a, b, addnsub) begin

 if (addnsub) result = a + b;

 else result = a – b;

end

endmodule

addsub_dc.v addsub_dc.v.rep

beh2str – the simplest script!
#!/bin/tcsh

setenv SYNLOCAL /uusoc/facility/cad_common/local/class/6710/F13/synopsys

#set the path of dc shell script file

setenv SCRIPTFILE ${SYNLOCAL}/beh2str.tcl

store the arguments

setenv INFILE $1

setenv OUTFILE $2

setenv LIBFILE $3

setup to run synopsys design compiler

source /uusoc/facility/cad_common/local/setups/F13/setup-synopsys

run (very simple) design compiler synthesis

dc_shell-xg-t -f $SCRIPTFILE

.synopsys_dc.setup

set SynopsysInstall [getenv "SYNOPSYS"]

set search_path [list . \

[format "%s%s" $SynopsysInstall /libraries/syn] \

[format "%s%s" $SynopsysInstall /dw/sim_ver] \

]

define_design_lib WORK -path ./WORK

set synthetic_library [list dw_foundation.sldb]

set synlib_wait_for_design_license [list "DesignWare-Foundation"]

set link_library [concat [concat "*" $target_library] $synthetic_library]

set symbol_library [list generic.sdb]

beh2str – the actual script
beh2str script
set target_library [list [getenv "LIBFILE"]]
set link_library [concat [concat "*" $target_library]

$synthetic_library]
read_file -f verilog [getenv "INFILE"]
#/* This command will fix the problem of having */
#/* assign statements left in your structural file. */
set_fix_multiple_port_nets -all -buffer_constants
compile -ungroup_all
check_design
#/* always do change_names before write... */
redirect change_names { change_names -rules verilog

-hierarchy -verbose }
write -f verilog -output [getenv "OUTFILE"]
quit

What beh2str leaves out...

 Timing!
 No clock defined so no target speed
 No wire load model so not as placement

constrained
 No input drive defined so assume infinite drive
 No output load define so assume something

syn-script.tcl

 /uusoc/facility/cad_common/local/class/6710/F13/synopsys

#/* search path should include directories with memory .db files */

#/* as well as the standard cells */

set search_path [list . \

[format "%s%s" SynopsysInstall /libraries/syn] \

[format "%s%s" SynopsysInstall /dw/sim_ver] \

!!your-library-path-goes-here!!]

#/* target library list should include all target .db files */

set target_library [list !!your-library-name!!.db]

#/* synthetic_library is set in .synopsys_dc.setup to be */

#/* the dw_foundation library. */

set link_library [concat [concat "*" $target_library] $synthetic_library]

syn-script.tcl
#/* below are parameters that you will want to set for each design */
#/* list of all HDL files in the design */
set myFiles [list !!all-your-structural-Verilog-files!!]
set fileFormat verilog ;# verilog or VHDL
set basename !!basename!! ;# Name of top-level module
set myClk !!clk!! ;# The name of your clock
set virtual 0 ;# 1 if virtual clock, 0 if real clock
#/* compiler switches... */
set useUltra 1 ;# 1 for compile_ultra, 0 for compile

#mapEffort, useUngroup are for
#non-ultra compile...

set mapEffort1 medium ;# First pass - low, medium, or high
set mapEffort2 medium ;# second pass - low, medium, high
set useUngroup 1 ;# 0 if no flatten, 1 if flatten

syn-script.tcl

#/* Timing and loading information */

set myPeriod_ns !!10!! ;# desired clock period (speed goal)

set myInDelay_ns !!0.25!! ;# delay from clock to inputs valid

set myOutDelay_ns !!0.25! ;# delay from clock to output valid

set myInputBuf !!INVX4!! ;# name of cell driving the inputs

set myLoadLibrary !!Lib!! ;# name of library the cell comes from

set myLoadPin !!A!! ;# pin that outputs drive

#/* Control the writing of result files */

set runname struct ;# Name appended to output files

syn-script.tcl

#/* the following control which output files you want. They */

#/* should be set to 1 if you want the file, 0 if not */

set write_v 1 ;# compiled structural Verilog file

set write_db 0 ;# compiled file in db format (obsolete)

set write_ddc 0 ;# compiled file in ddc format (XG-mode)

