
HSIMplus® Reference
Manual
Version C-2009.06, June 2009

ii HSIMplus® Reference Manual

Copyright Notice and Proprietary Information
Copyright © 2009 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and
may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may
be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise,
without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only.
Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must
assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of
__ and its employees. This is copy number __________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)
Synopsys, AMPS, Astro, Behavior Extracting Synthesis Technology, Cadabra, CATS, Certify, CHIPit, Design Compiler,
DesignWare, Formality, HDL Analyst, HSIM, HSPICE, Identify, iN-Phase, Leda, MAST, ModelTools, NanoSim,
OpenVera, PathMill, Physical Compiler, PrimeTime, SCOPE, Simply Better Results, SiVL, SNUG, SolvNet, Syndicated,
Synplicity, the Synplicity logo, Synplify, Synplify Pro, Synthesis Constraints Optimization Environment, TetraMAX,
UMRBus, VCS, Vera, and YIELDirector are registered trademarks of Synopsys, Inc.

Trademarks (™)
AFGen, Apollo, Astro-Rail, Astro-Xtalk, Aurora, AvanWaves, BEST, Columbia, Columbia-CE, Confirma, Cosmos,
CosmosLE, CosmosScope, CRITIC, CustomSim, DC Expert, DC Professional, DC Ultra, Design Analyzer, Design
Vision, DesignerHDL, DesignPower, DFTMAX, Direct Silicon Access, Discovery, Eclypse, Encore, EPIC, Galaxy, Galaxy
Custom Designer, HANEX, HAPS, HapsTrak, HDL Compiler, Hercules, Hierarchical Optimization Technology,
High-performance ASIC Prototyping System, HSIMplus, i-Virtual Stepper, IICE, in-Sync, iN-Tandem, Jupiter, Jupiter-DP,
JupiterXT, JupiterXT-ASIC, Liberty, Libra-Passport, Library Compiler, Magellan, Mars, Mars-Rail, Mars-Xtalk, Milkyway,
ModelSource, Module Compiler, MultiPoint, Physical Analyst, Planet, Planet-PL, Polaris, Power Compiler, Raphael,
Saturn, Scirocco, Scirocco-i, Star-RCXT, Star-SimXT, System Compiler, System Designer, Taurus, TotalRecall,
TSUPREM-4, VCS Express, VCSi, VHDL Compiler, VirSim, and VMC are trademarks of Synopsys, Inc.

Service Marks (sm)
MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license.
ARM and AMBA are registered trademarks of ARM Limited.
Saber is a registered trademark of SabreMark Limited Partnership and is used under license.
All other product or company names may be trademarks of their respective owners.

Printed in the U.S.A.
C-2009.06

Contents

Audience . i

Related Publications . i

Conventions . i

Customer Support . ii

1. Introduction . 1

HSIMplus. 1

HSIMplus Features . 2

HSIM . 4

Interactive Circuit Analysis. 5

Applications . 5

Input/Output Data. 6

Hierarchical Simulation Technology. 6

Limitations and Recommendations . 7

2. Post-Layout Acceleration (PLX) and SP2DSPF Utility 9

Back-Annotation Without Post-Layout Acceleration . 9

HSIMplus Back-Annotation with Post-Layout Acceleration. 11

HSIMPFPLX. 12

HSIMplus Structural Back-Annotation (SBA) . 12

Invoking SBA . 17

SBA Parameters . 18
HSIMSBA . 18
HSIMSBANTL . 19
HSIMSBAPARAM . 19
HSIMSBAMSGLEVEL . 22
HSIMSBAMSGLIMIT . 22
HSIMSBAHIERID . 23
HSIMSBASFX . 23
HSIMSBAPFX . 23
i

Contents
SP2DSPF Utility. 24

Generating a DSPF File From the Flat Extracted Netlist 24

Running SP2DSPF . 24

SP2DSPF Utility Parameters . 25
-pre . 25
-fpre . 25
-pretop . 25
-post . 25
-fpost . 25
-posttop . 26
-an . 26
-anan . 26
-out . 27
-dpf . 27
-outdpf . 27
-dspf . 28
-outdspf . 28
-pinports . 28
-ms . 28
-mm . 29
-opt outnf . 29
-opt outprefc . 30
-opt outhierc . 30
-opt outsubc . 30
-opt serial . 30
-opt capnet . 30
-opt dupcc. 31
-opt rpref . 31
-opt ccpref, -opt gcpref . 31
-opt vsr . 32
. 32

References. 33

3. Power Net Reliability Analysis (PWRA) . 35

Power Net Reduction . 36

Specifics of Power Net Back-Annotation . 36
HSIMPOSTL. 36
HSIMSPFPWNET . 36
HSIMPWNAME . 37
HSIMSPFPWRMIN . 39
HSIMSPFNETPIN . 39
HSIMTMPDIR. 40
ii

Contents
HSIMSPFPWFLAT. 40
HSIMSPFTLV. 40

Package Modeling . 41
HSIMSPFNETIPIN . 41
HSIMSPFMERGEPIN . 43
HSIMSPFNETPPIN . 44

Power Net IR Drop and EM Analysis Flow . 44

Phase I . 44

Phase II . 44

Phase I Control Parameters. 45
HSIMSPF . 45
HSIMSPFPWNET . 45
HSIMPWRA . 45
HSIMRAP2AUTO. 46
HSIMRAKEEPSERIESR . 46
HSIMRATAU . 46
HSIMRATCL. 46
HSIMRARMIN . 47
HSIMSPFPWRMIN . 47
HSIMRAP2AUTO. 47
HSIMRATAU . 48
HSIMRATCL. 48
HSIMOUTPUT . 48
HSIMRAIRMIN . 49

Phase II Control Parameters . 49

Defining Net Pins by Specifying X/Y Coordinates 50

Output Files . 51

Violation Map Visualization . 57

Generating a Violation Map . 58

Generating Multiple GDSII Files with One Command 58

Generating GDSII for All Analyses. 58

Generating a Violation Map over the Original Layout 59

Displaying a Map Legend. 59

User-Specified Layer Numbers . 59

Layer Filtering . 60

Names Inserted into Geometry . 60

Generating Layout Formats . 60

Automatically Generating Violation Maps . 60

Loading GDSII Files into the Cadence Virtuoso Layout Editor 61

Loading the IR Drop/EM Violation Map Only . 61
iii

Contents
Loading a Violation Map Over the Original Layout. 62

.ratcl File Commands for Phase II Control . 62
ra val. 62
raout . 63
ralayout. 63
coordunit. 64
redv . 64
rediw. 66
redimaxw, redirmsw, rediabsw, rediavgw. 68
redia . 68
redimaxa, redirmsa, rediabsa, rediavga . 68
redj . 69
emthreshproc, emldlayers . 69
emlmaxiv, emlmaxim . 75
jjmaxlog . 76
ragds . 76
raformat . 76
ralayers. 76
printi . 77
printv. 77
printvmode . 77
printipad . 78
alterpad . 78
gdslabels . 78
outlayers. 79
skiplayers . 79
outfiltres . 80
gdsmapvmax . 80
gdsmapi . 81
gdsoutmode . 81
gdsmag. 82
tstart . 83
tstop . 83
swin . 83
twin . 86
tau . 86
layerh . 86
layerea . 87
layermap. 87
rvemapvmax. 87
rvemapi. 87
asciimapvmax. 88
asciimapi . 88
asciicols . 89
asciicolsort . 90
iv

Contents
gdsprops. 91
gdstiming . 92
gdsdefrw. 93
gdsdatatype . 93
gdsfilechsymb. 93
deflayer. 94
rarve . 94
raviewer . 94
rediac . 95
redirmst . 96
redtrms . 96
avgviagrp . 97

Internal Power Nets . 98

References. 100

4. Static Power Net Resistance (SPRES) . 101

Power Net Resistance Calculator . 101

hsim -r . 101

hsim -rout . 102
routcols. 102

Net Resistance Calculator Commands . 103

file. 103

net . 103

addnetpin . 104

netdeletepad . 104

netinclude. 104

gds . 104

gdslayer0 . 105

gdsthresh . 105

ipin . 106

layer0ohm . 106

layerfactor . 106

rmin . 106

png . 107

subnode . 107

sortby . 107

Report Generation Commands and Options . 108

Method 1: TCL File Command . 108
report . 108
v

Contents
Method 2: Command Line Execution . 108
hsim -rout . 108

Report File Generation Options . 108

Power Net IR Drop and EM Analysis Flow . 110

Phase I . 110

Phase II . 110

Phase I Control Parameters. 111
HSIMSPF . 111
HSIMSPFPWNET . 111
HSIMPWRA . 111
HSIMRAP2AUTO. 111
HSIMRATAU . 112
HSIMRATCL. 112
HSIMRARMIN . 113
HSIMSPFPWRMIN . 113
HSIMRAP2AUTO. 113
HSIMRATAU . 113
HSIMRATCL. 114
HSIMOUTPUT . 114
HSIMRAIRMIN . 114

Phase II Control Parameters . 115

Defining Net Pins by Specifiying X/Y Coordinates 116

5. Signal Net Reliability Analysis (SIGRA). 119

Overview . 119

Phase I Control Parameters. 120

HSIMSIGRA. 120

HSIMRASIGCONLY. 120

HSIMRANET . 120

HSIMSKIPRANET . 121

Phase II Control - .ractl File Commands . 121

iavmin val . 121

nnetmax num . 122

selectsignets . 122

Vectorless Signal Net Reliability Analysis (VSIGRA). 122

VSIGRA Flow. 123

HSIMVSIGRA. 125

HSIMVSIGRATCL . 125

VSIGRA CFG TCL File . 125
vi

Contents
6. MOSFET Reliability Analysis (MOSRA) . 127

Overview of MOSFET Reliability Analysis (MOSRA). 127

Fresh Simulation . 128

Post-Stress Simulation. 128

User Reliability Interface (URI) . 129

Simulation Control Parameters . 129

HSIMAGINGINST . 129

HSIMAGINGSTART, HSIMAGINGSTOP . 129

HSIMHCIEAGEREFINST. 129

HSIMHCIEAGETHRESHOLD . 130

HSIMHCIEAGESAMPLING . 130

HSIMMOSRASIM. 130

HSIMRELMODE . 130

HSIMRELTOTALTIME. 131

HSIMURILIB. 131

Modeling . 131

Fresh Simulation Models . 131
HCI . 131
appendmodel . 132

Post-Stress Simulation Models . 133

Output Files . 136

Fresh Simulation . 136

Post-Stress Simulation. 137

API Access. 137

URI for HCI Equations . 137

URI Extension for Customized Stressed Model Equations 137

MOSRA Print Commands . 138

MOSRA Examples . 138

Fresh Simulation Netlist Example . 138

Fresh Simulation Outputs. 139

Post-Stress Simulation Netlist Example . 140

Associated Transistors Using the Degraded Model 142

Overview of the Unified MOSRA Solution . 142

HSIMUNIFIEDMOSRA. 144

Using Fresh and Post-Stress Simulation Models. 144
vii

Contents
Output Files for Fresh and Post-Stress Simulations 144

API Access . 145

Running the MOSRA Flow. 145

Running a MOSRA Example with Built-In Equations 145
Running a MOSRA API Example . 147

Correlating the MOSRA Output Files with HSPICE. 147

HSPICE Fresh Simulation Results. 147

HSPICE Post-Stress Simulation Results . 148

7. HSIMplus-PrimeRail Interface . 149

HSIMplus PrimeRail Flow . 149

HSIM Simulation . 150
HSIMPRIMERAIL . 153
HSIMPRIMERAILTCL . 153

Combining HSIMplus-PrimeRail Interface with PWRA Options 153

HSIM Re-use Simulation Results Option (Phase I RA Results Re-use) . 155

IVEC CFG TCL File Syntax . 156

HSIMRATAU vs. IVEC tau . 158

8. CircuitCheck. 159

Overview of CircuitCheck (CCK) Option . 159

CircuitCheck Tutorial . 160

Conventions . 160

CircuitCheck Command Usage . 160

Specifying Circuit Checks in Command Files . 165

Running Circuit Check Operations without DC Initialization and Transient
Simulation. 166
cckNoSimu . 166

Passing Parameters Into CircuitCheck Commands. 168

CircuitCheck.cck . 169

Include Statements . 170

Parametric Checks. 170

Check Electrical Parameters . 170
cckParam . 170
Capacitor Values . 172
MOSFET Width . 172
viii

Contents
MOSFET Length . 173
MOSFET Drain/Source Area and Drain/Source Perimeter 173
MOSFET Gate Oxide Thickness . 174
Diode Width, Length, and Area . 174
Simulation Run Temperature . 175
Model . 175
Limiting the Number of Violations Reported. 178
M-factor . 178

Post-Layout RC Checking . 179
cckParasiticRC. 179

Design and Electrical Rules Check . 181

Static Device Voltage Analysis. 181

Device Voltage Analysis for Transistors. 182
cckMosV. 182

Device Voltage Analysis for Capacitor, Resistor and Diode 190
cckCapV. 190
cckDioV . 191
cckResV . 191

Subcircuit-Based Voltage Analysis Using the Static Approach 198
cckSubV . 198

Diode Forward Bias Analysis . 203
cckDiode. 203

Element Current Analysis. 206
cckElemI. 206

Instance and Subcircuit Reference Check . 207
cckMatchSub . 207

Excessive Current Path Detection . 208
cckExiPath . 208

Floating Gates and Current Sources Analysis . 209
cckFloatGateIsrc . 209

Check NMOS Bulk Connections . 211
cckNmosB_gt_DS . 211
Example . 216

Find Potentially Conducting NMOS Devices . 216
cckNmosG_gt_DS . 216

Check NMOS Node to VDD Connection . 222
cckNmosNodeToVdd . 222

Check Node Voltage . 224
cckNodeVoltage . 224

Check Paths to Voltage Sources . 226
cckPathToVsrc . 226

Check PMOS Bulk Connections . 230
ix

Contents
cckPmosB_lt_DS . 230
Example . 235

Find Potentially Conducting PMOS Devices . 236
cckPmosG_lt_DS . 236

Check PMOS Node To GND Connection . 244
cckPmosNodeToGnd . 244

Safe Operating Area Check . 245
cckSOA . 245

Subcircuit-Based Voltage Analysis Using the Dynamic Approach. 249
cckDynSubV. 249

Substrate Forward Bias Check . 253
cckSubstrate. 253

Unprotected Antenna Node Check . 256
cckAntGate. 256

Static Voltage Propagation Sharing . 257
Propagation Parameters . 257
Propagation Sharing. 258
Example . 258

Digital Logic and Memory Diagnostics. 260

Flash Memory Check . 260
cckFlashcore . 260

Find Un-initialized Latch. 262
cckLatchUnInit . 262
cckLatchInElem . 263
cckLatchSkipElem . 264

Check Stack-up Transistors . 265
cckMaxStackUpNmos . 265
cckMaxStackUpPmos . 265

Check and Classify the Stuck Nodes . 266
cckMaxStuckAt. 266
cckToggleCount . 267
cckConnReport. 268

Interactive Circuit Debugging Command for Tracking Circuit 269

Finding a Node’s First State Change After a Specified Time. 270
ntrig . 270
intrig . 274

Timing Checks . 277

Check Number of n-MOSFET in Charging Path to VDD 278
cckMaxNmosToVdd . 278

Check Number of p-MOSFET in Discharging Path to GND. 279
cckMaxPmosToGnd . 279
x

Contents
cckMaxStackUpNmos . 280
cckMaxStackUpPmos . 280

Checking Path Delay Between Two Nodes . 280
cckMeasPathDelay. 280

Estimating the Rise and Fall Delay at a Node . 282
cckNodeMaxRF . 282
cckParasiticRC. 283

Static RC Delay Analysis – Estimate Slew Rate 284
cckRCDlyPath . 284
Delay Path Sub-Commands. 284
cckDlyAtNode. 285
cckDlySkipElem . 285
cckDlySkipNode . 285
cckLimitRisePmosFallNmos. 286
cckRCFallDelay . 286
cckRCRiseDelay . 286
cckSetMosDir . 287
Computing the Resistance of MOSFET . 288
Rising and Falling Path Delays . 289
Explanation of this Rising Path Report. 291
Explanation of this Falling Path Report: . 293

Dynamic Device Voltage Check. 294

tcheck mosv . 294

tag_name . 296

mosv. 296

subckt. 297

mos . 298

model . 298

report . 300

time . 300

parallel . 300

separate_file. 301

Output Sorting . 301

start/stop . 302

step . 302

tcheck bjtv . 302

tcheck diodev . 304

tcheck capv . 305

Post-Process Device Voltage Check . 305
Method 1 . 306
Method 2 . 306
xi

Contents
Signal Integrity Checks . 307

Dynamic Crosstalk Analysis. 307
cckDXtalk . 308

Signal Edge Characteristics . 310
Thresholds . 310

Usage Flow Methods . 311
Method 1 . 311
Method 2 . 312

cckParasiticRC. 314

Static Crosstalk Noise Analysis: Estimating Noise Glitches. 314
Running Crosstalk Glitch Analysis . 315

hsim.cckxtk Output Sample . 319

hsim.cckvr Output Sample . 320

hsim.cckvf Output Sample . 320

cckxtk Output Sample . 322

hsim.cckvr Output Sample . 322

hsim.cckvf Output Sample . 323

Leakage Current Detection . 323

Detect Leakage Paths Between Voltage Supply Nodes 324
cckMaxStaticLeak . 324

Leakage Current Detection in Non-Conducting Transistors. 325
cckOffLeakI . 325
Leakage Current in OFF Transistor . 326

. .
Leakage Current Ratio . 328
Command Output . 330

Power-Down Floating-Gate Checking . 332
cckAnalogPDown . 332
cckAnalogPDownIth . 332
cckElemI. 333
cckExiPath . 334

Static Analysis . 334
Static 0 and Static 1 Notes . 334
Static High Impedance Node . 335
cckStaticHZNode . 335
Static DC Path . 337
cckStaticDCPath . 337

CircuitCheck Utilities . 338

Basic Checking . 338
cckBasic . 338

Comparing DC Results Between HSIM and Other Simulators 339
xii

Contents
cckCompareOp . 339

Find Subcircuit Instances . 342
cckMatchSub . 342

Pattern Matching Capability . 343
cckPatternMatch. 343
cckPatternConstraint . 345
cckSetMosDir . 346

Setting Transistor Directions . 347
cckTgPair . 347

Global Parameter Settings. 349

CircuitCheck Tutorial . 351

Invoking CircuitCheck . 351

Test Case . 352
Test Case Example for tcheck mosv . 355
Run HSIM. 355

9. HSIM-ADMS Integration. 357

Introduction to HSIM-ADMS. 357

ADMS Overview. 357

HSIM-ADMSTool Setup. 358

Licensing . 358
Mentor ADMS License . 358
Synopsys HSIM License . 358

Installing and Configuring ADMS . 358

HSIM-ADMS High-level Architecture and Data Flow. 359

HSIM-ADMS Simulation Flow . 360

HSIM-ADMS Examples . 362

HSIM-ADMS Configuration Commands . 366

Partitioning Your Design . 366
.HSIMBB and .part . 366
#HSIMBB and #ENDHSIMBB . 367
.bbinclude . 367

HSIM-ADMS Hierarchy . 367

HSIM-ADMS Control Options . 368

Passing HSIM Options in HSIM-ADMS . 368
Passing HSIM Options in the ADMS Netlist File 369
Passing HSIM Options on the ADMS Command Line 369

HSIM-ADMS DC Iterations. 369
xiii

Contents
HSIM-ADMS Boundary Elements . 369

Special Supply Converters . 370

Interactive Debugging . 370

HSIM-ADMS Outputs. 371

Logfile Outputs . 371

Waveform Outputs . 371

Black Box Mode Limitations[1]. 371

References. 373

10. HSIM-Virtuoso Analog Design Environment Interface 375

HSIM Virtuoso Analog Design Environment Interface Package Options and Platform
Support. 375

All-In-One Package (AAIM) . 376

AAIM Installation & Setup . 376

AAIM Uninstallation . 378

Native Netlist Integration (AANNI) . 378

Native Netlist Integration Installation & Setup . 378

Native Netlist Integration Features. 378

Basic Native Netlist Integration Flow . 379

Porting the Existing Design . 380

Native Netlist Integration Window and Pull-Down Menus 380

Environment Setup. 383
Basic Setup . 383
Advanced Setup . 383

Setup Parameters . 386

Netlisting . 387
Create Top Netlist . 387
Edit Top Netlist . 388
Create Top & Host Netlist. 389
View Host Netlist . 389
Run HSIM. 389

Regenerate the Netlist and Run HSIM. 391

Toggle between Spectre and HSIM Simulation Database for Waveform Probing
391
Toggle Flow I:. 392
Toggle Flow II: . 393

CircuitCheck in the HSIM-Virtuoso Interface Environment 394

View Log File . 394
xiv

Contents
View Output ASCII Files. 395
Save/Load States . 395

Check in Synopsys License . 397

Cadence Cross-probing . 398

WaveView Analyzer Cross-probing . 402

CoSim (AACoSim) Integration . 404

UNIX Setup . 404

CoSim Installation . 404

Basic CoSim Flow . 405

HSIM-Virtuoso CircuitCheck Integration . 405

Native Netlist CircuitCheck. 405
Viewing Commands When Multiple Commands Are Applied. 413
cckCommandFile, cckDeviceVFile . 414

WaveView Analyzer Integration . 414

11. Verilog/VHDL/HSIM Co-Simulation. 417

Setting Up System Environment Variables for Co-Simulation 418

Co-Simulation with Verilog as the Top Instance . 419

High-Level Co-Simulation Instructions . 419

Detailed Co-Simulation Instructions . 419

Instance Based Instantiation with Verilog Configuration 424

Co-Simulation with VHDL as the Top Instance . 426

Co-Simulation with SPICE as the Top Instance. 432

Spectre/Verilog Co-Simulation Running Under the Virtuoso Analog Design
Environment . 435