set write_sdf 0 ;# sdf file for back-annotated timing sim

set write_sdc 1 ;# sdc constraint file for place and route

set write_rep 1 ;# report file from compilation

set write_pow 0 ;# report file for power estimate

syn-script.tcl
analyze and elaborate the files
analyze -format $fileFormat -lib WORK $myfiles
elaborate $basename -lib WORK -update
current_design $basename
The link command makes sure that all the required design
parts are linked together.
The uniquify command makes unique copies of replicated

modules.
link
uniquify
now you can create clocks for the design
if { $virtual == 0 } {

create_clock -period $myPeriod_ns $myClk
} else {
create_clock -period $myPeriod_ns -name $myClk
}

syn-script.tcl

Set the driving cell for all inputs except the clock
The clock has infinite drive by default. This is usually
what you want for synthesis because you will use other
tools (like SOC Encounter) to build the clock tree (or define it by hand).
set_driving_cell -library $myLoadLibrary -lib_cell $myInputBuf \

[remove_from_collection [all_inputs] $myClk]
set the input and output delay relative to myclk
set_input_delay $myInDelay_ns -clock $myClk \

[remove_from_collection [all_inputs] $myClk]
set_output_delay $myOutDelay_ns -clock $myClk [all_outputs]
set the load of the circuit outputs in terms of the load
of the next cell that they will drive, also try to fix hold time issues
set_load [load_of [format “%s%s%s%s%s” $myLoadLibrary \
 "/" $myInputBuf "/" $myLoadPin]] [all_outputs]
set_fix_hold $myClk

syn-script.tcl

now compile the design with given mapping effort
and do a second compile with incremental mapping
or use the compile_ultra meta-command
if { $useUltra == 1 } {

compile_ultra
} else {
if { $useUngroup == 1 } {
compile -ungoup_all -map_effort $mapEffort1
compile -incremental_mapping -map_effort $mapEffort2
} else {
compile -map_effort $mapEffort1
compile -incremental_mapping -map_effort $mapEffort2
}

}

syn-script.tcl
Check things for errors
check_design
report_constraint -all_violators
set filebase [format "%s%s%s" $basename "_"

$runname]
structural (synthesized) file as verilog
if { $write_v == 1 } {

set filename [format "%s%s" $filebase ".v"]
redirect change_names { change_names -rules
verilog \
 -hierarchy -verbose }
write -format verilog -hierarchy -output $filename

}
write the rest of the desired files... then quit

Using Scripts

 Modify syn-script.tcl or write your own
 syn-dc –f scriptname.tcl
 Make sure to check output!!!!

Using Design Vision

 You can do all of these commands from the
design vision gui if you like

 syn-dv
 Follow the same steps as the script

 Set libraries in your own .synopsys_dc.setup
 analyze/elaborate
 define clock and set constraints
 compile
 write out results

addsub_struct.v – 10ns target addsub_struct.v – 4ns target

addsub_struct.v – 3ns target

From the log file:

Using Design Vision

 You can do all of these commands from the
design vision gui if you like

 syn-dv
 Follow the same steps as the script

 - Set libraries

 - analyze/elaborate

 - define clock and set constraints

 - compile

 - write out results

Setup

File ->Setup

analyze/elaborate

File -> Analyze

File ->Elaborate

Look at results...

Define clock

attributes -> specify clock

Also look at other attributes...

Compile

Design -> Compile Ultra

Timing Reports

Timing -> Report Timing Path

Write Results

File -> Save As...

change_names

Or, use syn-dv after script...

 syn-dc –f mips.tcl
 results in .v, .ddc, .sdc, .rep files
 Read the .ddc file into syn-dv and use it to

explore timing...

syn-dv with mips_struct.v

File -> Read

Endpoint slack...

Timing -> Endpoint Slack

Path Slack

Timing -> Path Slack

Encounter Digital Implementation System

 Need structural Verilog, .sdc, library.lib,
library.lef

 make a new directory for edi... (very chatty)

 Configuration file sets up names, etc.
 use UofU_edi.globals as starting point.

 Usual warnings about scripting...
top.tcl is the generic script
 .../local/class/6710/F13/cadence/EDI

 cad-edi

Encounter Digital Implementation (EDI)

1. Import Design

2. Floorplan

3. Power Plan

4. Place cells

5. Synthesize clock tree

6. Route signal nets

7. Verify results

8. Write out results

Converts structural verilog
into physical layout

Shorthand for this process:

 Place and Route

EDI Usage

 Need structural Verilog, struct.sdc, library.lib, library.lef

Make a new directory for EDI (very chatty)

 Make an mmmc.tcl file with timing/lib info

 <design>.globals has design-specific settings

 Use UofU_edi.globals as starting point

 Usual warnings about scripting...

 top.tcl and other *.tcl are in the class directory as starting points

/uusoc/facility/cad_common/local/class/6710/F13/cadence/EDI

 Call with cad-edi

cad-edi Flow

1. Import Design
 .v, .sdc, .lib, .lef – can put this in a

<name>.globals and mmmc.tcl
 mmmc = multi-mode multi-corner

2. Floorplan
 Choose physical size, ratio, utilization, etc.

3. Power plan
 Rings, stripes, row-routing (sroute)

4. Timing optimization – preCTS

cad-edi Flow

5. Placement
 Place cells in the rows
 Timing optimization – preCTS

6. Synthesize clock tree
 Use your buf or inv footprint cells
 Timing optimization – postCTS

7. Global routing
 Nanoroute
 Timing optimization - postRoute

cad-edi Flow

8. Add filler cells
 Fill in the spots in the row with no cells
 Adds NWELL for continuity

9. Write out results
 <name>.def can be imported as layout
 <name>_edi.v is the placed and routed

structural verilog file
 .spef, .sdc, _edi.lib have timing information

cad-edi gui Design Import

Using a .globals file

 Put the load information into a .globals file
 Load it up without having to re-type
 Also need a mmmc.tcl file

UofU_edi.globals

Set the name of your structural Verilog file
This comes from Synopsys synthesis
set init_verilog {!!your-file-name.v!!}
Set the name of your top module
set init_design {!!your-top-module-name.v!!}
Set the name of your .lef file
This comes from ELC
set init_lef_file {!!your-file-name.lef!!}
...

UofU_edi.globals

##

below here you probably don't have to change anything

##

Set the name of your “multi-mode-multi-corner data file

You don't need to change this unless you're using a

different mmmc.tcl file

set init_mmmc_file {mmmc.tcl}

Some helpful input mode settings

set init_import_mode {-treatUndefinedCellAsBbox 0 -keepEmptyModule 1}

Set the names of your ground and power nets

set init_gnd_net {gnd!}

set int_pwr_net {vdd!}

mmmc.tcl

set the name of your .lib file (e.g. lib5710-01.lib)

You can create multiple library sets if you have multiple libraries

such as fast, slow, and typ

If you have multiple .lib files, put them in a [list lib1 lib2] structure

create_library_set -name typical_lib \

 -timing {!!your-lib-file!!.lib}

Specify the .sdc timing constraints file to use

This file comes from Synopsys synthesis (e.g. design_struct.sdc)

create_constraint_mode -name typical_constraint \

 -sdc_files {!!your_sdc_file!!.sdc}

…

mmmc.tcl

###

Below here you shouldn't have to change, unless you're doing

something different than the basic EDI run...

###

Create an RC_corner that has specific capacitance info

create_rc_corner -name typical_rc \

…

Define delay corners and analysis views

create_delay_corner -name typical_corner \

 -library_set {typical_lib}

 -rc_corner {typical_rc}

create_analysis_view -name typical_view \

 -constraint_mode {typical_constraint} \

 - delay_corner {typical_corner}

Design
Import

Some screen
shots are from
an older version
of EDI, but not
this one...

Floorplan

Specify -> Floorplan

Floorplan

Specify -> Floorplan

Floorplan

Specify ->
Floorplan

Power Rings
and Stripes

Power -> Power Planning

Sroute
to

connect
things

up

Route -> Sroute

Place cells

Place -> Place cells...

pre-CTS timing optimization

Timing -> Optimization

Clock Tree Synthesis

clock -> create clock tree spec

clock ->Synthesize clock tree

Display Clock Tree post-CTS optimization

NanoRoute

Route -> NanoRoute -> Route

Routed circuit

Routed circuit postRoute optimization

Timing -> Optimization

Add Filler

Place -> Filler -> Add...

Write Results...

Design -> Save -> Netlist

Design -> Save -> DEF

Encounter Scripting

 Usual warnings – know what’s going on!
 Use opt.tcl as a starting point

 And the other .tcl files it calls...

 EDI has a floorplanning stage that you may
want to do by hand
 write another script to read in the floorplan and

go from there...