Donut Partitioning with Verilog as the Top Instance (V-S-V) 436

Using Verilog-on-Top Partitioning . 436

First Run Example . 439

Second Run Example . 439
Verilog and SPICE Files: . 440

Donut Partitioning with SPICE as the Top Instance (S-V-S) 443

Using SPICE-on-Top Partitioning. 443

First Run Example . 445

Second Run Example . 445
Verilog and SPICE Files. 446

Save-Restart in Co-Simulation. 447
xv

Contents
Appending a Waveform in Co-Simulation . 448

Configuration File Commands . 448

analog_cell . 448

auto_vsrc_warning . 449

correct_netlist. 450

define_print_variable . 450

define_strength . 451

digital_cell . 451

digital_cell_inst. 452

dump_interface . 452

dump_port_prop. 453

dump_setting . 453

keep_iface_file . 453

map_subckt_name. 454

map_unfound_port . 454

report_logic_delay . 454

report_port_resistance . 455

set_args . 455

set_intr_mode . 456

set_fall_step . 456

set_port_prop . 456

set_port_prop_warning . 460

set_print_progress . 460

set_rise_step . 460

set_slope_step. 461

set_verbose . 461

set_verilog_supply1 . 462

set_verilog_supply0 . 462

verilog_file . 462

Automatic Voltage Level Detection . 463

Voltage Setting Rules. 463
Rule 1 . 463
Rule 2 . 463
Rule 3 . 463

Co-Simulation Interactive Mode . 463

List Interface Nodes . 465
csli . 465

Print Global Interface History in Time . 466
csh . 466
xvi

Contents
Print Interface Node History . 467
csnh, csinh . 467

Set the Number of Entries Printed By csnh and csinh 467
csnph . 467

Set Watchpoint to Interface Node . 468
csnw, csinw . 468

Delete Watchpoint . 469
csdnw, csdinw . 469

Verilog System Tasks for Co-Simulation . 469

Co-Simulation Setup Guidelines . 471

Map Correct Port Voltages. 471

Define Clear Port Direction . 471

Set Input Ports As Voltage Sources If Possible . 471

Define SPICE Netlist Bus Notation . 471

Handle Bi-Directional Ports . 472

Partitioning Guidelines . 472

Partition Boundary with Clear Digital Behavior . 472

Avoid Partitioning at Timing Sensitive Signals . 472

Avoid Reach-in Signals in Analog Partitions . 472

Avoid Partitioning at Bi-directional Signals Involved Strength Fighting and Pass
Switches . 473

Avoid Fine Grain Partitioning . 473

Strength Table Setup Guidelines. 473

Co-simulation with VCS . 475

HSIM-VCS Co-simulation Usage Flow. 476

Setting up System Environment Variables for Co-simulation. 477

Running the Designs with Co-simulation . 478
Co-Simulation with Verilog as the Top Instance. 478
Co-Simulation with SPICE as the Top Instance 481

Summary of Commands . 483

Interactive Mode. 483

Limitations . 484

Platform Support for HSIM/VCS Co-Simulation . 484

Co-Simulation with ModelSim . 485

ModelSim/HSIM Integration . 485

Running ModelSim/HSIM Co-simulation with Stand-alone ModelSim . . . 485

Running ModelSim/HSIM Co-simulation Under the ADMS Environment 486

HSIM Features Not Supported by Co-simulation. 486
xvii

Contents
References. 488

12. Physical Visualization Manager (PVM) . 489

PVM Installation. 489

Installing PVM: No Existing Customized Cadence Tools. 490

Installing PVM: Existing Custom Cadence Tools 490

Using PVM. 491

Generating a GDSII File . 493

Loading a GDSII File . 494

Opening a View . 495

Violation Map Analysis: Visualization. 495
Localization and Highlighting . 495
Zoom Settings . 496
Visibility . 496
Find Resistor . 498
Dynamic Visualization . 499

Original Layout: Localization & Highlighting. 499

PVM Graphical User Interface (GUI) . 502

File Menu . 502

Action Menu . 502

Find Menu . 503

Settings Menu . 503
Layers. 504
Modes. 505
Properties . 506
Reference. 507
Violation Map . 508
Threshold . 509

Visibility Menu . 517

Options Menu. 518

Toolbar. 518

Log Notes. 519

Status bar. 519

References. 521

14. HSIM-Virtuoso Interface Netlist Properties . 525

HSIM Netlist Properties . 525
xviii

Contents
HSIMD Netlist Properties . 539

15. HSIM-Virtuoso Interface Advanced Topics . 555

Generating hsim/hsimD View and SimInfo . 555

Modifying hsim/hsimD SimInfo. 556

Removing hsim/hsimD SimInfo . 561

Netlist Procedures for Component Primitives . 561

HSIMD Netlist Procedures for Component Primitives 564

instParameters Field . 564

componentName Field . 564

termOrder Field . 565

propMapping Field . 565

namePrefix Field . 565

namePrefix Field . 566

Models, Macros, and Include Files . 567

Models . 567

hsimD (Direct) . 568

Macros . 568

Include File. 569

Net Name Conversion Macro. 569

Expansion of pPar, iPar . 570

Assigning HSIM Parameters . 570

Assigning HSIM Parameters for Subcircuit . 570

Assigning an HSIM Instance Parameter . 572

Assigning an HSIM Parameter to an Instance with a Subcircuit (Cell) Assigned
the Same HSIM Parameter in Component Description Format 573

Naming Conventions . 574

HSIM-Virtuoso Interface Ocean Script Command Usage 577

 .Public
APIs for “HSIMOcean” package . 578

Ocean Script Example . 579

Socket (HSIM) and Direct (HSIMD) Integration . 581

Installing Socket (HSIM) and Direct (HSIMD) Interfaces 581

Porting Existing Design . 583

Netlist and Simulation . 584
Starting the GUI and Selecting HSIM. 584
Specifying a Host Machine. 585
xix

Contents
Setup Environment. 585
Netlister Settings . 587
Graphically Editing Stimulus Files . 588
Analysis . 590
Design Variables . 591
Simulator Options. 592
HSIM Parameters. 594
Selecting Data to Save or Plot . 596
Timing and Power Checks . 596
Generating Netlists. 599
Running Simulations . 600

Viewing Results . 601
Waveforms . 601
Annotation . 602

Load and Save Sessions . 602

Monte Carlo Analysis . 603

16. MOSRA Stressed Model Application . 609

stressedModelConfig API . 609

stressedModelInit API . 610

stressedModelParamNameList API . 612

stressedModelParamNameAndVal API . 613

stressedModelParamVal API . 614

17. User Reliability Interface . 617

URI Model . 617

Dynamic Library . 617
HSIMURILIB. 618

User Files. 618

URI Header File (URI.h). 618
Reliability Parameters . 618
Reliability Variables . 619
Additional Stress Variables . 619
Other Functions . 619

URI Interface File (URI.c). 624

User-Defined Header File (b3uri.h) . 625

Primary Model File (b3urimain.c) . 626

Model Parameter Processing File (b3uriread.c). 630
xx

Contents
Model Default Setting File (b3uriset.c) . 632

Model Evaluation and Load File (b3urild.c) . 634

Index . 639
xxi

Contents
xxii

About This Manual

This manual describes how to use the Synopsys HSIMplus tool. The following
sections provide a guide to this manual, as well as to other documentation that
accompanies this tool.

Audience

Users are expected to be familiar with personal computers and workstations
running an operating system (OS) with a graphic user interface.

The purpose of this manual is to enable users to produce the best nanometer
IC design, verification, and analysis results.

Related Publications

For additional information about HSIMplus, see

■ The HSIMplus Release Notes, available on SolvNet (see Accessing SolvNet
on page ii)

■ Documentation on the Web, which provides HTML and PDF documents and
is available on SolvNet (see Accessing SolvNet on page ii)

You might also want to refer to the documentation for the following related
Synopsys products:
■ HSPICE
■ NanoSim

Conventions

The following conventions are used in Synopsys documentation.

Convention Description

Courier Indicates command syntax.
HSIMplus® Reference Manual i
C-2009.06

Customer Support
Customer Support

Customer support is available through SolvNet online customer support and
through contacting the Synopsys Technical Support Center.

Accessing SolvNet

SolvNet includes an electronic knowledge base of technical articles and
answers to frequently asked questions about Synopsys tools. SolvNet also
gives you access to a wide range of Synopsys online services, which include
downloading software, viewing Documentation on the Web, and entering a call
to the Support Center.

Italic Indicates a user-defined value, such as object_name.

Bold Indicates user input—text you type verbatim—in syntax and
examples.

[] Denotes optional parameters, such as:

write_file [-f filename]

... Indicates that parameters can be repeated as many times as
necessary:

pin1 pin2 ... pinN

| Indicates a choice among alternatives, such as

low | medium | high

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Edit > Copy Indicates a path to a menu command, such as opening the
Edit menu and choosing Copy.

Control-c Indicates a keyboard combination, such as holding down the
Control key and pressing c.

Convention Description
ii HSIMplus® Reference Manual
C-2009.06

 :
Customer Support
To access SolvNet:

1. Go to the SolvNet Web page at http://solvnet.synopsys.com.

2. If prompted, enter your user name and password. (If you do not have a
Synopsys user name and password, follow the instructions to register with
SolvNet.)

If you need help using SolvNet, click Help on the SolvNet menu bar.

Contacting the Synopsys Technical Support Center

If you have problems, questions, or suggestions, you can contact the Synopsys
Technical Support Center in the following ways:
■ Open a call to your local support center from the Web by going to

http://solvnet.synopsys.com/EnterACall (Synopsys user name and
password required).

■ Send an e-mail message to your local support center.

• E-mail support_center@synopsys.com from within North America.

• Find other local support center e-mail addresses at
http://www.synopsys.com/support/support_ctr.

■ Telephone your local support center.

• Call (800) 245-8005 from within the continental United States.

• Call (650) 584-4200 from Canada.

• Find other local support center telephone numbers at
http://www.synopsys.com/support/support_ctr.
HSIMplus® Reference Manual iii
C-2009.06

http://solvnet.synopsys.com
http://solvnet.synopsys.com/EnterACall
http://www.synopsys.com/support/support_ctr
http://www.synopsys.com/support/support_ctr

Customer Support
iv HSIMplus® Reference Manual
C-2009.06

1
1Introduction

Describes tool features and provides recommendations for use.

HSIMplus

HSIMplus expands and builds upon the production-proven HSIM simulator to
address the most critical problems associated with the physical effects of
interconnect wiring and short-channel effects in nanometer IC designs.
HSIMplus is a complete transistor-level simulation and analysis platform for the
design and verification of nanometer integrated circuits. Figure 1 on page 1
shows the HSIMplus structure.

Figure 1 HSIMplus Structure
HSIMplus® Reference Manual 1
C-2009.06

Chapter 1: Introduction
HSIMplus
The HSIMplus structure is designed to maximize the designer’s ability to
simulate designs of various sizes and complexities with a cohesive set of HSIM
tools. The HSIMplus core platform and suite contain the following collection of
features.

HSIMplus Features

As shown in Figure 1, the HSIMplus structure provides these features:

Post-Layout Acceleration

Post-Layout Acceleration (PLX) enhances simulation performance and
memory efficiency by providing hierarchical back-annotation of parasitics
from extracted DSPF and SPEF files. This option also provides the ability to
back-annotate a huge number of coupling capacitors into the hierarchical
simulation data structures, while retaining the circuit hierarchy and
maintaining performance and precision for transient simulation. Refer to
Chapter 2, Post-Layout Acceleration (PLX) and SP2DSPF Utility for detailed
user information.

Power Net Reliability Analysis

Power Net Reliability Analysis (PWRA) incorporates technology for analysis
of IC power networks, including the effect of dynamic IR drop on design
characteristics, and adds capabilities for analyzing and physical
visualization of potential chip failure from electro-migration due to high
current densities. Refer to Chapter 3, Power Net Reliability Analysis
(PWRA) for detailed user information.

Static Power Net Resistance

Static Power Net Resistance (SPRES) performs the complex calculation of
all pad-to-pin and pad-to-internal power net node resistances, generating a
graphical map of the result. This screens power nets for electrical problems
and eliminates the need to complete lengthy simulations in order to analyze
gross errors in the layout of the power network. Refer to Chapter 4, Static
Power Net Resistance (SPRES) for detailed user information.

Signal Net Reliability Analysis

Signal Net Reliability Analysis (SIGRA) is used for calculation and physical
visualization of potential chip failure from electro-migration in signal nets,
correctly considering bi-directional current flow. Refer to Chapter 5, Signal
Net Reliability Analysis (SIGRA) for detailed user information.
2 HSIMplus® Reference Manual
C-2009.06

Chapter 1: Introduction
HSIMplus
The SP2DSPF Utility

All the above HSIMplus options may also access the SPICE-to-DSPF utility,
which can extract semantically equivalent device and interconnect back-
annotation files from a flat or hierarchical full-chip extracted SPICE netlist.
With sp2dspf, users whose extraction tools do not adequately support
netlisting of DSPF may access the post-layout options of HSIMplus. Refer to
Chapter 2, Post-Layout Acceleration (PLX) and SP2DSPF Utility for detailed
user information.

MOSFET Reliability Analysis

MOSFET Reliability Analysis (MOSRA) is used for modeling of device aging
induced by hot carrier injection (HCI) and negative bias temperature
instability (NBTI). Both standard aging and user-specified aging models are
supported. Refer to Chapter 6, MOSFET Reliability Analysis (MOSRA) for
detailed user information.

CircuitCheck

Provides information on the Circuit Check (CCK) option and its capabilities
including: reporting potential circuit problems during the early stage of
simulation, detecting incorrect input data or tool usage, analyzing latch
condition before simulation starts, monitoring node voltages, generating
reports, comparing waveforms to determine when and why a circuit node is
triggered to change its value, computing static rise and fall delays to
transistor gates, and analyzing crosstalk noise voltage caused by coupling
capacitors. Refer to Chapter 8, CircuitCheck for detailed user information.

ADMS Interface

HSIM-ADMS is the single-kernel integration of HSIM into the Mentor's
multilanguage ADvanced Mixed-signal Simulator (ADMS). This integration
adds capability for co-simulation of circuit blocks represented in SPICE
format in HSIM, along with VHDL, Verilog, VHDL-AMS, and Verilog-AMS in
ADMS. HSIM-ADMS allows designers to verify large mixed-signal designs
with the flexibility of simulating various blocks at different levels of
abstraction. Refer to Chapter 9, HSIM-ADMS Integration for detailed user
information.
HSIMplus® Reference Manual 3
C-2009.06

Chapter 1: Introduction
HSIM
HSIM-Virtuoso Analog Design Environment Interface

Provides information on the HSIM-Virtuoso Interface including installation
and un-installation information and how to install and use HSIMplus with the
Cadence® Virtuoso® Analog Design Environment software integration
interfaces. Refer to Chapter 10, HSIM-Virtuoso Analog Design Environment
Interface for detailed user information.

Verilog / VHDL / HSIM Co-Simulation

Provides information on how Verilog / VHDL Co-simulation works using
HSIM. Refer to Chapter 11, Verilog/VHDL/HSIM Co-Simulation for detailed
user information.

HSIM

The HSIM simulator is the core of the HSIMplus platform. HSIM performs
transient analysis, DC analysis, AC analysis, and Monte Carlo analysis
supporting the following circuit elements:
■ MOSFET (Metal-Oxide Semiconductor Field-Effect Transistors)
■ Bipolar transistors
■ Diodes
■ Junction field-effect transistors
■ Resistors
■ Capacitors
■ Self and Mutual inductors
■ Independent voltage and current sources
■ Linear and nonlinear controlled voltage and current sources
■ Lossless and lossy transmission lines

Note:

Some special elements are not currently supported in AC analysis.
Refer to the HSIM Simulation Reference Manual: Chapter 10, AC
Small-Signal Analysis for details.
4 HSIMplus® Reference Manual
C-2009.06

Chapter 1: Introduction
Interactive Circuit Analysis
Interactive Circuit Analysis

HSIM’s interactive circuit analysis provides a circuit debugging environment
that interrupts simulation and performs interactive circuit diagnosis at selected
points in time. HSIM analysis provides circuit information, such as:
■ Node voltage
■ Node capacitance
■ Element current
■ Element conductance and capacitance
■ Fan-in and fan-out elements to a node
■ Element terminal nodes
■ Active element drivers to a node
■ Active loading elements to a node
■ Excessive current checks
■ DC path between two nodes

Applications

HSIM provides analysis for many applications:
■ Full-chip transistor-level functionality verification at pre-layout and post-

layout stages
■ High-speed circuit simulation for memory circuits, including:

• DRAM

• SRAM

• ROM

• EPROM

• EEPROM

• Flash memory
■ Timing and power characterization for memory circuits with post-layout

parasitics. Microprocessor, DSP, MPEG, and other large IP cores can also
be characterized provided a reasonable number of user-selected input
stimuli are made available.
HSIMplus® Reference Manual 5
C-2009.06

Chapter 1: Introduction
Input/Output Data
■ Cross-talk noise simulation
■ High-speed analog and mixed-signal circuit simulation
■ Functionality, timing, and power analysis report
■ Full-chip post-layout simulation including all layout parasitics to determine

the following:

• Circuit performance under the influence of power net IR drop

• Effect of coupling capacitance on delay, delay noise, functionary, or
glitch power.

Input/Output Data

Simulation results stemming from the analysis allow probing designs to obtain
the following:
■ Nodal analog voltage waveforms
■ Nodal digital logic-state waveforms
■ Element branch current waveforms through a transistor, a resistor, a

capacitor, an inductor or an independent voltage source

These output data can be displayed with either of the following waveform
viewers:
■ nWave
■ SimWave
■ WaveView

Check commands are used to provide detailed timing and power
measurements. Refer to the HSIM Simulation Reference Manual: Chapter 13,
Timing and Power Analysis for detailed information about check commands.

HSIM’s input data format is generally compatible with the input format of
industrial standard circuit simulators such as HSPICE.

Hierarchical Simulation Technology

HSIM’s high capacity is provided by the innovative use of hierarchical
technology—simulation that stores the circuit netlist hierarchically in memory
instead of flattening the netlist.
6 HSIMplus® Reference Manual
C-2009.06

Chapter 1: Introduction
Input/Output Data
This minimizes memory requirements for identical cells and subcircuits. HSIM’s
isomorphic matching techniques eliminates redundant computation for identical
sub-circuits and provides greatly enhanced throughput.

To further improve throughput for post-layout simulation, HSIMplus options
include parasitic reduction for both signal and power nets. as well as
hierarchical back-annotation. These combined capabilities give HSIM the
ability to accurately and efficiently simulate circuits of tens to hundreds of
millions of transistors.

HSIM simulates and analyzes
■ Large circuit blocks
■ Groups of large interacting circuit blocks
■ Full-chip designs

Limitations and Recommendations

It is recommended that HSIM be employed to investigate and analyze
nanometer effects prevalent among high-speed nanometer circuits, such as:
■ The influence of power net IR drop on circuit performance
■ Cross-coupling
■ Full-chip post-layout simulation with layout parasitics

Many of these problems may not be observable while running independent
block-level simulations and will require full-chip circuit simulation for detection
and correction.

Caution!

HSIM is not recommended for circuits containing fewer than 100 transistors.
HSIM is more effective for simulating VLSI circuits.

In addition, HSIM should not be used as an exhaustive simulation tool to
verify large designs with a huge number of test vectors. HSIM is not
designed to handle such applications. It is suggested that test vectors be
intelligently selected for key functionality and critical circuit behavior to be
tested without using exhaustive vector sets. If it is necessary that large sets
of test vectors be simulated, dedicate a powerful computer to execute HSIM
for the required time.
HSIMplus® Reference Manual 7
C-2009.06

Chapter 1: Introduction
Input/Output Data
8 HSIMplus® Reference Manual
C-2009.06

2
2Post-Layout Acceleration (PLX) and SP2DSPF Utility

This chapter describes how to use the HSIMplus PLX Post-Layout Acceleration
option for hierarchical back-annotation (HBA) technology, structural back-
annotation (SBA) technology, and the SP2DSPF utility.

With the majority of design starts now being targeted to processes at 130nm
and below, post-layout analysis for nanometer effects is now a necessity. In
dynamic circuit simulation, post-layout analysis can be performed by simulating
a circuit with all the parasitic RCs and coupling capacitors extracted from the
layout. A brute force approach to this problem—simulation of the flat extracted
netlist with all the parasitic RCs and coupling capacitors—is not practical
because of the huge size of the extracted netlist. Direct simulation of the
extracted netlist consumes an enormous amount of CPU time and computer
memory. To solve this problem, HSIMplus provides the Post-Layout
Acceleration option (PLX), including an optimized hierarchical back-annotation
technology (HBA).

Back-Annotation Without Post-Layout Acceleration

Back-annotation in HSIM and HSIMplus is done from the net definitions of the
DSPF/SPEF files. Refer to the HSIM Simulation Reference Manual: Chapter 7,
Post-Layout Back-Annotation for a detailed description of the HSIM parameters
required to set up back-annotation from DSPF/SPEF files. An example to
illustrate back-annotation without the HSIMplus PLX option is shown in Figure 2
on page 10.
HSIMplus® Reference Manual 9
C-2009.06

Chapter 2: Post-Layout Acceleration (PLX) and SP2DSPF Utility
Back-Annotation Without Post-Layout Acceleration
Figure 2 Back-Annotation Without the HSIMplus PLX Option

The node being back-annotated is n1 in the DSPF file, which contains all the
parasitic RCs for that node. In order to back-annotate the node n1, HSIM
disconnects all the devices from the node n1 and reconnects them to the
corresponding ports of the net. In doing this, HSIM has to flatten the circuit to
bring all the net connections on the same hierarchy level. This may not be a
problem when only a small number of nets are back-annotated, or there are no
coupling capacitors in the back-annotation. In that case, HSIM may partially
flatten the circuit, but the overall hierarchy is preserved. By maintaining the
hierarchy in the circuit, HSIM can apply its hierarchical simulation methodology
to achieve high simulation speed.

However, when the back-annotation involves many nets (full chip extraction),
or there are a great number of coupling capacitors, the hierarchy is destroyed
with many random connections between the nets. HSIM must then flatten
virtually the entire circuit, such that the advantages of hierarchical simulation
cannot be used and the simulation speed degrades significantly. When the
power and ground nets are back-annotated, which almost every device in the
circuit has a connection to, HSIM also must flatten the circuit to bring all the
connections onto the same level of the hierarchy. This again results in a huge
flat circuit to be simulated, thus making the simulation run times unacceptable
in many cases.

As a result, the standard flat back-annotation approach can be efficiently
applied only to either of the following:
10 HSIMplus® Reference Manual
C-2009.06

Chapter 2: Post-Layout Acceleration (PLX) and SP2DSPF Utility
HSIMplus Back-Annotation with Post-Layout Acceleration
■ Block level post-layout simulations.
■ Designs with low signal net coupling or low coupling through power nets.

When there is a need for full chip post-layout analysis, or when the power and
ground nets are to be back-annotated, the HSIMplus PLX option provides for
hierarchical back-annotation to maintain the pre-layout circuit hierarchy in the
presence of coupling, retaining memory efficiency, and simulation
performance.

HSIMplus Back-Annotation with Post-Layout Acceleration

With Post-Layout Acceleration, HSIM does not flatten the circuit in order to add
the parasitic RCs. Applying a sophisticated optimization algorithm, HSIM
distributes the parasitic RCs among different levels of hierarchy and sub-
circuits. The hierarchy of the pre-layout netlist is completely preserved. The
effect of hierarchical back-annotation in the HSIMplus PLX option is shown in
Figure 3. In the schematic example, the back-annotation of the power net with
hierarchical back-annotation is shown.

Figure 3 Effects of HSIMplus PLX on Back-Annotation

In addition to saving the hierarchy of the circuit, the HSIMplus PLX option
processes all coupling capacitors using file operations. During these

x3

in
m1

m2

x1

m1

m2

x2

m1

m2

n1

out1

out2

Pre-layout

in
m1

m2

m1

m2

m1

m2

out1

out2Parasitic RCs

After Back-Annotation

+ =

x2

x3

x1

inv

inv

inv

inv+1

inv+2

inv+2
HSIMplus® Reference Manual 11
C-2009.06

Chapter 2: Post-Layout Acceleration (PLX) and SP2DSPF Utility
HSIMplus Structural Back-Annotation (SBA)
operations, the coupling capacitors are handled as ungrounded capacitors.
Refer to the HSIM Simulation Reference Manual: Chapter 6, Simulation
Parameters, for additional information on coupling capacitors. Many of the
coupling capacitors may be split with no effect on the accuracy, thus the actual
number of the capacitors that are added to the circuit is small. By doing filtering
of the coupling capacitors on a file basis, HSIM HBA can accept virtually any
number of coupling capacitors without big computer memory usage. The
coupling capacitors being added to the circuit are also distributed over the
hierarchy, so all the benefits of the HSIM hierarchical simulation will be fully
utilized.

HSIMPFPLX

HSIMPFPLX is a flag that enables or disables post-layout acceleration and the
HBA flow.

Syntax

In order to activate the HSIMplus PLX option, use the syntax:

.param HSIMSPFPLX=1

where:
■ HSIMSPFPLX=0 (the default) turns PLX off.
■ HSIMSPFPLX=1 sets HBA processes incoming DSPF/SPEF file parasitic

RCs.

HSIMplus Structural Back-Annotation (SBA)

Structural back-annotation is designed to handle structural mismatches
allowed by LVS between schematic and extracted netlists.

The SBA flow offers the following capabilities:
■ SBA matches nets and devices by name and connectivity and therefore, it

allows HSIM to identify structural differences between pre and post-layout
netlists.

■ SBA is performed before the simulation database is built and as a result, it
can back-annotate structural differences, as well as devices with non-
generic physical parameters.
12 HSIMplus® Reference Manual
C-2009.06

Chapter 2: Post-Layout Acceleration (PLX) and SP2DSPF Utility
HSIMplus Structural Back-Annotation (SBA)
■ When the SBA flow is used, DPF back-annotation is not required and should
not be used.

■ SBA back-annotates structural differences and results in more accurate
DSPF back-annotation with fewer warnings.

The following examples demonstrate the features of SBA.

1. SBA back-annotates functional resistors with extra post-layout nodes.

In the figure below, the schematic netlist contains resistors, r1 and r2. In
contrast, the extracted netlist contains two additional resistors, r1@2 and
r2@2, and an extra node ln_1.

The SBA algorithm recognizes that schematic netlist is electrically
equivalent to extracted one (in other words they are LVS clean) and
subsequently back-annotates the extra ln_1 node and the additional r1@2
and r2@2 devices into original schematic netlist.

2. SBA back-annotates complex finger devices.

In the figure below, the schematic netlist contains two MOSFETs, m1 and
m2 in series. During layout, the m1 and m2 transistors were fingered, which
resulted in an extracted netlist that contains two additional transistors,
m1@2 and m2@2, as well as an extra node ln_1.

r1

r2

r1@2

r1
r2

r2@2

m2

m3

m2

m3

m0 m0

Schematic Extracted

ln_1
HSIMplus® Reference Manual 13
C-2009.06

Chapter 2: Post-Layout Acceleration (PLX) and SP2DSPF Utility
HSIMplus Structural Back-Annotation (SBA)
The SBA algorithm matches these two structure and back-annotates the
missing ln_1 net and the m1@2 and m2@2 devices from the extracted
netlist.

3. SBA back-annotates post-layout fill in nets.

Fill in nets are often inserted in the layout to planarize metal layers and
reduce the risk of manufacturing failures. As a result, fill in nets appear only
in the extracted netlist. In the figure below, net ln_1 is a fill in net that only
appears in the extracted netlist, however, because ln_1 was placed in close
proximity to nets a1 and b1, it is coupled to these nets through parasitic
capacitance.

SBA identifies post-layout fill in nets and back-annotates them to the original
schematic netlist.

4. SBA back-annotates swapped devices.

Schematic devices can often be swapped or rotated during layout. The
resulting extracted netlist is LVS clean, however, the device connections
might differ. The figure below demonstrates the swapping of the devices
m1, m2 and m3 between the schematic and extracted netlists.

Schematic Extracted

m1

m2

n

a

b

m1

m2

n

a

b

m1@2

m2@2

ln_1

a1

a1

b1

ln_1b1

ExtractedSchematic
14 HSIMplus® Reference Manual
C-2009.06

Chapter 2: Post-Layout Acceleration (PLX) and SP2DSPF Utility
HSIMplus Structural Back-Annotation (SBA)
SBA detects swapped devices and back-annotates them into the original
schematic netlist.

5. SBA back-annotates sub-circuit or Verilog-A modeled devices.

To model the nanometer effects of modern day designs, extracted netlists
may contain devices that are modeled in Verilog-A or are wrapped inside of
sub-circuits. In the figure below, the schematic netlists contains ideal
resistor R1. However, during layout, the R1 resistor is implemented using
NWELL. Furthermore, to accurately model the PN junction behavior of the
NWELL resistor, it is extracted as sub-circuit instance that contains a
resistor and two diodes.

SBA can be configured using the HSIMSBAPARAM parameter to recognize
the XR1 extracted instance as a resistor and back-annotate it to the
schematic netlist.

Below is a diagram that summarizes the SBA flow.

S ch e m a tic E x tra cte d

m 1

m 2

m 3

a

b

c

n4

n3

n2

n1

m 2

m 3

m 1

a

b

c

n4

n3

n2

n1

XR1 a b vss RNw=4u l=10u
………
.subckt RN p n sub w=1u l=1u
 R1 p n r=’10*l/w’
 D1 sub p DN area=‘l*w/2’ pj=‘(l+w)’
 D2 sub n DN area=‘l*w/2’ pj=‘(l+w)’
.ends

R1 a b 25

Schematic Extracted
HSIMplus® Reference Manual 15
C-2009.06

Chapter 2: Post-Layout Acceleration (PLX) and SP2DSPF Utility
HSIMplus Structural Back-Annotation (SBA)
Figure 4 Structural Back-Annotation Flow

As shown in Figure 4, the SBA flow works as follows:

1. HSIM parses the pre-layout schematic netlist.

2. Parses the extracted DSPF+DPF netlists.

3. Shorts all parasitic RC's from the SPF section of the extracted netlist and
internally generates flat extracted DPF netlist that contains only functional
devices.

4. Matches pre-layout schematic netlist with generated flat DPF netlist. The
netlist-to-netlist comparison starts with top level anchor nodes and
propagates through entire design. As a result, nets and devices are
matched by name and connectivity.

Schematic netlist

HSIM

3. Shorts parasitic elements,
generates DPF netlist

2. Parses extracted netlist

Flat extracted DSPF+DPF
netlist

1. Parses schematic
netlist

5. Back-annotates post-layout nets and devices to
schematic netlist

6. Applies pre-layout settings to back-annotated netlist

4. Matches pre-layout schematic netlist with DPF netlist

7. Proceeds to DSPF back-annotation
16 HSIMplus® Reference Manual
C-2009.06

Chapter 2: Post-Layout Acceleration (PLX) and SP2DSPF Utility
HSIMplus Structural Back-Annotation (SBA)
5. After the netlist-to-netlist comparison is complete, HSIM back-annotates the
mapped devices from the extracted DPF netlist into the original pre-layout
schematic netlist.

6. Once extracted devices and nets are back-annotated into the original pre-
layout schematic netlist, the pre-layout accuracy settings (.print, .measure
and .IC) are re-applied to the structurally back-annotated netlist.

7. If the HSIMSPF parameter is set, HSIM performs DSPF back-annotation.

8. Finally, HSIM builds the netlist database, performs DC initialization and
proceeds to transient simulation.

Note:

SBA requires a clean LVS database.

Invoking SBA

To invoke SBA, set HSIMSBA=1 in the top level netlist. In addition, the
HSIMSBANTL parameter is also required. The HSIMSBANTL parameter must
point to a postlayout.sp file that has to be generated manually. The
postlayout.sp file should be a self-contained SPICE netlist with the instance of
extracted subcircuit, device libraries, and the appropriate temperature setting
as demonstrated in the diagram below.
HSIMplus® Reference Manual 17
C-2009.06

Chapter 2: Post-Layout Acceleration (PLX) and SP2DSPF Utility
HSIMplus Structural Back-Annotation (SBA)
Figure 5 Invoking SBA

SBA Parameters

HSIMSBA
HSIMSBA is a flag that enables or disables the SBA flow.

Syntax
.param HSIMSBA=0|1

If HSIMSBA is set to 0, all SBA parameters are ignored and the SBA is
disabled. If it is set to 1, the SBA flow is enabled. The default is 0.

Note:

SBA requires the HSIM-PLX license feature.

*top.dspf

.subckt top A B C
*|NET A …
*|I (M1:d …)
*|I (M1@2:d …)
…
*Instance section
M1 M1:d …
M1@2 M1@2:d …
.ends

*prelayout.sp
.lib “my_lib” FF

.subckt top A B C
M1 A B ….
.ENDS

Xtop D E F top

.temp 40

.end

*postlayout.sp
.lib “my_lib” FF

Xtop A B C top

.temp 40

.end

*top.sp

.param HSIMSPF=“top.dspf”

.param HSIMSBANTL=“postlayout.sp”

.param HSIMSBA=1

.include “prelayout.sp”

.include “top.dspf

hsim top.sp -o sba/hsim
18 HSIMplus® Reference Manual
C-2009.06

Chapter 2: Post-Layout Acceleration (PLX) and SP2DSPF Utility
HSIMplus Structural Back-Annotation (SBA)
HSIMSBANTL
HSIMSBANTL is used to specify the post-layout netlist required for the SBA
flow as shown in Figure 5.

Syntax
.param HSIMSBANTL=<filename>

Where <filename> is the name of the post-layout netlist file to use. The post-
layout netlist should contain the following:
■ The top level instance of the extracted subcircuit.
■ An .INCLUDE statement of the extracted subcircuit in DSPF+DPF or DPF

format.
■ A device library or models that are used in the extracted subcircuit.
■ A .TEMP setting, otherwise HSIM will use default temperature when parsing

post-layout netlist.
■ An .END statement.

HSIMSBAPARAM
The HSIMSBAPARAM parameter is used to help match sub-circuit instances
(parse) for the SBA flow.

Syntax
.param HSIMSBAPARAM=“sub=<subckt> parse {<device>}”

Syntax Description
<subckt>

The name of the wrapper subcircuit or Verilog-A module that requires
special treatment during SBA.

<device>

The discrete device that is substituted by SBA during matching in place of
wrapper subcircuit or Verilog-A module.

Example One
In the example below, the resistor R1 in the schematic netlist was extracted as
a subcircuit instance XR1.
HSIMplus® Reference Manual 19
C-2009.06

Chapter 2: Post-Layout Acceleration (PLX) and SP2DSPF Utility
HSIMplus Structural Back-Annotation (SBA)
The R1 and XR1 are entirely different elements. R1 is a discrete resistor with
two terminals. XR1 is an instance of a subcircuit "RN" with three connections.
Subcircuit RN has one resistor and two diodes. For SBA to map the schematic
"R1" resistor with the extracted "XR1" instance HSIMSBAPARAM must be set
in the post-layout netlist as follows:

.param HSIMSBAPARAM="sub=RN parse {Rext p n 10}"

This parameter instructs SBA to map any instance of subcircuit "RN" in the
extracted netlist to a discrete resistor "Rext p n 10". Observe that the name and
the value of Rext resistor are irrelevant since they will be used only to match
the type of the device. However, to establish proper connectivity, the node
names "p" and "n" of "Rext" resistor must match the port names in the
".SUBCKT RN p n sub" definition.

After "R1" and "XR1" devices are matched by SBA, the "XR1" instance from
the extracted netlist is back-annotated in place of the ideal "R1" schematic
resistor.

Example Two
In this example, the subcircuit instance XR1 in the schematic netlist was
extracted as an ideal R1 resistor.

XR1 a b vss RN w=4u l=10u
………
.subckt RN p n sub w=1u l=1u
 R1 p n r=’10*l/w’
 D1 sub p DN area=‘l*w/2’ pj=‘(l+w)’
 D2 sub n DN area=‘l*w/2’ pj=‘(l+w)’
.ends

R1 a b 25

Schematic Extracted
20 HSIMplus® Reference Manual
C-2009.06

Chapter 2: Post-Layout Acceleration (PLX) and SP2DSPF Utility
HSIMplus Structural Back-Annotation (SBA)
For SBA to map schematic the "XR1" instance with the ideal extracted "R1"
resistor, HSIMSBAPARAM must be set in the pre-layout netlist as follows:

.param HSIMSBAPARAM="sub=RN parse {Rsch p n 10}"

After SBA matches the "XR1" instance in the schematic netlist with the
extracted "R1" resistor, it back-annotates the extracted "R1" resistor. The final
simulation netlist contains resistor "R1 a b 25".

Example Three
In this example, the XM1 subcircuit instance in the schematic netlist was
extracted as the NHC subcircuit instance.

XM1 in the schematic netlist is an instance of the NCH subcircuit with 4
terminals, whereas in the extracted netlist it is an instance of the subcircuit
NCHEX with 5 terminals. For SBA to map the XM1 schematic instance to the
extracted one, HSIMSBAPARAM must be set in both netlists as follows:

Schematic:

.param HSIMSBAPARAM="sub=NCH parse {Mx d g s b N w=0.3u l=0.18u}"

XR1 a b vss RN w=4u l=10u
………
.subckt RN p n sub w=1u l=1u
 R1 p n r=’10*l/w’
 D1 sub p DN area=‘l*w/2’ pj=‘(l+w)’
 D2 sub n DN area=‘l*w/2’ pj=‘(l+w)’
.ends

R1 a b 25

Schematic Extracted

Sche Extra

XM1 a b c d NCH
w=0.45u l=0.18u
...
.subckt NCH d g s b
w=0 l=0

XM1 a b c d sub NCHEX
w=0.5u l=0.2u
...
.subckt NCHEX d g s b sub
w=0 l=0
.MB d g s b NMOS w=w l=l
HSIMplus® Reference Manual 21
C-2009.06

Chapter 2: Post-Layout Acceleration (PLX) and SP2DSPF Utility
HSIMplus Structural Back-Annotation (SBA)
This parameter instructs SBA to map any instance of NCH subcircuit to a
discrete MOSFET device, Mx d g s b N w=0.3u l=0.18u. Observe that the
device name Mx and device model N, as well as values of w and l, are arbitrary
since they are used only to match the type of devices. However, to establish
proper connectivity, the node names d, g, s and b of Mx must match the port
names in the .subckt NCH d g s b definition.

Extracted:

.param HSIMSBAPARAM="sub=NCHEX parse {Mx d g s b N w=0.3u l=0.18u}"

This parameter instructs SBA to map any instance of the NCHEX subcircuit to
a discrete MOSFET device, Mx d g s b N w=0.3u l=0.18u. Observe that the
device name Mx and device model N, as well as values of w and l, are arbitrary
since they are used only to match the type of devices. However, to establish
proper connectivity, the node names d, g, s and b of Mx must match the port
names in the .subckt NCHEX d g s b sub definition. The extra sub port in the
subckt definition is ignored.

After these mapping steps, a correspondence between the XM1 instances in
schematic and extracted netlists is established, and the extracted XM1
instance is back-annotated in place of the schematic XM1 instance.

HSIMSBAMSGLEVEL
HSIMSBAMSGLEVEL controls the number of warnings printed to the log file
during SBA back-annotation.

Syntax
.param HSIMSBAMSGLEVEL=0|1|2|3|4|5

Syntax Description
HSIMSBAMSGLEVEL can be set to any integer between 0-5. If it is set to 0, no
SBA warnings will be reported. When set to 5, detailed SBA warnings are
reported to the HSIM log. The default value is 1.

HSIMSBAMSGLIMIT
HSIMSBAMSGLIMIT sets the limit on the total number of warning messages
issued during the matching stage of SBA.

Syntax
.param HSMSBAMSGLEVEL=<value>
22 HSIMplus® Reference Manual
C-2009.06

Chapter 2: Post-Layout Acceleration (PLX) and SP2DSPF Utility
HSIMplus Structural Back-Annotation (SBA)
Syntax Description
<value> is an integral value that specifies the absolute limit on the number of
warnings generated by SBA. The default value is 500. This setting does not
override the global warning limit settings (like '.opt warnlimit'). SBA stops
generating warning messages as soon as either of these limits is reached.

HSIMSBAHIERID
HSIMSBAHIERID is used in the post-layout file to set the proper hierarchical
separator in the device name.

If we have the following device In the extracted netlist:

*Instance Section
M_X1/M3#1 A B C D NMOS ….

The following setting should be used in the post-layout netlist:

.param HSIMSBAHIERID="/"

HSIMSBASFX
HSIMSBASFX is used in the post-layout file to set the proper finger delimiter in
the device name.

If we have the following device In the extracted netlist:

*Instance Section
M_X1/M3#1 A B C D NMOS ….

The following setting should be used in the post-layout netlist:

.param HSIMSBASFX="#"

HSIMSBAPFX
HSIMSBAPFX is used in the post-layout file to set the proper prefix in the name
of extracted devices.

If we have the following devices In the extracted netlist:

*Instance Section
M_X1/M3#1 A B C D NMOS …
R_X1/R1 F N 100
X_X1/XR2 K L RN W=1 L=10 …

The following setting should be used in the post-layout netlist:

.param HSIMSBAPFX="M_"
HSIMplus® Reference Manual 23
C-2009.06

Chapter 2: Post-Layout Acceleration (PLX) and SP2DSPF Utility
SP2DSPF Utility
SP2DSPF Utility

Generating a DSPF File From the Flat Extracted Netlist

Back-annotation of parasitic RCs from detailed standard-parasitic format[1]
(DSPF) or standard-parasitic extended format[2] (SPEF) files form the core
technology for HSIM’s signal integrity and power/signal net reliability analysis.

Some extraction tools have problems outputting their results as DSPF files.
These tools extract flat SPICE netlists with parasitic RCs so that making flow
changes that permit the use of DSPF files may require additional effort from
HSIM users. In HSIM, simulating large flat extracted netlists is much less
efficient when compared to simulating the hierarchical netlist back-annotated
from a DSPF file. Moreover, HSIM’s reliability features can only be used if
back-annotation is applied.

The SP2DSPF utility generates the following files from a pre-layout netlist and
flat or hierarchical extracted netlist with parasitic RCs:
■ DSPF file
■ DPF (Device Parameter Format) file (optional)

Non-parasitic devices from the extracted netlist, such as MOSFETs, are
matched with their pre-layout counterparts and can be output in the DPF file.
The resulting DSPF and DPF files can then be used for back-annotating the
pre-layout netlist.

Running SP2DSPF

To run SP2DSPF, use the following syntax:

hsim -sp2dspf [<parameter file>] [<parameter setting> ...]

A list of parameters for the current run are contained in either of the following:
■ Parameter file: For parameters used in numerous runs.
■ Specified on the command line: For parameters with one-time or limited

usage.

Note:

Parameters read from the file or from the command line are identical.
24 HSIMplus® Reference Manual
C-2009.06

Chapter 2: Post-Layout Acceleration (PLX) and SP2DSPF Utility
SP2DSPF Utility
The following example shows the hsim -sp2dspf syntax that refers to a
parameter file.

hsim -sp2dspf p1_set.txt -anan gnd

Each parameter setting is a keyword prefixed with a dash (-) character and may
be followed by parameter value(s). A single or multiple parameters can be
inserted in a single syntax line when creating a parameter file.

SP2DSPF Utility Parameters

-pre
-pre <file name>

-pre is a required parameter that specifies a pre-layout netlist.

-fpre
-fpre <format> (default: hspice)

-fpre specifies the pre-layout netlist format where format is the netlist format
name (for example, spectre). The list of available formats is the same as for
HSIM. hspice is the default value.

-pretop
-pretop <subcircuit name>

-pretop specifies which pre-layout netlist sub-circuit is used as the top-level
sub-circuit. The top-level netlist instance is the default used as the top-level
sub-circuit.

-post
-post <file name>

-post is a required parameter that specifies the name of the extracted netlist.

-fpost
-fpost <format> (default: hspice)
HSIMplus® Reference Manual 25
C-2009.06

Chapter 2: Post-Layout Acceleration (PLX) and SP2DSPF Utility
SP2DSPF Utility
-fpost specifies the extracted netlist format where format is the netlist
format name (for example, spectre). The list of available formats is the same
as for HSIM. hspice is the default value.

-posttop
-posttop <cell name>

-posttop specifies which extracted netlist sub-circuit should be used as the
top-level sub-circuit. The default is the top-level netlist instances which are
used as the top-level sub-circuit.

-an
-an <node name> <node name> [<node name> <node name> ...]

-an specifies anchor node pairs used as starting points for the matching
process. The pairs have the following form:
■ First Node: The first node of each pair is a pre-layout netlist node.
■ Second Node: The second node is an extracted netlist node.

Only top-level nodes are allowed and at least one pair of anchor nodes is
required. -an can be specified multiple times, as shown in the following
example:

-an 0 gnd! pwr vdd
-an vcc vss
-anan <node name> [<node name> ...] (default: *)

-anan
-anan specifies anchor nodes with identical names in pre-layout and extracted
netlists. Specifying -anan node_name is equivalent to specifying
-an node_name node_name, for example, -anan provides a shorter and
more convenient way to specify anchor nodes when they are named identically
in both input netlists.

Additionally, -anan supports wildcard characters such as (*) and (?). When
wildcards are used as a node name in -anan, the anchor node selection is
performed in accordance with the following:
26 HSIMplus® Reference Manual
C-2009.06

Chapter 2: Post-Layout Acceleration (PLX) and SP2DSPF Utility
SP2DSPF Utility
1. All top-level nodes whose names match the wildcard are found in both pre-
layout and extracted nelists.

2. The names of pre-layout and extracted nodes are compared and every pair
consisting of a pre-layout and an extracted node with identical names is
used as a pair of anchor nodes.

The following example shows a wildcard used with the -anan parameter.

-anan *

-anan * is the default for -anan. In this example, the program searches all
top-level nodes in both the pre-layout and extracted netlists for nodes with
identical names. These nodes are then used as anchor nodes for matching
process.

-out
-out <file name prefix> (default: hsim -sp2dspf)

-out specifies the default output file name prefix. If the name is concatenated,
it will have the following properties:
■ log extension: it is used as the log file name
■ .dpf: DPF output
■ .dspf: DSPF

Note:

If different names are explicitly assigned using the -outdpf and -outdspf
parameters, -out is overridden for these parameters.

-dpf
-dpf on/off (default: off)

Enables/disables DPF file output.