 Use encounter.cmd to see the text versions of
what you did in the GUI...

top.tcl

set the basename for the config and floorplan files. This

will also be used for the .lib, .lef, .v, and .spef files...

set basename “mips"

The following variables are used in fplan.tcl

Note that rowgap and coregap should be divisible by

the basic grid unit of 0.3 that our process uses

set usepct 0.60 ; # percent utilization in placing cells

set rowgap 15 ; # gap (microns) between pairs of rows

set aspect 0.60 ; # aspect ratio (1 is square)

set coregap 30.0 ; # gap (microns) between core and rails

top.tcl
###
You may not have to change things below this line - but check!

You may want to do floorplanning by hand in which case you
have some modification to do!
###

Set some of the power and stripe parameters - you can change
these if you like - in particular check the stripe space (sspace)
and stripe offset (soffset)!
set pwidth 9.9; # power rail width
set pspace 1.8; # power rail space
set swidth 4.8; # power stripe width
set sspace 123; # power stripe spacing
set soffset 120; # power stripe offset to first stripe
set coregap 30.0; # gap between the core and the power rails

top.tcl

Set the flag for SOC to automatically figure out
buf, inv, etc.
set dbgGPSAutoCellFunction 1

import design and floorplan
if the config file is not named $basename.conf,
edit this file.
loadConfig $basename.conf 0
commitConfig

top.tcl

source the files that operate on the circuit
source fplan.tcl; # percent utilization in placing cells
source pplan.tcl; # create the power rings and stripes
source place.tcl; # place the cells and optimize (pre-CTS)
source cts.tcl; # create clock tree, and optimize (post-CTS)
source route.tcl; # route the design using nanoRoute
source verify.tcl; # verify the design and produce output files
exit

fplan.tcl
puts “------------------ floorplanning -----------------”

Make a floorplan – this works for projecst that are all
standard cells and include no blocks that
need hand placement
setDrawView fplan
setFPlanRowSpacingAndType $rowgap 2
floorPlan –site core –r $aspect $usepct \
 $coregap $coregap $coregap $coregap
fit

save design so far
saveDesign ${BASENAME}_fplan.enc
saveFPlan ${BASENAME}.fp
Puts “-------------- floorplanning done ----------------”

pplan.tcl
puts “------------------ Power Planning -----------------”
Puts “------------------ Making Power Rings --------------”

Make power and ground rings - $pwidth microns wide
with $pspace spacing between them
and centered in the channel
addRing –spacing_bottom $pspace \
 -width_left $pwidth \
 -width_bottom $pwidth \
 -width_top $pwidth \
 -spacing_top $pspace \
 -layer_bottom metal1 \
 -center 1 \
 -stacked_via_top_layer metal3 \
 …

pplan.tcl
puts "------making power stripes-----------------”
Make Power Stripes. This step is optional. If you keep it
in remember to check the stripe spacing
(set-to-set-distance = $sspace) and stripe offset
(xleft-offset = $soffset))
addStripe -block_ring_top_layer_limit metal3 \
 -max_same_layer_jog_length 3.0 \
 -snap_wire_center_to_grid Grid \
 -padcore_ring_bottom_layer_limit metal1 \
 …
Use the special-router to route the vdd! and gnd! nets
sroute -allowJogging 1

Save the design so far
saveDesign ${BASENAME}_pplan.enc
puts "-------------Power Planning done---------"

top.tcl

Read the script...

place

pre-CTS optimization

clock tree synthesis

post-CTS optimization

routing

post-ROUTE optimization

add filler

write out results

Report Files

 <topname>_Conn_regular.rpt
 <topname>_Conn_special.rpt
 <topname>_Geom.rpt

 Desire 0 violations
 If you have 1 or 2 in the geometry, you might be

able to fix them easily in Virtuoso…

Read back to
icfb

File -> Import -> DEF

Change abstract to layout cellviews

Edit -> Search

DRC, Extract

Import Verilog

File -> Import -> Verilog

LVS...

Schematic view

LVS Result

Yay!

Summary

 Behavioral -> structural -> layout
 Can be automated by scripting, but make

sure you know what you’re doing
 on-line tutorials for TCL

Google “tcl tutorial”
 Synopsys documentation for design_compiler
 encounter.cmd (and documentation) for EDI

 End up with placed and routed core layout
 or BLOCK for later use...