-outdpf
-outdpf <file name>

-outdpf specifies output DPF file name and enables DPF file output, provided
it is not disabled explicitly by -dpf parameter. -outdpf has no effect if DPF
output is disabled by explicit -dpf parameter. If -outdpf is not specified, DPF
file name is built in accordance with output file name prefix setting -out. If
HSIMplus® Reference Manual 27
C-2009.06

Chapter 2: Post-Layout Acceleration (PLX) and SP2DSPF Utility
SP2DSPF Utility
output DPF file name is exactly the same as output DSPF file name, the output
is directed to the DSPF file to form its instance section. Otherwise, a
standalone DPF file is generated.

-dspf
-dspf on/off (default: on)

-dspf enables or disables DSPF file output.

-outdspf
-outdspf <file name>

-outdspf specifies the output DSPF file name and enables DSPF file output,
provided it is not disabled explicitly by -dspf parameter. If -outdspf is not
specified, the DSPF file name is built in accordance with output file name prefix
setting in -out.

-pinports
-pinports on/off (default: on)

-pinports specifies whether SP2DSPF should report all top post-layout top-
level ports as pins in the resultant DSPF file. This option is only effective when
post-layout top-level subcircuit is explicitly specified by -posttop parameter.

-ms
-ms <subcircuit name> <subcircuit name> [<subcircuit name>

<subcircuit name> ...]

-ms specifies isomorphic sub-circuit pairs in both pre-layout and extracted
netlists.
■ The first sub-circuit in the pair is a sub-circuit from the pre-layout netlist.
■ The second sub-circuit in the pair is a sub-circuit from the extracted netlist.

This initial matching of sub-circuits is used by hsim -sp2dspf as a hint.
28 HSIMplus® Reference Manual
C-2009.06

Chapter 2: Post-Layout Acceleration (PLX) and SP2DSPF Utility
SP2DSPF Utility
Caution!

Use -ms with CAUTION. Providing initial matching information to the
program can greatly increase its performance and reduce its peak memory
requirements, however if the initial matching is wrong, caused by different
sub-circuits being specified as matched, it may take MORE time and
memory for the program to determine the correct answer.

There is usually no need to use -ms because the hierarchies of the pre-layout
and extracted netlists are substantially different; the pre-layout netlist is mostly
hierarchical while the extracted netlist is flat. However, for specific gate level
circuits in ASIC designs, -ms may help, such as when an ASIC has a single
(top) level with many instances of the cells. Netlists for cells with parasitic RCs
are usually available, so the extracted netlist has additional parasitics only on
the top-level. In this case,-ms can be used to set up the initial correspondence
between the cells as shown in the following example:

-ms inv inv
-ms nand2 nand2
-ms nor2 nor2

-mm
-mm <model name> <model name> [<model name> <model name> ...]

-mm specifies pairs of device models that should be considered to be the same
in both pre-layout and extracted netlists.
■ The first name in the pair is a device model from the pre-layout netlist.
■ The second name in the pair is a device model from the extracted netlist.

-opt outnf
-opt outnf <reverse|prefix> (default: prefix)

-opt outnf specifies output DPF/DSPF device naming convention as
follows:

reverse

In reverse mode, device names are built in accordance with reverse
hierarchy (bottom-to-top) convention; e.g., -m12.x32.x4.xcell.
HSIMplus® Reference Manual 29
C-2009.06

Chapter 2: Post-Layout Acceleration (PLX) and SP2DSPF Utility
SP2DSPF Utility
prefix

In prefix mode device names are built in accordance with straight hierarchy
(top-to-bottom) convention and prepended with corresponding device type
prefix; e.g., m_xcell.x4.x32.m12. The separator character used
between the device type prefix and the actual hierarchical name can be
changed using the -opt outprefc parameter.

-opt outprefc
-opt outprefc <prefix character>|none> (default: '_')

-opt outprefc specifies a separator character, which is used in extracted
device names between device type prefix and the hierarchical name of the
device. Refer to the -opt outnf parameter above for additional information.
-opt prefc has no effect in modes other than -opt outnf prefix.

-opt outhierc
-opt outhierc <separator character> (default: '.')

-opt outhierc specifies instance name separator character used in
hierarchical names in the output files.

-opt outsubc
-opt outsubc <separator character> (default: '@')

-opt outsubc specifies the subscript separator character used in fingered
device names in output files.

-opt serial
-opt serial <any|flip|none> (default: any)

-opt serial controls processing of parallel-serial transistor groups. any
allows transistors in serial chains to be permuted in an arbitrary manner. flip
requires that transistors in all serial chains are arranged in the same order, but
some chains can be reversed. none disables processing of serial transistor
chains completely.

-opt capnet
-opt capnet <empty|node|pins> (default: node)
30 HSIMplus® Reference Manual
C-2009.06

Chapter 2: Post-Layout Acceleration (PLX) and SP2DSPF Utility
SP2DSPF Utility
-opt capnet controls the format in which single-ground-capacitor nets are
written to the DSPF file.

empty mode

In empty mode only *|NET statements with corresponding capacitance
values are written. Neither net pin, sub-nodes, nor any other devices are
reported for the net.

node mode

The node mode writes a single grounded capacitor element to DSPF, with
no net pin/sub-node list, in addition to the information written in the empty
mode.

pins mode

The pins mode creates a complete net pin/sub-node list for each single-
ground-capacitor net in addition to the information written in the node mode.

-opt dupcc
-opt dupcc on/off (default: off)

-opt dupcc specifies whether coupling capacitors connected between two
parasitic nets should be reported in the resultant DSPF file as follows:

on

Both nets.

off

Default; only one net.

-opt rpref
-opt rpref <prefix string> (default: "_")

-opt rpref specifies the prefix used in the resultant DSPF file in parasitic
resistor names. Resistor names are built as follows: r<prefix><numerical
index>.

-opt ccpref, -opt gcpref
-opt ccpref <prefix string> (default: "_c")
-opt gcpref <prefix string> (default: "_g")
HSIMplus® Reference Manual 31
C-2009.06

Chapter 2: Post-Layout Acceleration (PLX) and SP2DSPF Utility
SP2DSPF Utility
-opt ccpref and -opt gcpref specify prefaces used in the resultant DSPF
file in coupling an ground capacitor names respectively. Capacitor names are
built as follows: c<prefix><numerical index>.

-opt vsr
-opt vsr <resistance value> (default: 1e-3)

-opt vsr specifies the very small resistance (VSR) value used to implement
connectivity whenever there is a need to introduce an additional net or instance
pin in a DSPF file. For example, if two nodes that would be essentially shorted
are required, then the resistor of this small value between the two nodes will be
generated.
32 HSIMplus® Reference Manual
C-2009.06

Chapter 2: Post-Layout Acceleration (PLX) and SP2DSPF Utility
References
References

[1] A Cadence® developed format based on SPF. DSPF is similar to Spice but
includes comments and a structure making it easier to organize netlist
information into the original circuit with additional information used by RC
trees.

[2] SPEF has extended capability and a small format compared to SPF and is
defined in the Delay-Calculation-System (DCS) standard of the Open
Verilog International.
HSIMplus® Reference Manual 33
C-2009.06

Chapter 2: Post-Layout Acceleration (PLX) and SP2DSPF Utility
References
34 HSIMplus® Reference Manual
C-2009.06

3
3Power Net Reliability Analysis (PWRA)

Provides information on performing IR drop and electro-migration analysis of
power nets with the HSIMplus PWRA option.

Power nodes in simulated circuits are considered to have constant voltage. In
reality, resistive networks between the power node pad and the devices always
exist. When devices draw current from the power source, the voltage or IR drop
appears on the device terminals connected to power nodes. If significant, this
IR drop may affect the performance of the circuit; such as the delay value.

The IR drop value depends on the value of the resistive path from the power
pad, to the device connection. The current flowing through each power net RC
network resistor may cause electro-migration (EM) problems in the circuit if the
current density is greater than a specified threshold.

HSIMplus provides power net reliability analysis (PWRA) to address these
problems.
■ Uses a DSPF file representation of the power net to calculate all the pad-to-

pin resistances. The number of resistors in the power nets of modern circuits
makes it impossible to simulate the circuit with back-annotated power nets
as is, so power net RC reduction must be applied.

■ Accepts power net RC networks by back-annotating the resistors and
capacitors from a DSPF file. Refer to the HSIM Simulation Reference
Manual: Chapter 7, Post-Layout Back-Annotation for detailed information on
signal node back-annotation parameters.

■ Simulates the circuit with the reduced power net RC network added to the
circuit devices, providing dynamic IR drop on circuit behavior.

■ Calculates the maximum IR drop at each connection between the power net
and circuit devices.
HSIMplus® Reference Manual 35
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Power Net Reduction
■ Calculates the maximum, average, or RMS current density through each
power net resistor and compares it with the threshold for the purpose of
electro-migration analysis.

■ Displays the violation map highlighting locations where IR drop or current
density exceeds the threshold.

HSIMplus performs power net reliability analysis in two phases:
■ Phase I: A reduced power net is back-annotated to the circuit and transient

simulation is performed. This simulation determines the impact of dynamic
voltage drop on circuit behavior and captures degradation of delay or
characteristics induced by IR drop.

■ Phase II: Node voltage and branch current density values are computed for
the raw, unreduced power net and graphical visualization data is created.

Power Net Reduction

Specifics of Power Net Back-Annotation

Nanometer system-on-chip (SoC) designs incorporate incredibly complex
power distribution systems in an attempt to minimize the resistance from power
pads to transistor contacts in an area- and layer-efficient manner. This
complexity results in DSPF files containing millions to hundreds of millions of
resistors, each typically having a very small value.

HSIMPOSTL

To improve post-layout simulation performance, HSIMplus signal net reduction
reduces these networks to a near-equivalent circuit with a small and
controllable loss in accuracy. This produces significant simulation throughput
and memory efficiency benefits. Power net RC reduction is different from signal
net RC reduction which is controlled by HSIMPOSTL. Refer to the HSIM
Simulation Reference Manual: Chapter 7, Post-Layout Back-Annotation.

HSIMSPFPWNET

Power net RC reduction is applied only to power nets. By default, HSIMplus
PWRA defines a power net as an RC extracted net from a DSPF file,
36 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Power Net Reduction
connected to a constant voltage supply. Setting HSIMSPFPWNET to a positive
integer invokes power net reduction, as shown below:

.param HSIMSPFPWNET=5|4|3|2|1|0|-1

HSIMSPFPWNET=-1 (default)

Generic RC reduction algorithms controlled by HSIMPOSTL are applied to
both signal and power nets.

HSIMSPFPWNET=0

Only performs parallel-series power reduction.

HSIMSPFPWNET=1,2,3

Provides varying speed and accuracy trade offs between memory usage
and simulator precision. The lower the parameter value, the less aggressive
the reduction.

HSIMSPFPWNET=4

Option 4 is the most aggressive power net reduction mode, applying the
greatest effort and strongest reduction techniques. It has the following
characteristics:

• Most significantly reduces the number of power net parasitic
components

• Does not preserve the underlying topology of the power network

• Maintains a fairly close correlation for all impedances between the
power pads and the device source or drain connections.

HSIMSPFPWNET=5

The power network is de-coupled.

HSIMPWNAME
 To explicitly specify which nets should be treated as the power nets, use
HSIMPWNAME as shown below:

.param HSIMPWNAME=vdd

.param HSIMPWNAME=vss*

In this example, HSIMplus treats nets that match "VDD" and "VSS*" patterns as
power-nets. This means that HSIMSPFPWNET reduction and power net
reliability analysis applies only to specified "VDD" and "VSS*" power nets.
HSIMplus® Reference Manual 37
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Power Net Reduction
Note:

This command should be used in conjunction with the PWRA option only
(HSIMPWRA=1). Without this option, any net specified in HSIMRANET is
considered a signal net, which may lead to unexpected warning and
simulation results.

Use the following syntax for VSRC nets:

.param HSIMPWNAME=”pwnet_name”

where pwnet_name is in the power net name. You can use wildcard
characters in the name.

Use the following syntax for internal power nets:

.param HSIMPWNAME=”pwnet_name [intvref=vref]
[source=vsrcnet]”

where pwnet_name is in the power net name, vref is the Internal reference
voltage used for PWRA analysis to compute IR-drop for internal power nets,
and vsrcnet is the name of the parent external power net that connects to
constant voltage source and is separated from internal power net by pre-layout
resistors, inductors or MOSFET transistors. This field is used for guiding the
HSIMPWTRACERL command.

When a net is connected to constant voltage source, HSIMPWNAME helps
HSIM to distinguish power nets from signal nets. By default, if HSIMPWNAME
is not set, HSIMplus considers all nets connected to constant voltage sources
as power nets. To explicitly specify which nets should be processed as power
nets, specify:

.param HSIMPWNAME=”vdd”

.param HSIMPWNAME=”vss*”

In the previous example HSIMplus processes nets that match VDD and VSS*
patterns as power-nets and all other nets as signal nets. This means that
HSIMSPFPWNET reduction and power net reliability analysis applies only to
specified VDD and VSS* power nets.

To enable processing of internal power nets, you need to set HSIMPWNAME in
conjunction with either HSIMPWTRACERL or HSIMSPFNETPPIN. Otherwise
all internal power nets are processed as signal nets. See more information
about internal power nets, see HSIMPWTRACERL on page 98.
38 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Power Net Reduction
Note:

The HSIMPWNAME command is applicable when performing PWRA
analysis (HSIMPWRA=1) or enabling power net reduction
(HSIMSPFPWNET=0-5).

HSIMSPFPWRMIN
HSIMSPFPWRMIN prefilters small resistors in power nets. Resistors with
values less than HSIMSPFPWRMIN are deleted during DSPF file parsing. The
deleted resistor terminals become electrically equivalent.

Syntax
HSIMSPFPWRMIN=0.01 [default]

Power nets can be incorporated into the circuit by back-annotation from the
DSPF files with HSIMSPF as defined in the HSIM Simulation Reference
Manual: Chapter 7, Post-Layout Back-Annotation. The default value is
0.01ohm. A value of 1e-9ohm is the minimum that this parameter accepts.
Values smaller than 1e-9ohm are reset to1e-9ohm.

HSIMSPFNETPIN
The power net should contain the power supply connections identified with the
DSPF *|P statement, to which external VDD and GND connections are made.
However, if PWRA is being used to simulate a core or IP block, not the full-chip
circuit, the extracted DSPF may not contain the *|P statements. In this case, a
temporary net pin can be specified using HSIMSPFNETPIN. When this
parameter is specified, PWRA connects power voltage sources to a sub-node
or instance pin in the DSPF power net, which is declared as a temporary net
pin.

Syntax
HSIMSPFNETPIN="power_net powernet_subnode"

Arguments
power_net

Power net name that adds a net pin.

powernet_subnode

Sub-node name that serves serve as a new net pin.

Example
.param HSIMSPFNETPIN=”VDD VDD:1127”
HSIMplus® Reference Manual 39
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Power Net Reduction
HSIMTMPDIR
HSIMTMPDIR="directory name"

While processing power nets, HSIMplus saves some data in temporary files. By
default, those files are created in the current directory. The location of the
temporary files can be changed by setting HSIMTMPDIR to any other directory
as shown in the following syntax example:

.param HSIMTMPDIR='/usr/tmp'

To increase file operation performance and to avoid over-the-network access,
set the location for temporary files on the local disk drive.

HSIMSPFPWFLAT
Note:

This parameter is now obsolete. If you are using it, replace it with the
parameter HSIMSPFTLV defined below.

HSIMSPFTLV
The HSIMSPFTLV parameter is required when the extracted DSPF file is
hierarchical (contains .subckt definition) and HSIM reliability analysis is
enabled. HSIMSPFTLV instructs HSIM to handle extracted data in the global
design context. As a result HSIM generates one top-level view (TLV) SPF file:
<hsim_output_prefix>_tlv.spf.gz. The new TLV SPF file is placed in
the same directory with all other HSIM output files.

Syntax
.param HSIMSPFTLV=<0|1>

Syntax Definitions
HSIMSPFTLV=0

Heirarchical SPF files are processed as is. This is the default.

HSIMSPFTLV=1

Heirarchical SPF files are abstracted to a top-level view.

When enabled, the HSIMSPFTLV parameter can handle both power and signal
nets for all types of post-layout netlists with hierarchical DSPF: single-instance
of single-level heirarchical DSPF, multiple-instances of single-level heirarchical
DSPF, single-instance of multilevel hierarchical DSPF, and multiple-instances
of multilevel hierarchical DSPF.
40 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Power Net Reduction
Note:

To use the HSIMSPFTLV parameter, at least one of the following must
apply:

Power Net Reliability Analysis (PwRa) is enabled (HSIMPWRA=1).

Signal Net Reliability Analysis (SigRa) is enabled (HSIMSIGRA=1).

If neither PwRa or SigRa are enabled, the HSIMSPFTLV parameter checks
out a PLX license, unless the PLX feature is already checked out during the
simulation by some other option, such as HSIMSPFPLX or HSIMSBA.

Package Modeling

In addition to the extracted power net, it is sometimes necessary to model the
package pin and related circuit, including bond wire resistance and inductance.
These package models are not present in the pre-layout netlist or in the
extracted DSPF. They may however, be described separately using SPICE
syntax. HSIM can add packaging models using HSIMSPFNETIPIN.

HSIMSPFNETIPIN
HSIMSPFNETIPIN is used to add new instance pin connections to an SPF net.
The syntax is:

.param HSIMSPFNETIPIN=”<net_name> <connect_point> \
<new_instance_pin>”

Syntax Definitions
<net_name>

The SPF net name.

<connect_point>

Can be a sub-node, instance pin, or pin of the SPF net.

<new_instance_pin>

The instance pin name that needs to be connected to the connect_point. For
example: .param HSIMSPFNETIPIN=”vdd vdd:3 iv1:p”; that connects the
positive terminal of current source iv1 to sub-node vdd:3 after SPF back-
annotation. The current source iv1 must be specified in the netlist file.

To illustrate this methodology, Example 1 provides a simple example of a pre-
layout statement.
HSIMplus® Reference Manual 41
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Power Net Reduction
Example 1
* prelayout.sp
.param HSIMSPF=vdd.dspf
VVDD VDD 0 1.8
MP A B VDD VDD p
...

and in the vdd.dspf file, the net VDD is specified as:

*|NET VDD 10ff
*|P (VDD_1 X 0.0)
*|P (VDD_2 X 0.0)
*|I (MP:S MP S X 0ff)
R1 VDD MP:S 10.0
R2 VDD_2 MP:S 10.0

Figure 6 on page 42 shows the resulting post-layout netlist in which the VDD_1
and VDD_2 pins are merged to the VDD node.

Figure 6 Post-layout Netlist Circuit

To model the power net with packaging effects, the pads are connected to
separate voltage sources with 1.79V and 1.81V values. This is accomplished
via package instances defined by the rlc sub-circuit, instead of connecting the
VDD_1 and VDD_2 pads directly to the 1.8V voltage source. To achieve this,
the following netlist file is used:

1.8V R2R1

MP

VVDD

VDD
42 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Power Net Reduction
* prelayout_and_packaging.sp
.param HSIMSPF=vdd.dspf
VVDD VDD 0 1.8
MP A B VDD VDD p
.subckt rlc in out r=r l=l c=c
R in i r
C i 0 c
L i out l
.ends
vvdd_1 vpad_1 0 1.79
vvdd_2 vpad_2 0 1.81
xvdd_1 vpad_1 vdd rlc r=1 l=1n c=10f
xvdd_2 vpad_2 vdd rlc r=1 l=1n c=10f
.param HSIMSPFMERGEPIN=0
.param HSIMSPFNETIPIN='vdd vdd_1 xvdd_1:out'
.param HSIMSPFNETIPIN='vdd vdd_2 xvdd_2:out'
...

HSIMSPFMERGEPIN
In this example, setting HSIMSPFMERGEPIN=0 prevents merging pins
VDD_1 and VDD_2 together. HSIMSPFNETIPIN parameters are used to
reconnect pads to the out terminals of the rlc packaging model and connect
the in ports of XVDD_1 and XVDD_2 to the respective VVDD_1 and VVDD_2
voltage sources.

The resulting netlist used during the simulation is shown on Figure 7 on
page 43.

Figure 7 Post-layout Circuit with Packaging

1.79V

R2R1

MP
vvpad_1

xvdd_1

1.81V

xvdd_2

vvpad_2
HSIMplus® Reference Manual 43
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Power Net IR Drop and EM Analysis Flow
HSIMSPFNETPPIN
.param HSIMSPFNETPPIN=”<net_name> <connect_point> \

<new_instance_pin>”;

By default, HSIMplus defines nets connected to variable voltage sources and
nets which do not have direct connections to pads as signal nets. To treat such
nets as power nets, you must use HSIMSPFNETPPIN. This parameter specifies
which DSPF pins must be considered as voltage sources.

HSIMSPFNETPPIN is also used when connecting packaging to power net pads.

Note:

HSIMSPFNETPPIN uses the same syntax as HSIMSPFNETIPIN. Refer to
HSIMSPFNETIPIN on page 41 for additional information and examples.

Power Net IR Drop and EM Analysis Flow

If the entire power net is back-annotated in the circuit, it is possible to calculate
the IR drop at each connection to the power net and the current through each
resistor in the power net during transient simulation. However, such fully
coupled simulation is practically infeasible because of the large power net size.
For this reason, the typical approach consists of two phases.

Phase I

In Phase I, simulation is performed on the pre-layout netlist, without power net
back-annotation (decoupled simulation). The currents of devices connected to
the power net are stored in a file for future use.

Phase II

In Phase II, only the power net is simulated and the stored currents are injected
into the power net and the IR drop and resistor current values are calculated.
While this approach may give reasonable results in some situations, a large
inaccuracy is introduced because of the effect of power nets on circuit
simulation (i.e. on the currents stored) is completely ignored. PWRA
implementation of power net reliability analysis overcomes this accuracy
problem while keeping the simulation time reasonable.
44 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Power Net IR Drop and EM Analysis Flow
In PWRA, the power net is reduced to a degree that the coupled simulation
may be performed. Then the strongly reduced power net is back-annotated into
the pre-layout circuit.

This power net has desired feedback, i.e. effect of power net on the circuit
behavior. The currents stored during Phase I (coupled simulation) are used in
Phase II, where those currents are injected into the original, unreduced power
net, Figure 8 on page 45.

Figure 8 Coupled Power Net Flow Diagram

Phase I Control Parameters

HSIMSPF
To perform power net reliability analysis, the DSPF file with the power net is
specified using HSIMSPF. Refer to the HSIM Simulation Reference Manual:
Chapter 7, Post-Layout Back-Annotation.

HSIMSPFPWNET
HSIMSPFPWNET is used to control the degree of power net reduction. Refer
to HSIMSPFPWNET on page 36.

HSIMPWRA
HSIMPWRA activates the Reliability Analysis (RA) flow using the following
syntax:

.param HSIMPWRA=1 (default HSIMPWRA=0)

To instruct HSIM that power net reliability analysis should be performed during
the transient simulation, set HSIMPWRA=1 which activates the current saving

Reduced
Power Net

Pre-Layout or
Back-Annotated Circuit

Original
Non-Reduced Power Net

Phase I Phase II

Power Currents
HSIMplus® Reference Manual 45
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Power Net IR Drop and EM Analysis Flow
process during Phase I of RA. When Phase I simulation is finished, HSIMplus
PWRA automatically executes Phase II of RA. To prevent this and manually
start Phase II at a later time, use HSIMRAP2AUTO.

HSIMRAP2AUTO
To prevent PWRA from automatically executing Phase II of RA and manually
starting Phase II at a later time, use HSIMRAP2AUTO=0.

Note:

The HSIMRAP2AUTO command has the same functionality as and
replaces the HSIMRADUMP command.

.param HSIMRAP2AUTO (default HSIMRAP2AUTO=0)

HSIMRAKEEPSERIESR
HSIMRAKEEPSERIESR restricts collapsing of series resistors. To collapse
resistors, set the value to 0 (the default). To report the precise voltage (drop)
values, set the value to 1.

.param HSIMRAPKEEPSERIESR <0|1>

HSIMRATAU
During Phase I simulation, PWRA saves device currents with every RA
simulation step. The RA step value is controlled by HSIMRATAU with a default
time interval of 1ns.

.param HSIMRATAU=1n (default)

HSIMRATCL

In Phase II, HSIMplus PWRA does not read the circuit input netlist. A TCL script
file is used to specify the Phase II control values. The script file can be named
using HSIMRATCL.

Example 2
.param HSIMSPF='power_vdd.spf'
.param HSIMSPF='power_vss.spf'
.param HSIMSPFPWNET=4
.param HSIMPWRA=1
.param HSIMRAP2AUTO=0
.param HSIMRATAU=0.25e-9
.param HSIMRATCL='ra_vdd_vss.tcl'
46 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Power Net IR Drop and EM Analysis Flow
As a result of Phase I, HSIMplus generates some files with the results that are
going to be used on Phase II of RA. For the example above, if the output name
is test, then these files are generated:
■ test.log: Usual log file.
■ vdd.npf, vss.npf: Binary representation of the power nets.
■ test-vdd.ranet, test-vss.ranet: Nodes, resistors, pins, connectivity, and

coordinates.
■ test-vdd.rasim, test-vss.rasim: Binary files created during transient

simulation.
■ test-vdd.ratcl, test-vss.ratcl: Phase II control files.

All parameters that can be used to control the execution of Phase I are listed
below:

HSIMRARMIN
Resistors with value less than RMIN are deleted during parsing of the DSPF
file. Terminals of deleted resistor become electrically equivalent.

.param HSIMRARMIN= <val>

HSIMSPFPWRMIN
 HSIMSPFPWRMIN is used for simulation during Phase I, while value of
HSIMRARMIN is used in Phase II simulation.

By default, the same value is used for HSIMSPFPWRMIN and HSIMRARMIN:

 0.1: HSIMSPFPWNET=4 or 5

 0.05: HSIMSPFPWNET=3

 0.025: HSIMSPFPWNET=2

 0.01: HSIMSPFPWNET=1 or 0

HSIMRAP2AUTO
.param HSIMRAP2AUTO=0,1 (default HSIMRAP2AUTO=0)

controls how intermediate files are dumped if Phases I and II are combined.
HSIMplus® Reference Manual 47
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Power Net IR Drop and EM Analysis Flow
Note:

The HSIMRAP2AUTO command has the same functionality as and
replaces the HSIMRADUMP command.

Syntax Definitions
HSIMRAP2AUTO=0

Only Phase 1 is performed and the .ranet/.rasim files are stored on disk.
hsim -ra test-vdd should be run manually afterwards.

HSIMRAP2AUTO=1

hsim -ra test-vdd is executed automatically by the original hsim test.net -o
test process

HSIMRATAU
.param HSIMRATAU=1n [default]

■ Phase I: The average currents injected from transistor terminals into the
original power nets are accumulated during this time interval.

■ Phase II: The de-coupled original power net is simulated with this time step.

HSIMRATCL
.param HSIMRATCL=<file name>

Puts the line source filename into .ratcl command file created for each net. This
way, TCL commands specified in filename are executed for each power/ground
net.

HSIMOUTPUT
.param HSIMOUTPUT=format

Specifies the output format(s) of waveforms for nodes given in printv
parameters and/or resistors specified in printi commands. PWRA currently
supports FSDB, WDF, NASSDA, and EPIC formats. The default is FSDB
format. Several waveform can be requested as shown in the following
example:

Example 3
.param HSIMOUTPUT="wdf&epic&fsdb"
.param HSIMCOILIB=<path>/<lib name>
48 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Power Net IR Drop and EM Analysis Flow
In this example, the syntax specifies the path and file name for the shared
library used for output format generation. If this parameter is skipped, HSIMplus
PWRA searches for lib<out_format>.so in the following directories:
■ Current working directory;
■ $HOME directory;

■ HSIMplus PWRA run directory;
■ LD_LIBRARY_PATH on Solaris and Linux, and SHLIB_PATH on HP

HSIMRAIRMIN
.param HSIMRAIRMIN=0,1 (0 by default)

During the trimming operation the following are performed:
■ Reversible parallel and series reduction.
■ Removal of all resistors smaller than RMIN.

Reversible Reduction For reversible reduction, EM current values are
restored from the .ranet2npf cross-reference files. However, if resistors has
been removed completely, no current information is available. To obtain the
current values through the deleted resistors, use the following syntax:

.param HSIMRAIRMIN=1

Currents passed through the deleted resistors are restored based on the
currents of the remaining resistors.

Phase II Control Parameters

To start Phase II, use the following syntax:

hsim -ra <output file name>-<power net name1> ..
<output file name>-<power net nameN>

To start the Phase II for the VDD net only, use the following syntax:

hsim -ra test-vdd

HSIMplus PWRA reads the .ratcl file for the correspondent power net and
performs the specified types of analysis in Phase II. The following analysis
types may be performed during the Phase II:
HSIMplus® Reference Manual 49
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Power Net IR Drop and EM Analysis Flow
■ 1|vmax: Maximum node IR drop.
■ 2|imax: Peak resistor current.
■ 3|irms: RMS resistor current.
■ 4|iabs: Average absolute magnitude of resistor current.
■ 5|iavg: Average resistor current.

During the Phase II, the currents stored from Phase I are injected into the entire
power net. For each time interval equal to the HSIMRATAU, the following are
recalculated and updated:
■ Voltages at every power net node
■ Currents through each power net resistor

If vmax analysis is specified, HSIMplus PWRA generates the following files from
Phase II:
■ test-vdd.ralog: VDD log file
■ test-vdd.radb: VDD net results
■ test-vdd_vmax.ragds: vmax analysis violation map of the VDD net in GDSII

format.

Defining Net Pins by Specifying X/Y Coordinates

You can define "*|P" net pins by specifying XY coordinates during Phase I,
Phase II, and in static power net resistance (SPRES):
■ In Phase I, use the HSIMSPFADDNETPINXY command. (See the HSIM

Simulation Reference Manual, Chapter 7, Post-Layout Back-Annotation for
details about this command.)

■ In Phase II, use the addnetpinxy command in the RATCL file.
■ In SPRES, use the addnetpinxy command in the SPRES TCL file.

The addnetpinxy command has the following syntax in the RATCL and
SPRESTCL files:

addnetpinxy="<net> X=<xcoord> Y=<ycoord> layer=<malyer>
pinxydist=<xydist>"

<net>

Specifies the net name.
50 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Output Files
X=<xcoord>

Specifies the X coordinate (in microns).

Y=<xcoord>

Specifies the Y coordinate (in microns).

layer=<malyer>

Specifies the metal layer name.

pinxydist=<xydist>

Specifies that only nodes that are within xydist distance from the user-
specified XY coordinates are searched. The default xydist=1u.

The following formula is used to calculate the distance.

d = sqrt(dX2+dY2)

where dX = Xn-Xu; dY = Yn-Yu

Xn and Yn - node coordinates

Xu and Yu - user-specified coordinates

Output Files

HSIM uses the file names introduced in the previous section for output file
names.

RALOG
The RALOG log file is always created using the following syntax:

<prefix>-<net name>.ralog

In the RALOG file, <prefix> is either hsim or name. It is user-specified on the
command line after -o. This file contains the following information:
■ Notification of program step completion.
■ TCL commands read from *.ratcl files and processed by the program into

internal structures.
■ A simulation results table for each power net simulation timestep, containing

the following is injected into the power net:

• Worst IR drop (dVmax)

• Node number
HSIMplus® Reference Manual 51
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Output Files
• Maximum pin current (Imax)

• Pin number

• Total current (Itot)
■ Additional statistics including: worst cases, total resistance, currents

through PADs, etc.
■ Information about files generated as a result of simulation. This information

is presented in *.ralog only if ralayout was specified in*.ratcl file, otherwise
they are located in the *.ltlog file.

RADB
The RADB simulation results file is always created consisting of voltages and
currents. It is a binary file name composed of a prefix, net name, and extension
as shown in the following syntax:

<prefix>-<net name>.radb

In the RALOG file, <prefix> is either hsim or name. It is user-specified in on the
command line after -o. This binary file contains results of analyses requested
with ra. In combination with *.ranet and *.npf files it is used for generation of
various output files, including: *.raout, *.ragds, *.ascii, etc.

RAOUT
The RAOUT connectivity and results file is created if raout is specified in the
*.ratcl file. The file name is composed of a prefix, net name, and extension as
shown in the following syntax:

<prefix>-<net name>.raout

In the RAOUT file, <prefix> is hsim or name and is user-specified on the
command line after -o. This ASCII file has the following sections:

Header

Header contains: net name, nominal voltage, start/stop times of the
simulation, number of steps, and time interval of each step (i.e.
HSIMRATAU)

Nodes

Nodes is created if peak IR drop analysis (type 1) is requested. This section
has the following structure:

• #Node is the node index.

• max IRD is the maximum IR drop (mV).

• When IRD is the time when max IR drop occurred (ns).
52 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Output Files
• x, y are the node's coordinates (um).

• Node name is *.spf file name.

Resistors

Resistors is created if any type of EM analysis has been requested. This
section has the following structure:

• #Resistor is the resistor index.

• #Term1, #Term2 is the resistor's terminals, specified as node indexes
from the Nodes table.

• Resistance is the resistance value in Ohms.

• Imax - maximum current through resistor (uA).

• When Imax is the time when max current occurred (ns).

• Irms is the RMS current (uA).

• |I|avg is the average current magnitude (uA).

• Iavg is the average current (uA).

• Resistor name is the name of resistor from *.spf file.

Example 4
.BEGIN NODES

#Node max IRdrop when IRD x y Node name
#0 0.000mV 0ns 411.16 13.59 vdd
#1 -16.840mV 4ns 10.42 10.41 vdd_pin18
#2 -16.840mV 4ns 12.5 11.45 vdd_pin10
…

.END NODES

.BEGIN RESISTORS
#Resistor #Term1 #Term2 Resistance Imax When Imax Irms /
Resistor name
%1 3145 3146 6ohm 76.207uA 4ns 63.982uA R1
%2 1582 3146 0.00663061ohm -76.207uA 4ns -63.982uA R2
%3 1582 1590 0.0265224ohm -94.596uA 4ns -79.421uA R3
…

.END RESISTORS

RAGDS
The RAGDS violation map layout file is created in either of the following ways:
■ If ralayout is specified in the *.ratcl file.
■ Using -ralayout as a parameter in hsim invocation.
HSIMplus® Reference Manual 53
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Output Files
The RAGDS file name is composed of a prefix, net name, analysis type, and
extension as shown in the following syntax:

<prefix>-<net name>_<analysis type>.ragds

In the RAGDS file, <prefix> is hsim or name and is user-specified on the
command line after -o. If -o is used in the ralayout file name, the command file
name is shown in the following syntax:

<prefix>_<analysis type>.ragds.

The RAGDS file is binary and contains shapes (rectangle or path) and text
labels in GDSII format. Each shape may have the following properties:
■ Resistor Name
■ Layer Name/Number from the original DSPF file
■ Voltage Drop or Current Density
■ Resistance Value
■ Current through resistor (EM only)

• Time: The time when the maximum value or usage occurs.

• Ratio: Current density over the threshold (EM only).

The number and sequence of RAGDS file properties is controlled by the
gdsprops TCL command.

TECH
The TECH technology file is always generated if any *.ragds file is requested for
a net. The TECH file ASCII file has the same name as *.ragds file however, it
has a different extension. TECH contains Virtuoso®-specific technology
information necessary to correctly import GDSII files into a Virtuoso database.

DRF
The DRF Display Resources file is always generated if GDSII is requested for a
net. The DRF file name is always hsim.drf. DRF defines ten colors for violation
map layers as follows:

Forest Green

Green

Lime

Yellow

Gold
54 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Output Files
The smallest IR drop or EM corresponds to Forest Green and values greater
than the threshold correspond to Blinking Red.

FSDB, OUT, WDF
The FSDB[1], OUT[2], WDF[3] waveforms are in various formats however,
FSDB is the default format. One waveform format is always output and the
format type is specified by HSIMOUTPUT. The file name is composed of the
following, as shown in the syntax below:
■ Net name
■ Analysis Type
■ Extension

<prefix>-<net name>_<analysis type>.fsdb

In the FSDB, OUT, and WDF waveforms, <prefix> is hsim or name and is user-
specified on the command line after -o. Each waveform file contains at least 3
signals stored as follows:
■ dVmax(vdd): Worst IR drop value reported at given time.
■ Ipin_tot(vdd): Total current injected from all pins to the power net.
■ Ipin_max(vdd): Maximum pin current injected to the power net.

To specify which nodes and resistors should be in the waveform files, the
following TCL commands are used:
■ printv
■ printi
■ printipad
■ printvmode

ASCII
If requested, the ASCII violation map file is generated and presented in text
form. The file is generated using the raformat ascii command. The ASCII file

Orange

Brown

Maroon

Red

Blinking Red
HSIMplus® Reference Manual 55
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Output Files
name may be composed of prefix, net name, analysis type, and extension as
shown in the following syntax:

<prefix>-<net name>_<analysis type>.ascii

In the ASCII file, <prefix> is the name specified on the command line after -o.
If -o is used in ralayout, the file name is as follows:

<prefix>_<analysis type>.ascii

The ASCII file is in the form of a text table and its content depends on the
analysis type. For IR drop analysis, the *.ascii file may contain the following
columns:
■ Resistor name
■ Voltage drop
■ Original layer name/number
■ x coordinate
■ y coordinate
■ Node name
■ The time of the IR drop occurrence
■ Actual voltage
■ Level of violation

For EM analysis, the *.ascii file may have the following columns:
■ Resistor name
■ Current through resistor
■ Current density through resistor
■ Ratio: current density over threshold
■ Original layer name/number
■ Resistor length
■ Time of maximum current occurrence
■ Level of violation
■ x coordinate
■ y coordinate
■ First width
56 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Violation Map Visualization
■ Second width
■ Slack or threshold - current density
■ Area: Calculated for VIA's or layers with a specified height using layerh.

The number, sequence, and sorting criteria for any ASCII file can be changed
using either of the following commands:

asciicols
asciicolsort

Refer to asciicols on page 89 and asciicolsort on page 90.

Violation Map Visualization

Visualization marks different values of IR drop or EM current density with
different colors producing a violation map. More precisely, a GDSII file is
generated containing geometry elements, e.g. rectangles, tracks, etc., with
different colors ranging from Forest Green for minor violations to Blinking Red
for values exceeding a specified threshold.

The color map illustrates the distribution of IR drops and current densities
within a maximum of 10 ranges determined by the redv and rediw commands.
The color map, violation levels, and threshold ranges for 0.45V are shown
below.

 Level 1 |dV| < 0.05

Level 2 0.05 <= |dV| < 0.1

 Level 3 0.1<= |dV| < 0.15

Level 4 0.15 <= |dV| < 0.2

 Level 5 0.2<= |dV| < 0.25

Level 6 0.25 <= |dV| < 0.3

Level 7 0.3<= |dV| < 0.35

Level 8 0.35 <= |dV| < 0.4

Level 9 0.4<= |dV| < 0.45

Forest Green

Green

Lime

Yellow

Gold

Orange

Brown

Maroon

Red
HSIMplus® Reference Manual 57
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Violation Map Visualization
Note:

Color mapping is defined in the hsim.drf file, which can be edited to change
the colors.

Shapes correspond to an appropriate resistor from the *.dspf file. The
coordinates of geometry elements are taken from the pin/sub-node statements
and/or physical back-annotation portion of resistor statements in DSPF files.
Element color is determined by the maximum values of voltage drop on
resistor's nodes or current density through corresponding resistor.

Generating a Violation Map

Assuming that ra vmax irms is specified in the .ratcl command file and the
maximum IR drop (vmax) with RMS current density (irms) had been calculated
and stored into .radb files during the power net analysis phase, a violation map
showing maximum IR drop (vmax) can be generated using the following
syntax:

hsim -ralayout vmax test-vdd

The resulting test-vdd_vmax.ragds file is created. To change the name of
output file, use the following syntax:

hsim -ralayout vmax test-vdd -o vdd

The layout is generated in the vdd_vmax.ragds file.

Generating Multiple GDSII Files with One Command

It is possible to generate several GDSII files using one ralayout command
where, the names or numbers of the required analysis are specified as follows:

hsim -ralayout vmax imax irms test-vdd

Generating GDSII for All Analyses

To generate GDSII for all analyses, use the following syntax:

hsim -ralayout all test-vdd -o vdd

 Level 10 0.45 <= |dV|Blinking Red
58 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Violation Map Visualization
Generating a Violation Map over the Original Layout

In order to generate a violation map imposed over the original layout, specify
ragds in .ratcl file as shown in the following syntax:

ragds -reflib <libName> -refcell <topCellName>

Syntax Definitions
libName

The library name to which the original layout belongs or into which the
original layout is loaded;

topCellName

The name of the top cell in the original layout.

Displaying a Map Legend

To display a map legend indicating the voltage/current range for each layer
number, use -legend in ragds as shown in the following syntax:

ragds -reflib <libName> -refcell <topCellName> -legend

User-Specified Layer Numbers

Layer numbers may be user-specified when displaying violation maps to
eliminate map element conflicts with elements from the original layout.

Note:

Do not specify more than 10 layers.

Layer numbers may be specified using ralayers in the .ratcl file as shown in the
following syntax:

ralayers 51,53,57-60

This syntax distributes analysis results among six layers from 51 to 60 as
follows:

51

Layer 51 represents the lowest values.

53

Layer 53 represents the next higher values.
HSIMplus® Reference Manual 59
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Violation Map Visualization
57-60

Layer-60 represents values greater than the threshold specified in redv or
rediw.

Layer Filtering

You can specify the original layers that should be placed into violation map
using the outlayers command in the .ratcl file as shown in the following
example:

outlayers 10,3,6

This command generates a violation map containing only the original layers
numbered 10, 3, and 6. By default, HSIMplus PWRA uses all layers.

Names Inserted into Geometry

HSIMplus PWRA may put some names into geometry such as:
■ Labels for pad points
■ Pin names
■ Node names specified in printi and printv within *.ratcl file.

gdslabels specifies which labels to be generated. It generates pad point(s) and
node name labels specified in printv as shown in the following syntax:

gdslabels pad print

Generating Layout Formats

The raformat command is used to specify output formats for violation map
display. Format selections are gds2, ascii, and rve.

raformat gds2 ascii

This command generates layouts in both GDSII and ASCII formats.

Automatically Generating Violation Maps

Violation maps can be automatically generated after power net analysis using
the following syntax in the .ratcl file:
60 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
ralayout <analysis> [-o <prefix>]

In this syntax, <analysis> is the required analysis names or numbers (e.g.,
vmax, imax, etc.) separated by spaces or ALL for all analysis.

Loading GDSII Files into the Cadence Virtuoso Layout Editor

There are two ways to load GDSII files into Cadence® Virtuoso®:
■ Load IR drop/EM violation map only.
■ Load IR drop/EM violation map over original layout.

Loading the IR Drop/EM Violation Map Only

To load only a violation map, perform the following steps.

1. Select File/Import/Stream from the CIW menu. The dialog fields displayed
include the following:

• Run Directory: The working directory containing the .ragds, .tech, and
hsim.drf files.

• Input File: <fileName>.ragds.

• Top Cell: <fileName> if specified in ralayout.

• Library Name: The library into which <fileName>.ragds is loading.

• ASCII Technology File Name: <netName>.tech

2. Load hsim.drf if it has not been loaded during the current session.

3. Input the following syntax in the CIW input command area:

drLoadDrf("<working directory>/hsim.drf", nil)

4. Open the following:

• view: layout

• cell: <fileName>

• library: The library into which <fileName>.ragds is loaded.
HSIMplus® Reference Manual 61
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
Loading a Violation Map Over the Original Layout

To load a violation map over original layout, perform the following steps:

1. Load the original layout if not loaded by selecting File/Import/Stream from
the CIW menu. The dialog fields displayed include the following:

• Run Directory: The working directory containing the original layout.

• Input File: The file containing the original layout.

• Top Cell: The top cell within the original layout.

• Library Name: The library into which the original layout is loading.

• ASCII Technology File Name: The technology file, if any.

2. Select File/Import/Stream from the CIW menu. The dialog fields displayed
include the following:

• Run Directory: The working directory containing the .ragds, .tech, and
hsim.drf files.

• Input File: <fileName>.ragds

• Top Cell: <fileName>, if it was specified ralayout.

• Library Name: The library containing original layout.

• ASCII Technology File Name: <fileName>.tech

3. Load the hsim.drf file, if it was not loaded within the current session. In CIW
input command area type:

drLoadDrf("<working directory>/hsim.drf", nil)

4. Open the following:

• view: layout

• cell: <fileName>

• library: The library containing the original layout.

.ratcl File Commands for Phase II Control

ra val
ra val specifies the analysis types to be performed during Phase II.
62 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
ra [-pwra|-sigra] val val=[all] [vmax] [imax] [irms] [iabs]
[iavg]

-pwra

Executes Tcl for power net analysis only. Default is Tcl execution for both
power and signal analyses.

-sigra

Executes Tcl for signal net analysis only. Default is Tcl execution for both
power and signal analyses.

raout
raout specifies creates a file containing nodes an/or, resistors using the
following syntax:

raout val

Syntax Definitions
 val=1

The .raout file is created containing only nodes.

 val=2

The .raout file is created containing only resistors.

 val=3

The default. The .raout file is created containing nodes and resistors.

ralayout
ralayout specifies the analysis types to be dumped into output files. The
layout is stored in the <prefix>_<analysisName>.<ext> file using the following
syntax:

ralayout [-pwra|-sigra] <val> [-o <prefix>]
val == [all] [1|vmax] [2|imax] [3|irms] [4|iabs] [5|iavg]

Syntax Definitions
-o prefix

Specifies part of file name.

 <prefix>

User-specified name.
HSIMplus® Reference Manual 63
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
 <analysisName>

User-specified analysis name.

 <ext>

File file extension (e.g. ragds, ascii, etc.).

-pwra

Executes Tcl for power net analysis only. Default is Tcl execution for both
power and signal analyses.

-sigra

Executes Tcl for signal net analysis only. Default is Tcl execution for both
power and signal analyses.

If <prefix> is omitted, HSIM uses <radb name> (the name of the *.radb file
without the filename extension).

coordunit
coordunit is used to define the proper unit scale in generating IR drop and
EM violation map(VM) in gdsii format.

coordunit [val]

By default, PWRA treats the process geometry as if it is in 1e-9m. If coordunit is
not specified, the output geometry might have an incorrect scale. The default
coordunit value is 1e-9.

Note:

Do not use a SPICE-formatted scaling number, such as 1n, in the val field.

redv
redv is used to control the IR Drop threshold for violation map generation as
shown in the following syntax:

redv [val] [-lb val2] [-v | -r [{usage}]]

redv has 3 types of parameters that perform the following functions:
■ Specify the IR Drop upper boundary threshold.
■ Specify the IR Drop lower boundary threshold.
■ Vary the map scale.
64 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
Specifying the IR Drop Upper Boundary Threshold val specifies the upper
violation map boundary. This causes elements with the maximum IR drop at
any terminal larger than val to be displayed in Blinking Red text. All other
elements are distributed across the other 9 violation map layers according to
their IR drop values. val must be specified in Volts. If val is skipped, HSIMplus
PWRA uses the maximum IR drop as val.

Example
Setting redv 0.09 distributes all resistors across the colored layers using
voltage steps equal to 10mV. The Forest Green first layer contains resistors
with maximum IR drop in the range of 0mV ~ 10mV. The Green layer contains
resistors with IR drops of 10mV~20mV, through to the other end of the scale
where the Blinking Red layer contains all resistors with IR drop greater then
90mV.

Specifying the IR Drop Lower Boundary Threshold The second
parameter specifies the lower boundary for IR Drop threshold. No nodes with
IR Drops lower than this value are output into the violation map.

Varying Map Scale A third type of parameter is used for varying colored map
scale:

-v

Specifies the variable voltage scale as a % of voltage belonging to a given
violation level. 100% voltage is the maximum IR drop.

-r

Specifies the distribution of resistors across the layers as a % of resistors
belonging to a given violation level. 100% of the resistors is the entire set,
with layout that compose a net.

Voltage Layout Distribution Assuming there are 10 color map layers and
the maximum IR drop is 100mV, the following syntax generates a layout having
the voltage distribution that follows.

redv -v 5 5 10 20

Voltage distribution
10th

Blinking Red. The maximum IR drop where the voltage distribution is 5% or
95mV ~ 100mV.
HSIMplus® Reference Manual 65
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
9th

Red. The voltage distribution is 5% or 90mV ~ 95mV.

8th

Maroon. The voltage distribution is 10% or 80mV ~ 90mV.

7th and all other layers

Since it is difficult to select voltage distributions that result in useful color
maps, it is recommended that the resistor distribution be specified among
colored layers of violation map. -r and %s specify how many resistors
belong to each layer of the color map.

Resistor Layout Distribution
Assuming there are 10 color map layers and 1000 resistors in a power net, the
following syntax generates a layout having the resistor distribution that follows.

redv -r 5 10 15

Resistor distribution
10th

Blinking Red. 5% or 50 resistors.

9th

Red. 10% or 100 resistors.

8th

Maroon. 15% or 150 resistors.

7th

Brown. The voltage distribution is 20% or 60mV ~ 80mV.

All other Layers

100 resistors.

PWRA automatically calculates the voltage scale.

rediw
rediw [default_val] [[(w_1@v_1 w_2@v_2 ...)]lval_1@layer_1]

[lval_2@layer_2] ...

rediw specifies the current density (I/W) threshold for non-VIA layers. Layer
threshold values can be specified as follows:
66 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
■ default value for all layers
■ default value for a given layer
■ A set of values for specific widths of a layer. Width specific values must be

specified within brackets () before the layer value.

The following syntax construct sets thresholds for several ranges:

(w1@v1 w2@v2)lval@layer

Syntax Definitions
 v1

Current density value for resistors with a width within the range 0 - w1.

 v2

Current density value for resistors with a width within the range w1 - w2.

lval

Current density value for resistors with a width greater than w2 have
threshold lval.

Command parameters:

default_val

Threshold for all layers not mentioned in this command presented in uA/um.

lval_i

Threshold for specific layer presented in uA/um.

layer_i

Layer name.

w_i

Width presented in um.

v_i

Threshold for the given width presented in uA/um.

rediw sets the threshold for all types of current analysis. To set specific values
for the given analysis use commands:
HSIMplus® Reference Manual 67
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
redimaxw, redirmsw, rediabsw, rediavgw
Syntax Definitions
redimaxw (imax)

Peak current

redirmsw (irms)

RMS current

rediabsw (iabs)

Average current magnitude

rediavgw (iavg)

Average current

All redimaxw commands have the same syntax as rediw. If no command is
specified in the .ratcl file, HSIMplus PWRA uses the maximum value for each
layer for each analysis.

redia
redia val1@layer1 val2@layer2...

redia specifies the current density threshold for VIA layers. Since all layers
specified by this command are treated as VIA, HSIMplus PWRA calculates the
current density through VIA resistors using their area, defined by width*width,
and compares it with the threshold.

The threshold for each layer is presented in uA/um2. There is no default value
for all VIA layers as in rediw. Each VIA layer must have its own val@layer
construction or it is considered to be a non-VIA layer with I/W threshold. redia
covers all EM analysis. To set threshold for specific EM analysis, use the
following commands:

redimaxa, redirmsa, rediabsa, rediavga
Syntax Definitions
redimaxa

Peak current

redirmsa

RMS current
68 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
rediabsa

Average current magnitude

rediavga

Average current

All analysis-specific commands have the same syntax as redia.

redj
redj val1 val2 val3...

redj is used for electro-migration analyses only. It specifies the Violation Map
levels in J/Jmax ratios beginning with the lowest level.

Syntax Definitions
 J

Current density.

 Jmax

User-specified current threshold or the maximum current density calculated
by HSIM.

To set Jmax use the following commands:
■ rediw on page 66
■ redia on page 68

emthreshproc, emldlayers
The emthreshproc and emldlayers commands provide a flexible capability
to specify EM rules in SIGRA and PWRA to address multiple ways of
calculating the threshold values. HSIM calculates the current through the
resistor and compares the current against the maximum allowed current, which
is the threshold Ith (not the current density).

The value of Ith for each resistor is calculated during post-processing through
the call to the user-defined RA Tcl procedure. This procedure contains the
formula/data necessary to calculate the Ith based on technology specific
parameters, as well as the resistor width and/or length attributes.

The emthreshproc command assigns procedures to appropriate layers. The
procedures are called during post-processing to calculate the Ith for each
resistor. The values from HSIM are passed to the procedures as global
parameters. HSIM supports the following parameters:
HSIMplus® Reference Manual 69
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
■ hs_width for the resistor width
■ hs_length for the resistor length

When used, the values of these parameters are passed to the procedures as
global parameters. The units for these global parameters are microns. The
procedures are expected to return the Ith value in uA.

For some EM rules, it is necessary to calculate the wire length, which is defined
differently for metal and via resistors. For metal resistors, the wire length is
defined as a maximum path between any two nodes on the wire. For via
resistors, the wire length is the maximum wire lengths of wires that connect to
the given via resistor. To correctly calculate/assign the wire length to the
resistors, HSIM needs to know which layers are metal and which are via layers.
You must use the emldlayers command to specify the layer types.

emthreshproc analysis proc_name@ layer_name
[proc_name@layer_name...]

emldlayers <-m|-v> layer_name

Syntax Definitions
analysis

Specifies the one of the following types of EM analysis: imax, iavg, iabs or
irms.

proc_name

Name of the user-defined Tcl procedure.

layer_name

Layer name

-m

Option to specify metal layer names.

-v

Option to specify via layer names.

Example of an RA Tcl File
The following example of an RA Tcl file contains commands that define the EM
rules. Note that the example includes procedures in a separate 65nm.ratcl
file.
70 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
source 65nm.ratcl
emldlayers -m almi iaa ipdef -v cxx cww
emthreshproc imax t65_m1@almi t65_mx@iaa t65_my@ipdef
emthreshproc imax t65_vx@cxx t65_vy@cww
emthreshproc irms t65_irms_m1@almi t65_irms_mx1@iaa
t65_irms_mx3@ipdef
HSIMplus® Reference Manual 71
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
The following example show a Tcl file that defines procedures for EM analyses
based on 65nm rules.

set UB 20
set LB 5

proc t65_metals {cW cI} {
global hs_length hs_width UB LB

if { $hs_length >= $UB } {
set threshold [expr $cI * ($hs_width - $cW)]

} elseif { $hs_length <= $LB } {
set threshold [expr 4 * $cI * ($hs_width - $cW)]

} else {
set threshold [expr ($UB / $hs_length) * $cI * ($hs_width - $cW)]

}
if {$threshold > 0} {
set threshold [expr 1000 * $threshold]

}
return $res_threshold

}

proc t65_m1 {} {

set cW 0.02
set cI 1.8
set threshold 0

set threshold [t65_metals $cW $cI]
return $threshold

}

proc t65_mx {} {

set cW 0.02
set cI 1.9
set threshold 0

set threshold [t65_metals $cW $cI]
return $threshold

}

proc t65_my {} {

set cW 0.03
set cI 4.6
set threshold 0
72 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
set threshold [t65_metals $cW $cI]
return $threshold

}

proc t65_mz {} {

set cW 0.03
set cI 10.0

set threshold 0

set threshold [t65_metals $cW $cI]
return $threshold

}

proc t65_vias {cI} {
global hs_length hs_width UB LB

if { $hs_length >= $UB } {
set threshold $cI

} elseif { $hs_length <= $LB } {
set threshold [expr 4 * $cI]

} else {
set threshold [expr ($UB / $hs_length) * $cI]

}
if {$threshold > 0} {
set threshold [expr 1000 * $threshold]

}
return $res_threshold

}

proc t65_vx {} {

set cI 0.3
set threshold 0

set threshold [t65_vias $cI]
return $threshold

}

proc t65_vy {} {

set cI 0.9
set threshold 0

set threshold [t65_vias $cI]
return $threshold

}

HSIMplus® Reference Manual 73
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
proc t65_vz {} {

set cI 4.0
set threshold 0

set threshold [t65_vias $cI]
return $threshold

}

#----- Irms

set dT 5

proc t65_irms_metals {cI cW1 cW2 cW3} {
global hs_width dT

set W $hs_width

set threshold [expr sqrt ($cI * $dT * pow (($W - $cW1), 2) * ($W + $cW2)
/ ($W - $cW1 + $cW3))]
return $threshold
}

proc t65_irms_m1 {} {
set cI 20.0
set cW1 0.02
set cW2 0.4
set cW3 0.06

set threshold [t65_irms_metals $cI $cW1 $cW2 $cW3]
return $threshold
}

proc t65_irms_mx1 {} {
set cI 7.0
set cW1 0.02
set cW2 0.5
set cW3 0.06

set threshold [t65_irms_metals $cI $cW1 $cW2 $cW3]
return $threshold
}

proc t65_irms_mx2 {} {
set cI 5.0
set cW1 0.02
set cW2 0.9
74 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
set cW3 0.06

set threshold [t65_irms_metals $cI $cW1 $cW2 $cW3]
return $threshold
}

proc t65_irms_mx3 {} {
set cI 3.0
set cW1 0.02
set cW2 1.5
set cW3 0.06

set threshold [t65_irms_metals $cI $cW1 $cW2 $cW3]
return $threshold
}

emlmaxiv, emlmaxim
emlmaxiv and emlmaxim are used to specify length-dependent
electromigration rules for the maximum current density of via and metal layers
respectively.

Note:

The emlmaxiv and emlmaxim commands are more restrictive than the
emthreshproc, emldlayers commands that you can specify in a Tcl
procedure for greater flexibility.

emlmaxiv [-llb <val_l>] [-lub <val_u>] {cI@via_layer }

emlmaxim [-llb <val_l>] [-lub <val_u>] {cW@cI@metal_layer }

Syntax Definitions
val_l

Length of the lower boundary in microns.

val_u

Length of the upper boundary in microns.

cW

Width correction value in microns.

cI

Current value for threshold calculation in mA.
HSIMplus® Reference Manual 75
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
Several commands can be specified in one file. Each command can have
information for several layers. The lower and upper boundaries can be
specified once in any command.

jjmaxlog
For signal net RA analysis, there can be many nets and it can be difficult to
view each net to find EM violations. To create a log report (one per net) on the
J/Jmax value in order address identify nets with EM violations, use the
following syntax:

jjmaxlog [<def_val>] [<val>@imax] [<val>@iavg] [<val>@iabs]
[<val>@irms]

All of the options are used for filtration. Therefore, only nets with J/Jmax values
that are greater than <val> or <def_val> are added to the log file.

ragds
ragds [-reflib <lib_name> -refcell <cellname>] [-legend]

ragds specifies the generation of VM over original layout, and presence of the
legend in a layout. Command has the following parameters:

Syntax Definitions
lib_name

Library name with the original layout

cellname

Top cell name in the original layout

raformat
raformat [all] [1|gds2] [3|ascii] [4|rve]

raformat specifies the output layout format. The default is gds2(1). To
generate output in ascii format, use raformat ascii. The raformat rve command
option generates an error database that can be loaded into the Mentor
Graphics RVE tool for visualization.

ralayers
ralayers [layer_1[{,layer_i|-layer_j}]]
76 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
ralayers specifies the layer numbers of the violation map layout using the
following syntax:

Syntax Definitions
, (comma)

Specifies a single layer number.

- (dash)

Specifies a set of layer numbers, e.g. 51-54 equal to 51,52,53,54.

printi
printi <net_name>:<resistor_name>

[{<net_name>:<resistor_name>}]

printi specifies the resistor currents inserted into wave output files. Currents
are calculated at the Phase II of simulation. Several resistors can be specified
in one command. Several printi commands can be specified in one .ratcl
file. The asterisk (*) wildcard can be used for the <resistor_name>.

printv
printv <node_name> [{<node_name>}]

printv specifies the node voltage as either IR drop or the actual value
inserted into the wave output files. Voltages are calculated at Phase II
simulation. Several nodes can be specified in one command. Several printv
commands can be specified in one .ratcl file. The asterisk (*) wildcard can be
used for the <node_name>.

printvmode
printvmode [1|dv] [2|v]

printvmode specifies the type of dats output by the printv command.

Syntax Definitions
[1|dv]

Voltage drop

[2|v]

Actual voltage at a node.

The default is actual voltage at a node (2 | v).
HSIMplus® Reference Manual 77
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
printipad
printipad <pad_name> [{<printipad_name>}]

printipad specifies the net pad currents inserted into wave output files. Pads
are specified by *P in the SPEF file. Currents are injected at Phase II
simulation. Several pads may be specified in one command. Several printipad
commands may be specified in one .ratcl file. The asterisk (*) wildcard can be
used for the <pad_name>.

alterpad
alterpad <mode> dspf_net_pin dspf_net_node

alterpad specifies the new pad connections during second phase simulation.
It is used for “what if” analysis.

Syntax Definitions
<mode>

Specifies whether you want to move or add a pad.

dspf_net_pin

Specifies the original/new pad name

dspf_net_node

Specifies the node you want to move the original/new pad to

Example 5
alterpad move vdd vdd:4

HSIM performs move of the original pad vdd to the node vdd:4.

alterpad add vdd xa1/mp:s

HSIM adds a new pad to the instance pin xa1/mp:s.

gdslabels
gdslabels [all] [1|pad] [2|print] [3|pins] [-layer <number>]

 gdslabels specifies what text labels are generated and put into *.ragds file.
By default, no labels are generated.
78 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
Syntax Definitions
[1|pad]

All pad names are specified as *|P in DSPF files,

[2|print]

Node names are specified in printv command.

[3|pins]

All pin names are specified as *|I in DSPF files.

[all]

Text labels for all objects mentioned in the previous bullets.

[-layer <number>]

Specifies the layer number for label visualization, where <number> is
integer between 1 and 255. Note that the layer number should not be in the
range of ralayers.

outlayers
outlayers [anType] layer_1[{,layer_i}] [-f]

outlayers specifies the original layers that are used to generate the violation
map. Commas (,) are used to separate layer numbers or names.

Syntax Definitions
[anType]

Specifies one of the following analysis types: vmax, imax, irms, iavg, or iabs.

 -f

Specifies that each layer must be in separate file.

If outlayers is skipped, HSIMplus PWRA uses all layers.

skiplayers
skiplayers [anType] layer_1[{,layer_i}]

skiplayers specifies the physical design layers to exclude from GDSII or
ASCII reporting. Skiplayers is opposite to "outlayers" command.
HSIMplus® Reference Manual 79
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
Syntax Definitions
[anType]

Specifies one of the following analysis types: vmax, imax, irms, iavg, or iabs.
If no value is set, skiplayers applies to all analysis types

 layer_1 [{,layer_i}]

Specifies the physical design layers to be excluded from output reporting

RA TCL may contain several “skiplayers” commands for different types of
analysis. If both "skiplayers" and "outlayers" commands are used for the same
analysis, HSIM uses the latest command in the specification.

Example
skiplayers poly, nwell
skiplayers vmax via1, via2
skiplayers iavg metal, metal2

In the above example, poly and n-well layers are not reported for all RA
analysis. In addition, via1 and via2 layers are skipped during vmax analysis
and metal1 and metal2 layers are skipped during iavg analysis.

outfiltres
outfiltres w1@r1 w2@r2...

outfiltres is used to filter out resistors of specific width-resistance pairs in
the violation map(VM). By default, HSIMplus recognizes and filters non-
physical resistors generated by STAR-RCXT in the VM. For DSPF/SPEF
generated by other RC extractors, you can use outfiltres to filter out
resistors with a specific width-value pair.

Syntax Definitions
w1, w2

The resistor widths in microns.

r1, r2

The resistances in Ohms.

If outfiltres command is used, and the DSPF/SPEF is generated from
Star-RCXT, the width-value pair defined in outfiltres overrides the default.

gdsmapvmax
gdsmapvmax -v float_val | -l int_val
80 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
gdsmapvmax specifies the filter for the number of resistors stored in the GDSII
file resulting from IR drop analysis (vmax).

Syntax Definitions
-v

Value threshold. float_val specifies that resistors with an IR drop lower than
this value is not stored in the GDSII file.

-l

Level threshold. int_val specifies that the number of mostly violated levels
where resistors are stored in the GDSII file.

If this command is skipped, HSIMplus PWRA stores all resistors.

gdsmapi
gdsmapi {<max|avg|rms|abs>} {-v|-l} [default_val]

val1@layer1 [{val2@layer2}]

gdsmapi <max|avg|rms|abs> specifies the filter for the number of resistors
stored in the GDSII file as a results of one of the following EM analyses: imax,
irms, iavg, or iab.

Syntax Definitions
 -v

Specifies that the filter threshold is determined by a value, current density
(uA/um).

-l

Sets the filter threshold by level.

Resistors are placed into the GDSII file if its current density is greater than the
filter threshold value (-v) or if it belongs to the level satisfied by the following
condition: (10 - level) < threshold_level (-l). Each original layer may have its
own val@layer threshold specification. If default_val is set, all layers without
their own specification are treated as if they have the default_val value. If
default_val is not set, and a layer does not have its own specification, all
resistors in this layer are in the GDSII file. If gdsmapi is skipped, HSIMplus
PWRA stores all resistors.

gdsoutmode
gdsoutmode [ird@<<1|v>|<0|dv>>] [em@<<1|i>|<0|iw>>]
HSIMplus® Reference Manual 81
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
 gdsoutmode specifies the type of information within the GDSII file as follows:

Syntax Definitions
 For IR drop:

ird@1 or ird@v

Actual voltages

ird@0 or ird@dv

Voltage drop [default]

 For Electro-migration analysis:

em@1 or em@i

Actual currents

em@0 or em@iw

Current density [default]

If gdsoutmode is skipped, HSIMplus PWRA generates a voltage drop and
current density map.

If actual voltages are specified, HSIMplus PWRA ignores redv and builds the
following maps:
■ A regularly distributed voltage map using maximum voltage as the

threshold.
■ A regularly distributed current map using maximum current as the threshold.

gdsmag
gdsmag <[+]|-><val>

gdsmag specifies the magnification of shapes within VM layout. All DSPF file
coordinates are handled as follows:

Syntax Definitions
+ (plus)

Sorts in ascending order.

- (minus)

Sorts in descending order.

<val> is positive

Multiplies by <val>.
82 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
<val> is negative

Divides by <val>.

tstart
tstart <time>

tstart specifies the start time for RA simulation. The default unit time value is
seconds.

tstop
tstop <time>

tstop specifies the stop time for RA simulation. The default time value is
seconds.

swin
swin -apw <t1 t2> [<t3 t4> ...] [net_pattern_1 net_pattern2

...]

swin specifies multiple tstart-tstop windows for RA power net analysis. t1 and
t2 are used to specify the first simulation window.

If you simulate 100ns (100n) for the Phase I simulation, and you are only
interested in 10n-20n and 50n-60n for the Phase II RA analysis, you can
specify the following command in the .ratcl file.

swin 10n 20n 50n 60n

Without the -apw option, HSIMplus PWRA calculates the overall IAVG, IRMS
and IABS currents for all of the defined simulation windows. In contrast, when
swin -apw is used, the IAVG, IRMS and IABS currents are calculated
separately for each defined simulation window and then the peak value is
reported. For example:

swin t1 t2 t3 t4 …

If IAVG analysis is performed, PWRA uses the following formula to compute
IAVG for the defined simulation windows t1-t2, t3-t4, …
HSIMplus® Reference Manual 83
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
In contrast, if the -apw option is used as shown below:

swin -apw t1 t2 t3 t4

PWRA uses the following formula to compute IAVG for defined simulation
windows t1-t2, t3-t4, …

Similarly, if IRMS and IABS analysis are selected, HSIM-RA uses following
formulas for calculating the corresponding currents.

Note:

The maximum number of simulation windows is 20.

IAVG 1
t2 t1– t4 t3– ++

-- i t t i t t +d

t3

t4

 +d

t1

t2

=

IAVG PEAK

1
t2 t1–
---------------- i t td

t1

t2

1
t4 t3–
---------------- i t td

t3

t4

=

IABS PEAK

1
t2 t1–
---------------- i t td

t1

t2

1
t4 t3–
---------------- i t td

t3

t4

=

84 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
Note:

Due to the limitations of the viewers currently used, the waveform points
which correspond to the end of previous window and the beginning of the
new one will be connected by a straight line. However, since windows are
specified by you, it should not be a problem, i.e., you know that the intervals
between the windows must be ignored.

Note:

Outside the specified windows, no RA analysis is performed in Phase II, and
the result is set to zero.

Note:

The PEAK function chooses the peak result from all swin windows, ignoring
the sign during comparison. Please observe that IMAX and VMAX results
are not affected by the -apw option.

You can also specify a pattern for one or more nets. For example:

swin 10ns vdd vss

This command specifies one window, 10ns-40ns, for two nets, vdd and vss.

swin -apw 5ns 15ns 25ns 35ns a*

This command specifies two windows, 5ns-15ns and 25ns-35ns, for all nets
that start with "a". Also, averaging is done in each window.

swin 5ns 15ns 25ns 35ns i* o*

IRMS PEAK

1
t2 t1–
---------------- i t 2 td

t1

t2

1
t4 t3–
---------------- i t 2 td

t3

t4

=

HSIMplus® Reference Manual 85
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
This command specifies two windows, 5ns-15ns and 25ns-35ns, for two sets of
nets with names that start with "i" or "o". Averaging is done over the whole time
of simulation.

twin
twin <w>

twin specifies a window of duration <w> for RA power net and signal net
analyses around the time of peak current through the power source.

For example, if you simulate 100ns in the Phase I simulation, and the current
peaks at 35ns, then by specifying the following command in the .ratcl file:

twin 10n

the Phase II RA analysis is automatically carried out in the window between
30ns and 40ns.

Note:

Typically, the time of current peak does not necessarily correspond to the
time of the maximum IR drop.

tau
tau <timestep>

tau permits setting a different value for the Phase II time step. In Phase I, the
average currents injected from transistor terminals into the original power net
are accumulated during the time interval specified by HSIMRATAU. By default,
the same value is used as the time step for the Phase II.

layerh
layerh [<def_val>] <h1>@<layer1> [{<h2>@<layer2>}]

layerh specifies the height (thickness) of non-VIA layers. Height is used for
current density calculation as shown in the following syntax:

J=I/(w * h) uA/um2

If height is not specified in <h@layer>, <def_val> is used as the default value
for all layers. If <def_val> is omitted, h=1 is used. Height is displayed in um
(microns). Several heights may be specified in a single command. Several
layerh commands can be specified in a single .ratcl file. If several layerh
86 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
commands have <def_val>, only the latest <def_val> will be used as default
value.

layerea
layerea [<def_val>] <ea1>@<layer1> [{<ea2>@<layer2>}]

layerea specifies the coefficient of the effective area (EA) of VIA layers. EA is
used for current density calculation as shown in the following syntax

J=I/((w * w) * ea) uA/um2

If EA is not specified in <ea@layer>, <def_val> is used as the default value for
all layers. If <def_val> is omitted, ea=1 is used. Several EAs may be specified
in one command. Several layerea commands may be specified in one .ratcl
file. If several layerea commands have <def_val>, the <def_val> from the latest
layerea command will be used as the default value.

layermap
layermap <numb_1>@<name_1>[<numb_i>@<name_i> …]

layermap specifies the mapping between layers numbers and names.
Several layer number and name pairs can be put in a single command. Several
commands may be used in one file.

rvemapvmax
rvemapvmax [-l] <val>

rvemapvmax specifies the filter for the number of nodes to be stored in the
RVE output file resulting from IR drop analysis (vmax). This command supports
two types of filtering: by by level of violation or IR drop value. To request
filtering by level of violation, the -l parameter must precede <val>. In this case
<val> must be an integer specifying the number of most violated levels to be
outputted in the RVE file. In case of filtering only by <val>, the value must be in
volts specifying minimum value of node IR drop to be outputted into RVE file. If
this command is skipped, HSIMplus PWRA stores all nodes.

rvemapi
rvemapi{max | avg | rms | abs} [-l] [<default_val>]

<val_1>@<layer_1> <val_2>@<layer_2> …
HSIMplus® Reference Manual 87
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
rvemapi <max|avg|rms|abs> specifies the filter for the number of resistors to
be stored in the RVE output file as a result of any of the following EM analysis:
imax, irms, iavg, iabs. This command supports two types of filtering: by by level
of violation or value of current density. To request filtering by level of violation -
l parameter must precede all other parameters. In this case < default_val> and
all other <val_i> must be integers specifying the number of most violated levels
to be outputted into RVE file. In case of filtering by value <default_val> and all
<val_i> the value must be in uA/um specifying minimum value of resistor
current density to be outputted into RVE file.

Each layer can have its own <val>@<layer> threshold specification, where
<layer> is layer name/number. If <default_val> is specified, layers without
individual specifications are treated as they have this <default_val> value. If
<default_val> is not specified and a layer does not have its own specification,
all resistors on this layer are listed in the output file. If rvemapi is skipped,
HSIMplus PWRA stores all resistors.

asciimapvmax
asciimapvmax [-l] <val>

asciimapvmax specifies the filter for the number of nodes to be stored in the
ASCII output file resulting from IR drop analysis (vmax). This command
supports two types of filtering: by IR drop value or by level of violation. To
request filtering by level of violation, the “-l” parameter must precede <val>. In
this case <val> must be an integer specifying the number of mostly violated
levels to be output into the ASCII file. In case of filtering by value, <val> must
be in volts specifying minimum value of the node’s IR drop to be output into the
ASCII file. If this command is skipped, HSIMplus PWRA stores all nodes.

asciimapi
asciimapi{max | avg | rms | abs} [-pwra|-sigra] [-l]

[<default_val>] <val_1>@<layer_1> <val_2>@<layer_2>

asciimapi{<max|avg|rms|abs>} specifies the filter for the number of resistors to
be stored in the ASCII output file as a result of any of the following EM analysis:
imax, irms, iavg, or iabs. This command supports two types of filtering: by value
of current density or by level of violation. To request filtering by level of
violation, the “-l” parameter must precede all other parameters. In this case
<default_val> and all other <val_i> must be integers specifying the number of
mostly violated levels to be output into ASCII file. In case of filtering by value
88 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
<default_val> and all <val_i> must be in uA/um specifying the minimum value
of the resistor’s current density to be output into the ASCII file.

Each layer can have its own “<val>@<layer>” threshold specification, where
<layer> is layer name/number. If <default_val> is specified, layers without
individual specifications are treated as if they have this <default_val> value. If
<default_val> is not specified and a layer does not have its own specification,
all resistors belonging to this layer are listed in the output file. If asciimapi is
skipped, HSIMplus PWRA stores all resistors.

-pwra

Executes Tcl for power net analysis only. Default is Tcl execution for both
power and signal analyses.

-sigra

Executes Tcl for signal net analysis only. Default is Tcl execution for both
power and signal analyses.

asciicols
asciicols <ird|em> {<column name>}

asciicols is a TCL command that adds a column and specifies which
columns, and in what sequence they should be listed in an ASCII file.

Syntax Definitions
ird

For IR drop, the following columns are selectable:

• resname: Resistor name

• dv: Value of IR drop (mV)

• volt: Node voltage (V)

• layer: Layer name or number

• x, x coordinate

• y, y coordinate

• nodename: Name of node

• time: Time when IR drop occurred

• level: Level of violation
HSIMplus® Reference Manual 89
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
em

For EM analysis, the following columns are selectable:

• resname: Resistor name

• current: Current through resistor (uA)

• curdns: Current density through resistor (uA/um)

• j_jmax: Ratio J/Jmax. Jmax is user specified threshold for layer or
maximum J calculated by program if threshold was not set.

• layer: Layer name or number

• x, x coordinate

• y, x coordinate

• w1, width_1

• w2, width_2

• slack: Result of subtracting <current density> - <threshold>

• time: Time when the maximum current occurred (IMAX analysis only)

• level: Level of violation

asciicolsort
asciicolsort <ird|em> [<[+]|-><name>|<[+]|-><numb]

asciicolsort specifies the number and sequence of columns used as
sorting keys for sorting ASCII files. Columns used for sorting specifications
must be specified in asciicols. Column names and numbers are the same as in
asciicols. The sign controls the type of sorting as follows:

+ (plus): Sorts in ascending order.

- (minus): Sorts in descending order.

The syntax shown in Example 6 generates and sorts an ASCII file for IR drop
analysis:

Example 6
asciicols ird dv time layer nodename
asciicolsort ird -dv time

The output from the above syntax appears as follows:
90 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
IRDrop(mV) Time(ns) LayerNode name
2.254 2.9ns 6vdd:385
2.253 0.2ns 3vdd:161
2.253 0.2ns 3vdd:162
2.253 2.9ns 3vdd:182
2.218 2.9ns 6vdd:387

gdsprops
gdsprops [all] [none] {[<prop_numb>|<prop_name>]}

gdsprops specifies the set and sequence of properties added to each shape
within the GDSII file. To set properties, use either of the following:

<prop_numb> is used as a GDSII file attribute. It can be specified as a number
from 1 to 12. <prop_name> is the corresponding property.

gdsprops supports the following properties:

1|resname

Resistor name.

2|layer

Resistor's original layer number or name.

3|value

Max IR voltage (mV) drop or EM current density (uA/um or uA/um2).

4|resistance

Resistor nominal value in Ohms.

5|time

Time when value occurred in nanoseconds.

6|j_jmax

Ratio J/Jmax. Jmax is user specified threshold for layer or maximum J
calculated by the program if threshold was not set.

7|current

EM current (uA).

8|nodes

Resistor node names.
HSIMplus® Reference Manual 91
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
9|group

Number of the group to which the resistor belongs. This property is used
with the via grouping command from StarRCXT.

10|width

Resistor width.

11|length

Resistor length.

12|area

Resistor area.

13|rescur

Current through resistor when maximum IR drop.

14|resird

IR drop on resistor.

Set all properties with the following commands:

gdsprops all

Sets all properties. The sequence is the same as shown above.

gdsprops none

Eliminates all properties.

Note:

If gdsprops is skipped, HSIMplus PWRA generates the first 4 properties.

gdstiming
gdstiming <-start start time> <-stop stop time> <-tau step>

gdstiming specifies a set of time steps for the dynamic visualization of power
net analysis.

Syntax Definitions
-start

Starting point

-stop

End point
92 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
-tau

Step size for dumping dynamic visualization information

All parameters use nanoseconds as units.

Caution!

Dumping of this information is time and disk space consuming. Installing the
minimum number of time points necessary to accomplish the task is highly
recommended.

gdsdefrw
gdsdefrw <val>

gdsdefrw specifies the default resistor width. The value are used for
visualization purpose only so, if a resistor has no width, current density is not
calculated.

gdsdatatype
gdsdatatype <val>

gdsdatatype specifies data types for violation map layers in the GDSII file.

Syntax Definitions
<val>

Any integer between 0 and 256. The default value is 0.

gdsfilechsymb
gdsfilechsymb <symb_orig><symb_new>

The original symbol in the gds file is replaced with the new symbol.

Syntax Definitions
symb_orig

the original symbol

symb_new

the new symbol

gdsfilechsymb

@$
HSIMplus® Reference Manual 93
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
This substitutes @ with $ in all file names which contain GDSII format.

Note:

There is no space between <symb_orig> and <symb_new>.

There may be several symbol pairs (<symb_orig><symb_new>) in one
command. Symbol pairs must be separated by space.

deflayer
deflayer <number|name>

deflayer specifies the default layers name and number for cases when layer
is not output by the extractor. By default it is unknown or "" for some special
cases.

rarve
rarve [-topcell <name>] [-diagtype {<2|poly> | <1|edge>}]

[-defwidth <val>]

rarve sets several parameters used to generate RVE files.

Syntax Definitions
-topcell

Sets the name of top cell in RVE file. The default name is TOP_CELL. If
<name> is the word "file", the topcell name will be: <prefix>-<net name>.

-diagtype

Specifies the type of a shape which will be generated for non-orthogonal
resistor. The default value is <2|poly>.

-defwidth

Specifies the default width for all resistors which have zero width or which
have no width statement in SPF/DSPF file.

raviewer
raviewer [1|virtuoso] [2|calibre]

raviewer selects the viewer that PWRA uses to generate technology and/or
display resource files.
94 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
Syntax Definitions
1|virtuoso

default Virtuoso Layout Editor[4]

2|calibre

Calibre DESIGNrev[5]

rediac
rediac val_1@layer_1 val_2@layer_2...

rediac specifies the AC operation threshold for peak current analysis.

Syntax Definitions
val_i

The coefficient specified in a semiconductor foundries technology.

layer_i

The name of an SPF/DSPF file layer.

The Ipeak_dc value is a current density factor that specifies the limit of Amps/
micron of width. It is typically derived from the manufacturing specification of
semiconductor foundries, and is often stated as a coefficient that is multiplied
by the width for the appropriate layer. The current must be in Amps and the
width in microns. For periodic signals, there is a peak current at which a metal
line undergoes excessive Joule heating and can begin to melt. The limit for the
peak current, Ipeak, is calculated using the following formula:

Ipeak = Ipeak_DC / sqrt(dratio)

■ Ipeak_DC = coefficient * width;
■ dratio = td / tau

• td: signal width

• tau: signal period

The <prefix>-<net name>_acpc.dratio file is automatically generated
when the rediac command is used. This file contains a table with the
following columns:
■ Resistor name
■ Signal width
HSIMplus® Reference Manual 95
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
■ Signal period
■ Peak AC operating current

imax analysis is required when rediac is used. HSIM calculates the currents
through all resistors and generates violation map.

redirmst
dT cT1@cW1@layer_1 cT2@cW2@layer_2 ... cTi@cWi@layer_i

The redirmst command specifies the temperature dependent parameters to
determine current density threshold used in RMS analysis. This command is
specifically applied to current density threshold setting with the following
equation:

Current Density Threshold = sqrt [cT x dT x resistor_width x (resistor_width +
cW)]

The redirmst command does not work if the current density threshold equation
is different from above.

If the current density threshold equation is different from above, use the flexible
procedure-base method to set current threshold. See the emthreshproc
command description.

 redirmst uses the following parameters:

Syntax Definitions
dT

Temperature rise in celsius due to Joule heating.

cTi

Temperature coefficient for a specific layer. Unit: mA*mA/um*um.

cWi

Width coefficient(or adjustment) for a specific layer.

layer_i

Layer name for a specific layer.

redtrms
redtrms dT1@cT1@cW1@layer1 dT2@cT2@cW3@layer2...

redtrms specifies temperature analysis parameters using the following
parameters:
96 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Loading GDSII Files into the Cadence Virtuoso Layout Editor
Syntax Definitions
dTi

Temperature threshold for a specific layer.

cTi

Temperature coefficient for a specific layer.

cW

Width coefficient for a specific layer.

layer_i

Layer name.

avgviagrp
avgviagrp <0|1>

avgviagrp averages out all currents for parasitic resistors within via layers
that have matching $grp attributes within an extracted DSPF netlist for power
and signal nets.

Syntax Definitions
0

avgviagrp is not used. This is the default.

1

avgviagrp is turned on.

Example: DSPF Netlist
R1 net1:1 net1:2 10 $grp1 ...
R2 net1:2 net1:3 10 $grp1 ...
R3 net1:4 net1:5 10 $grp2 ...
R4 net1:5 net1:6 10 $grp2 ...

Using the above example, if avgviagrp is set, HSIM measures the currents
through all four resistors and averages the results across each individual
group.

Currents through R1==R2==((i(R1) + i(R2)) / 2) and R3==R4==((i(R3) + i(R4)) /
2).
HSIMplus® Reference Manual 97
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Internal Power Nets
Internal Power Nets

In HSIMplus Power Net Reliability Analysis, external power nets are defined as
any net directly connected to a constant voltage source. An internal power net
is a net separated from the external power net by pre-layout resistors, inductors
or MOSFET transistors and powers the rest of the circuit. To process internal
power nets HSIMplus needs to know the name of the internal power net and its
source points. For internal power nets these source points are physical
locations where power is sourced to the internal power net. Typically such
points are located at terminals of pre-layout resistors, inductors or MOSFET
transistors that separate internal power net from external one.

Use the HSIMPWNAME command to specify the name of internal power net
and the HSIMPWTRACERL command to auto-trace the source point location.

When PWRA analyses are enabled, the voltage drop is calculated with respect
to the constant voltage source of the parent external power net. The reference
voltage can be changed by using the intvref statement. For example, If an
internal power net vdda is connected to a vdd parent external power net with a
3V source, by default, the voltage drop in the vdda net is calculated with
respect to 3V. To change the reference voltage to 1V, use the following
command:

.param HSIMPWNAME=”vdda intvref=1V”

Given the name of the internal power net, HSIMPWTRACERL can usually
detect the parent external power net. However, in some cases you need to
provide further guidance to HSIMPWTRACERL by explicitly setting the source
field in the HSIMPNAME option. For example:

.

.param HSIMPWNAME=”vdda intvref=1V source=vdd”

Note:

The internal power net source point locations can be set manually with the
HSIMSPFNETPPIN command. HSIMSPFNETPPIN overrides
HSIMPWTRACERL for specified internal power nets.

HSIMPWTRACERL
Additionally, when HSIMPWTRACERL is set using the syntax options
described below, it automatically detects the following:
98 HSIMplus® Reference Manual
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
Internal Power Nets
Syntax Definitions
1

Traces internal power net source points that connect to external power nets
through pre-layout resistors or inductors.

2

Traces internal power net source points that connect to external power nets
through pre-layout MOSFET transistors.

3

Traces internal power net source points through pre-layout resistors,
inductors or MOSFET transistors.

HSIMPWTRACERL enables auto tracing to locate source point locations in
internal power nets.

When PWRA analyses are enabled, the voltage drop is calculated with respect
to the constant voltage source of the parent external power net. The reference
voltage can be changed by using the intvref statement.

Example
If an internal power net vdda is connected to a vdd parent external power net
with a 3V source, by default, the voltage drop in the vdda net is calculated with
respect to 3V. To change the reference voltage to 1V, use the following
command:

.param HSIMPWNAME=”vdda intvref=1V”

Given the name of the internal power net, most times HSIMPWTRACERL can
detect an parent external power net. However, in some cases you need to
provide further guidance to HSIMPWTRACERL by setting the source field
explicitly in the HSIMPNAME command. For example:

.param HSIMPWNAME=”vdda intvref=1V source=vdd”

Note:

The internal power net source point locations can be set manually with the
HSIMSPFNETPPIN command. The HSIMSPFNETPPIN command
overrides HSIMPWTRACERL for specified internal power nets.
HSIMplus® Reference Manual 99
C-2009.06

Chapter 3: Power Net Reliability Analysis (PWRA)
References
References

[1] FSDB is a binary file recognized by nWave from Novas Software Inc.

[2] OUT is ASCII EPIC format.

[3] WDF is a binary file recognized by SandWork Design, Inc.

[4] The Virtuoso Layout Editor is a product of Cadence Design Systems.

[5] The Calibre DESIGNrev is a product of Mentor Graphics.
100 HSIMplus® Reference Manual
C-2009.06

4
4Static Power Net Resistance (SPRES)

Provides information on performing a DC analysis of power net resistance with
the HSIMplus SPRES option.

Power Net Resistance Calculator

The HSIMplus Power Net-RA option provides for high accuracy analysis of
dynamic IR drop. During the layout of complex nanometer ICs, it can be
valuable to quickly assess the parasitic effects of power net wiring, without
performing a complete simulation. To provide this capability, the HSIMplus
Static Power Net Resistance option performs the complex calculation of all
pad-to-pin and/or pad-to-internal instance pin resistances.

More specifically, for each instance pin (*|I) in the DSPF file, an effective
resistance is calculated to all pads (*|P) connected together. To perform such
calculations, no pre-layout netlist is necessary, only the net description in
DSPF format is needed. The result of the calculation is output as an ordered list
of instance pins and their resistances (in the order from largest to smallest
values). In addition to a text output, a graphical display of the resistance
distribution on the layout can be generated.

hsim -r

To run the static resistance calculation, use the command:

hsim -r <resistance_command_file> [-o <output_prefix>]

The <resistance_command_file> contains setup commands for resistance
calculation as shown in Example 7. Refer to Net Resistance Calculator
Commands on page 103 for a complete list of the commands.
HSIMplus® Reference Manual 101
C-2009.06

Chapter 4: Static Power Net Resistance (SPRES)
Power Net Resistance Calculator
Example 7
hsim -r r.tcl -o res

The command file should specify a DSPF file and net name for the calculation
shown in Example 8.

Example 8
file extracted.spf
net gnd
rmin 0.05
report -nr 1000 -minr 100

As a result of the run, the following files will be created:

“res-gnd.rlog” -- log file
“res-gnd.rout” -- resistances from pads to pins, sorted in
decreasing order, pin coordinates (if available) and names
“res-gnd.minr100nr1000.report” -- subset of “res-gnd.rout” file,
filtered with “report” command
“res-gnd.png” -- colormap of resistances (red for maximum
resistance, green for zero) for quick viewing

hsim -rout

When *.rout file has been created, additional reports may be produced running
following command where <report_options> are described in Report File
Generation Options on page 108:

hsim -rout <prefix_of_rout_file> <report_options>

Example 9
hsim -rout res-gnd -pat “*:s” -minr 200

This will print reports of all pins with resistance larger than 200 ohms and
names matching pattern “*:s” (i.e. source terminals).

routcols
routcols <column name>

The routcols command is used to control all of the columns within the *.rout
file except for the first “Count” column, which contains each resistor number
within the output table.

The routcols command is specified in the SPRES input file
(resistance_command_file).
102 HSIMplus® Reference Manual
C-2009.06

Chapter 4: Static Power Net Resistance (SPRES)
Net Resistance Calculator Commands
Syntax Description
<column name> may have the following number or name:

Net Resistance Calculator Commands

The following commands are used with the net resistance calculator.

file

Specifies the name of the DSPF file containing a power net description.

file

<DSPF_file_name>

Example 10
file gnd.dspf

net

net specifies the DSPF net name.

net <net_name>

Example 11
net gnd

Number Name Description

1 resval resistance value

2 wl W/L ratio

3 xy X, Y coordinates

4 gdsxy X, Y coordinates within the GDSII file

5 name instance pin name

6 hname hierarchical instance pin name

all — all of the above mentioned columns
HSIMplus® Reference Manual 103
C-2009.06

Chapter 4: Static Power Net Resistance (SPRES)
Net Resistance Calculator Commands
addnetpin

This command is used to specify a temporary net pin.

addnetpin <net_name> <node_name>

Where <net_name> is the power net name that adds a pin, and <node_name>
is instance pin or subnode.

Example 12
addnetpin vdd vdd:21
addnetpin vdd XI0|XI10|MP1:S

Restrictions:

Only one <node_name> in each command.

netdeletepad

This command permits removal of some net pads from the resistance
calculation.

netdeletepad <net_name> <pad_name1> [<pad_name2> ...]

Example 13 The pads removed in either of the following examples are
reported both on-screen and in the log file.

netdeletepad vdd VDD_1
netdeletepad vdd VDD_1 VDD_5 VDD_7

netinclude

netinclude inserts lines from <file.name> to the DSPF file after the *INET
<net.name> statement. It allows the inclusion of extra statements without
touching the DSPF file.

netinclude <net_name> <file_name>

Example 14
netinclude vdd vdd_added_ipins.txt

gds

gds output in GDSII format is performed.
104 HSIMplus® Reference Manual
C-2009.06

Chapter 4: Static Power Net Resistance (SPRES)
Net Resistance Calculator Commands
gds <box_width> [-spfunits <val>] [-mag <m_val>] [-texttype
<val>]

Every pin is output as a square of <box_width>. -spfunits is an optional
parameter that specifies geometry units within the SPF/DSPF file. The default
value for units is 1e-6. So if this option is skipped, SPRES will process all
coordinates as if they are in microns. Optional parameter -mag specifies
magnification coefficient for geometry in SPF/DSPF file. Negative <m_val>
means that coordinates will be divided by <m_val>. Positive <m_val> multiplies
coordinates. If you specify a -texttype value, the specified value is used for
GDSII output.

gdslayer0

In the gds output, pins with the smallest resistance are output as <layer_num>
in gdslayer0.

gdslayer0 <layer_num>

The <layer_num> default is 100.

gdsthresh

gdsthresh is an optional command used to control the distribution of resistors
within levels of a violation map. If this command is skipped, all resistors are
regularly distributed among 10 levels.

gdsthresh {[-lobnd <l_val>] [-upbnd <u_val>]} |
{[-nproc <p_val_10> <p_val_9> <p_val_8>…<p_val_1>]}

 gdsthresh has two forms as follows:

1. In its first form, gdsthresh specifies the threshold for the lowest and highest
violation levels. Resistors between these thresholds will be distributed at
regular intervals among 8 other levels.

• -lobnd: Specifies lower boundary. All resistors with value lower than
<l_val> will be placed into the lowest violated level (dark green color).

• -upbnd: Specifies upper boundary. All resistors with value higher than
<u_val> will be placed into the most violated level (blinking red color).

2. In its second form, gdsthresh specifies the percentage distribution of
resistors among violation levels as follows:
HSIMplus® Reference Manual 105
C-2009.06

Chapter 4: Static Power Net Resistance (SPRES)
Net Resistance Calculator Commands
-nproc specifies the percentage of all resistors that must be presented within
the particular level, starting from most violated (blinking red color). All levels
without specification (skipped value <p_val_i>) will be regularly distributed

ipin

ipin explicitly specifies instance pins for resistance calculation. By default,
resistance is calculated for every instance pin. Using ipin reduces the number
of resistance calculations required by specifying the list of instance pins.

ipin <pin_pattern>

Example 15
ipin vdd:f46 vdd:f8? vdd: f97*

layer0ohm

Resistors with indicated layer names and/or numbers will be shorted if resistor
layer information is available in the DSPF file. Layer names in layer0ohm
should be cross referenced to layer numbers in layer_map section of the DSPF
file.

layer0ohm <layer_nameornum1> [<layer_nameornum2> ...]

Example 16
layer0ohm 5 mt1 cont

layerfactor

Resistor values belonging to an indicated layer in layerfactor are scaled by a
factor. Either of the examples shown in Example 17 are acceptable.

layerfactor <layer_nameornum> <scale_factor>

Example 17
layerfactor mt1 0.1
layerfactor 5 100

rmin

rmin <value> specifies the minimum resistor values read from the DSPF file.
Resistors with smaller values will be shorted so that there is a reduction of
106 HSIMplus® Reference Manual
C-2009.06

Chapter 4: Static Power Net Resistance (SPRES)
Net Resistance Calculator Commands
resistor elements with a corresponding accuracy trade-off. In the example
below, any resistor smaller than 1e-9 Ohm will be shorted.

rmin 1e-9

rmin 0.5

png

If png is not set or <size_x> is less than 100, the colormap dimensions are
automatically calculated. If coordinates are available, instance pins are
displayed as pixels with colors ranging from red (maximum resistance) to green
(zero resistance), e.g. png 1000 generates a colormap of size 1000 X - 1000
times the aspect_ratio. Graphic output is generated using a publicly available
GD library.

png <size_x>

subnode

subnode causes the resistance to be calculated for a sub-node such as vdd:53
vdd:6*. By default, resistance to sub-nodes is not calculated.

subnode <subnode_pattern> [<node_pattern2> ...]

sortby

sortby specifies the method for sorting entries in the .rout file using the
following values:

sortby <sortkey>

Syntax Options
r

Default. Generates the .rout file with entries sorted by resistance from the
pads.

w/l

Sorts by the W/L ratio of MOSFET transistors.

rw/l

Sorts by the product of resistance and the W/L ratio of the transistor
corresponding to the source or drain pin.
HSIMplus® Reference Manual 107
C-2009.06

Chapter 4: Static Power Net Resistance (SPRES)
Report Generation Commands and Options
Report Generation Commands and Options

Filtered information can be obtained using either of the following methods:

Method 1: TCL File Command

report
Insert the report command into the TCL file as shown in Example 18.

report <report_options>

Example 18 TCL File Command.
report -nr 11 -minr 100 -xmin 0 -layer 24 -pat “*:s”

Method 2: Command Line Execution

hsim -rout
Execute hsim -rout from the command line using the shown in Example 19.

hsim -rout <rout_prefix> <rout_options>

Example 19 Command Line Execution
hsim -rout r-vdd -nr 11 -minr 100 -xmin 0 -layer 24 -pat “*:s”

Report File Generation Options

The following options are filters used to produce the *.report file from
information in *.rout file.

-nr

No more than nr nodes are output.

-minr

Only nodes with res > minr are output.

-maxr

Only nodes with res < maxr are output.
108 HSIMplus® Reference Manual
C-2009.06

Chapter 4: Static Power Net Resistance (SPRES)
Report Generation Commands and Options
-layer n

Only nodes with layer n (or no layer info) are output.

-xmin xmin, -ymin ymin

Only nodes specified coordinate region (or no coordinate info) are output.

-pat “pattern_with_wildcards”

Only nodes with hierarchical name:terminal matching given pattern are
output.

-png x_size_in_pixels

Controls X-size of png image, use -png 0 to disable png output.

-gds <box_width>

Output in GDSII format is performed. Every pin is output as a square of
<box_width>.

gdslobnd <val>

Sets the lower boundary/threshold for the distribution of resistors among
violation levels. All resistors with values lower than <val> are placed into the
lowest violated level (dark green color).

-gdsupbnd <val>

Sets the upper boundary/threshold for the distribution of resistors among
violation levels. All resistors with values higher than <val> are placed into
the most violated level (blinking red color).

-gdsmag <val>

Specifies geometry magnification. Negative <val> means coordinates are
divided by <val>. Positive <val> multiplies coordinates.

-gdsunits <val>

Specifies geometry units within the SPF/DSPF file. The default value for
units is 1e-6. If this option is skipped, SPRES will process all coordinates as
if they are in microns.

-gdslayer0 <val>

Specifies the starting layer number for violation map generation. Default is
100.
HSIMplus® Reference Manual 109
C-2009.06

Chapter 4: Static Power Net Resistance (SPRES)
Power Net IR Drop and EM Analysis Flow
Note:

GDS report file options, such as -gdsmag, for the report command are
different from GDS commands, such as gdslayer0, for net resistance
calculation. Do not use GDS commands as GDS options for the report file
options.

Power Net IR Drop and EM Analysis Flow

If the entire power net is back-annotated in the circuit, it is possible to calculate
the IR drop at each connection to the power net and the current through each
resistor in the power net during transient simulation. However, such fully
coupled simulation is practically infeasible because of the large power net size.
For this reason, the typical approach consists of two phases.

Phase I

In Phase I, simulation is performed on the pre-layout netlist, without power net
back-annotation (decoupled simulation). The currents of devices connected to
the power net are stored in a file for future use.

Phase II

In Phase II, only the power net is simulated and the stored currents are injected
into the power net and the IR drop and resistor current values are calculated.
While this approach may give reasonable results in some situations, a large
inaccuracy is introduced because of the effect of power nets on circuit
simulation (i.e. on the currents stored) is completely ignored. PWRA
implementation of power net reliability analysis overcomes this accuracy
problem while keeping the simulation time reasonable.

In PWRA, the power net is reduced to a degree that the coupled simulation
may be performed. Then the strongly reduced power net is back-annotated into
the pre-layout circuit.

This power net has desired feedback, i.e. effect of power net on the circuit
behavior. The currents stored during Phase I (coupled simulation) are used in
Phase II, where those currents are injected into the original, unreduced power
net, Figure 9 on page 111.
110 HSIMplus® Reference Manual
C-2009.06

Chapter 4: Static Power Net Resistance (SPRES)
Power Net IR Drop and EM Analysis Flow
Figure 9 Coupled Power Net Flow Diagram

Phase I Control Parameters

HSIMSPF
To perform power net reliability analysis, the DSPF file with the power net is
specified using HSIMSPF. Refer to the HSIM Simulation Reference Manual:
Chapter 7, Post-Layout Back-Annotation.

HSIMSPFPWNET
HSIMSPFPWNET is used to control the degree of power net reduction.

HSIMPWRA
HSIMPWRA activates the Reliability Analysis (RA) flow using the following
syntax:

.param HSIMPWRA=1 (default HSIMPWRA=0)

To instruct HSIM that power net reliability analysis should be performed during
the transient simulation, set HSIMPWRA=1 which activates the current saving
process during Phase I of RA. When Phase I simulation is finished, HSIMplus
PWRA automatically executes Phase II of RA. To prevent this and manually
start Phase II at a later time, use HSIMRAP2AUTO.

HSIMRAP2AUTO
To prevent PWRA from automatically executing Phase II of RA and manually
starting Phase II at a later time, use HSIMRAP2AUTO=2.

Reduced
Power Net

Pre-Layout or
Back-Annotated Circuit

Original
Non-Reduced Power Net

Phase I Phase II

Power Currents
HSIMplus® Reference Manual 111
C-2009.06

Chapter 4: Static Power Net Resistance (SPRES)
Power Net IR Drop and EM Analysis Flow
Note:

The HSIMRAP2AUTO command has the same functionality as and
replaces the HSIMRADUMP command.

.param HSIMRAP2AUTO (default HSIMRAP2AUTO=1)

HSIMRATAU
During Phase I simulation, PWRA saves device currents with every RA
simulation step. The RA step value is controlled by HSIMRATAU with a default
time interval of 1ns.

.param HSIMRATAU=1n (default)

HSIMRATCL

In Phase II, HSIMplus PWRA does not read the circuit input netlist. A TCL script
file is used to specify the Phase II control values. The script file can be named
using HSIMRATCL.

Example 20
.param HSIMSPF='power_vdd.spf'
.param HSIMSPF='power_vss.spf'
.param HSIMSPFPWNET=4
.param HSIMPWRA=1
.param HSIMRAP2AUTO=2
.param HSIMRATAU=0.25e-9
.param HSIMRATCL='ra_vdd_vss.tcl'

As a result of Phase I, HSIMplus generates some files with the results that are
going to be used on Phase II of RA. For the example above, if the output name
is test, then these files are generated:
■ test.log: Usual log file.
■ vdd.npf, vss.npf: Binary representation of the power nets.
■ test-vdd.ranet, test-vss.ranet: Nodes, resistors, pins, connectivity, and

coordinates.
■ test-vdd.rasim, test-vss.rasim: Binary files created during transient

simulation.
■ test-vdd.ratcl, test-vss.ratcl: Phase II control files.

All parameters that can be used to control the execution of Phase I are listed
below:
112 HSIMplus® Reference Manual
C-2009.06

Chapter 4: Static Power Net Resistance (SPRES)
Power Net IR Drop and EM Analysis Flow
HSIMRARMIN
Resistors with value less than RMIN are deleted during parsing of the DSPF
file. Terminals of deleted resistor become electrically equivalent.

.param HSIMRARMIN= <val>

HSIMSPFPWRMIN
 HSIMSPFPWRMIN is used for simulation during Phase I, while value of
HSIMRARMIN is used in Phase II simulation.

By default, the same value is used for HSIMSPFPWRMIN and HSIMRARMIN:

 0.1: HSIMSPFPWNET=4 or 5

 0.05: HSIMSPFPWNET=3

 0.025: HSIMSPFPWNET=2

 0.01: HSIMSPFPWNET=1 or 0

HSIMRAP2AUTO
.param HSIMRAP2AUTO=2,1 (default HSIMRAP2AUTO=1)

controls how intermediate files are dumped if Phases I and II are combined.

Note:

The HSIMRAP2AUTO command has the same functionality as and
replaces the HSIMRADUMP command.

Syntax Definitions
HSIMRAP2AUTO=2

Only Phase 1 is performed and the .ranet/.rasim files are stored on disk.
hsim -ra test-vdd should be run manually afterwards.

HSIMRAP2AUTO=1

hsim -ra test-vdd is executed automatically by the original hsim test.net -o
test process

HSIMRATAU
.param HSIMRATAU=1n [default]
HSIMplus® Reference Manual 113
C-2009.06

Chapter 4: Static Power Net Resistance (SPRES)
Power Net IR Drop and EM Analysis Flow
■ Phase I: The average currents injected from transistor terminals into the
original power nets are accumulated during this time interval.

■ Phase II: The de-coupled original power net is simulated with this time step.

HSIMRATCL
.param HSIMRATCL=<file name>

Puts the line source filename into .ratcl command file created for each net. This
way, TCL commands specified in filename are executed for each power/ground
net.

HSIMOUTPUT
.param HSIMOUTPUT=format

Specifies the output format(s) of waveforms for nodes given in printv
parameters and/or resistors specified in printi commands. PWRA currently
supports FSDB, WDF, NASSDA, and EPIC formats. The default is FSDB
format. Several waveform can be requested as shown in the following
example:

Example 21
.param HSIMOUTPUT="wdf&epic&fsdb"
.param HSIMCOILIB=<path>/<lib name>

In this example, the syntax specifies the path and file name for the shared
library used for output format generation. If this parameter is skipped, HSIMplus
PWRA searches for lib<out_format>.so in the following directories:
■ Current working directory;
■ $HOME directory;

■ HSIMplus PWRA run directory;
■ LD_LIBRARY_PATH on Solaris and Linux, and SHLIB_PATH on HP

HSIMRAIRMIN
.param HSIMRAIRMIN=0,1 (0 by default)

During the trimming operation the following are performed:
■ Reversible parallel and series reduction.
■ Removal of all resistors smaller than RMIN.
114 HSIMplus® Reference Manual
C-2009.06

Chapter 4: Static Power Net Resistance (SPRES)
Power Net IR Drop and EM Analysis Flow
Reversible Reduction For reversible reduction, EM current values are
restored from the .ranet2npf cross-reference files. However, if resistors has
been removed completely, no current information is available. To obtain the
current values through the deleted resistors, use the following syntax:

.param HSIMRAIRMIN=1

Currents passed through the deleted resistors are restored based on the
currents of the remaining resistors.

Phase II Control Parameters

To start Phase II, use the following syntax:

hsim -ra <output file name>-<power net name1> ..
<output file name>-<power net nameN>

To start the Phase II for the VDD net only, use the following syntax:

hsim -ra test-vdd

HSIMplus PWRA reads the .ratcl file for the correspondent power net and
performs the specified types of analysis in Phase II. The following analysis
types may be performed during the Phase II:
■ 1|vmax: Maximum node IR drop.
■ 2|imax: Peak resistor current.
■ 3|irms: RMS resistor current.
■ 4|iabs: Maximum absolute current magnitude.
■ 5|iavg: Average resistor current.

During the Phase II, the currents stored from Phase I are injected into the entire
power net. For each time interval equal to the HSIMRATAU, the following are
recalculated and updated:
■ Voltages at every power net node
■ Currents through each power net resistor

If vmax analysis is specified, HSIMplus PWRA generates the following files from
Phase II:
HSIMplus® Reference Manual 115
C-2009.06

Chapter 4: Static Power Net Resistance (SPRES)
Power Net IR Drop and EM Analysis Flow
■ test-vdd.ralog: VDD log file
■ test-vdd.radb: VDD net results
■ test-vdd_vmax.ragds: vmax analysis violation map of the VDD net in GDSII

format.

Defining Net Pins by Specifiying X/Y Coordinates

You can define "*|P" net pins by specifying XY coordinates during Phase I,
Phase II, and in static power net resistance (SPRES):
■ In Phase I, use the HSIMSPFADDNETPINXY command. (See the HSIM

Simulation Reference Manual, Chapter 7, Post-Layout Back-Annotation for
details about this command.)

■ In Phase II, use the addnetpinxy command in the RATCL file.
■ In SPRES, use the addnetpinxy command in the SPRES TCL file.

The addnetpinxy command has the following syntax in the RATCL and
SPRESTCL files:

addnetpinxy="<net> X=<xcoord> Y=<ycoord> layer=<malyer>
pinxydist=<xydist>"

<net>

Specifies the net name.

X=<xcoord>

Specifies the X coordinate (in microns).

Y=<xcoord>

Specifies the Y coordinate (in microns).

layer=<malyer>

Specifies the metal layer name.

pinxydist=<xydist>

Specifies that only nodes that are within xydist distance from the user-
specified XY cordinates are searched. The default xydist=1u.

The following formula is used to calculate the distance.

d = sqrt(dX2+dY2)

where dX = Xn-Xu; dY = Yn-Yu
116 HSIMplus® Reference Manual
C-2009.06

Chapter 4: Static Power Net Resistance (SPRES)
Power Net IR Drop and EM Analysis Flow
Xn and Yn - node coordinates

Xu and Yu - user-specified coordinates
HSIMplus® Reference Manual 117
C-2009.06

Chapter 4: Static Power Net Resistance (SPRES)
Power Net IR Drop and EM Analysis Flow
118 HSIMplus® Reference Manual
C-2009.06

5
5Signal Net Reliability Analysis (SIGRA)

Describes the Phase I and Phase II control parameters used in signal net
reliability analysis (SIGRA).

Overview

Signal net reliability analysis (SIGRA) is performed in HSIMplus similar to the
power net reliability analysis described in Chapter 3, “Power Net Reliability
Analysis (PWRA).” The analysis consists of two phases:
■ Phase I: HSIM simulates a circuit with back-annotated signal nets and

saves currents flowing through the net ports.
■ Phase II: The saved currents are injected into the non-reduced signal nets

and the current through each individual resistor of the net is computed.

Only electro-migration (EM) analysis is performed for signal nets so that the
current density for each resistor is calculated, which then may be displayed in
the form of a violation map in a GDSII file. The spots where the current density
exceeds the specified threshold value are highlighted.

If HSIMRANET is used, only the net(s) or net_pattern specified in this
parameter will be considered for RA.

HSIMRANET= <net(s) or net_pattern>

Analyzing EM effects on a design's signal nets is dependent on the input vector
stimulus required to switch or activate these signal nets. If a less-than-
complete vector is supplied, not all signal nets may be simulated. Vectorless
signal net reliability analysis (VSIGRA) can be used to address incomplete
vectors. Refer to Vectorless Signal Net Reliability Analysis (VSIGRA) on
page 122.
HSIMplus® Reference Manual 119
C-2009.06

Chapter 5: Signal Net Reliability Analysis (SIGRA)
Phase I Control Parameters
Phase I Control Parameters

HSIMSIGRA

To perform EM Analysis for signal nets, set HSIMSIGRA=1.

HSIMRASIGCONLY

When HSIMSIGRA=1, the HSIMRASIGCONLY parameter controls whether
signal nets selected with the HSIMRANET command are back-annotated as C
or RC. In the default mode when SIGRA analyses are performed
(HSIMSIGRA=1), HSIM back-annotates all HSIMRANET-selected nets as
lumped capacitance to ground. If HSIMRASIGCONLY=0, HSIM back-
annotates all selected signal nets as RC and reduces them using the
HSIMPOSTL algorithm.

HSIMRANET

HSIM saves the currents for signal nets having the same names, according to
a pattern set by HSIMRANET as shown in Example 22.

Example 22
.param HSIMSIGRA=1

.param HSIMRANET=”x*”: All signal nets with names that fit pattern x* are
analyzed.

.param HSIMRANET=”x2/x5*”: A single net x2/x5 where the slash (/)
character is the DSPF divider, will be the subject to RA analysis.

All information related to signal or power nets in the reliability analysis is stored
and analyzed on a per-pattern basis. Only the nets specified in this parameter
will go to RA Files created during simulation contain the HSIMRANET pattern
as a part of their names as shown in Example 23. Refer to the HSIM Simulation
Reference Manual: Chapter 8, Simulation Output. for additional information.

Example 23
.param HSIMRANET=”x2/x5”
.param HSIMRANET=”x3*”
.param HSIMRANET=”x4/x1/x2*”
120 HSIMplus® Reference Manual
C-2009.06

Chapter 5: Signal Net Reliability Analysis (SIGRA)
Phase II Control - .ractl File Commands
Example 23 shows the results of EM analysis for the nets corresponding to the
specified patterns. This information is written into files with the following
elements in their names:
■ x2.x5
■ x3@
■ x4.x1.x2@

A specific hierarchy can be set to specify the level for which EM analysis of
signal nets is to be performed as shown in Example 24.

Example 24
.param HSIMRANET=”x* level=2”

When level is specified, quotation marks are required. Without the quotes, the
level=2 string will be recognized as a comment. It is possible to have different
levels set for different patterns. Example 25, illustrates a reliability analysis
simulation run for level=1 and level=3 signal nets.

Example 25
.param HSIMRANET=”x* level=1”
.param HSIMRANET=”x*/* level=3”

HSIMSKIPRANET

HSIMSKIPRANET=<pattern>

If HSIMSKIPRANET is specified, the nets that fit the pattern will not be sent to
RA as shown in the following example.

Let the circuit has SPF nets a1,a2,a3,b,c,d. If the following inputs are true, then
RA will only be performed for nets b, c, and d:

.param HSIMRANET=*

.param HSIMSKIPRANET=a*

Phase II Control - .ractl File Commands

iavmin val

iavmin val specifies the threshold value for the average current injected into
a signal net. The signal net is sent to reliability analysis only if the average
HSIMplus® Reference Manual 121
C-2009.06

Chapter 5: Signal Net Reliability Analysis (SIGRA)
Vectorless Signal Net Reliability Analysis (VSIGRA)
injected current in the net exceeds this threshold. This allows the nets with very
small currents that do not require analysis to be filtered out.

If you do not specify a unit type, the default is Amperes.You can also use
symbols such as m (milli), u (micro), n (nano), p (pico), and so on. For example:

iavmin 10u

means that iavmin equals to 10 micro-Amperes. The default value of the
threshold is 100 uA.

nnetmax num

nnetmax num specifies the number of signal nets with the maximum average
injected current requiring analysis. This parameter allows the output and
analysis time to be limited when there is a large total number of nets. The
default is 100.

selectsignets

selectsignets net pattern [net pattern ...]

selectsignets command allows you to filter the signal net analysis during
Phase II of the sigra analysis. For example:

selectsignets a* in

This will select for analysis at Phase 2 net in and all nets which fit pattern a*.

Vectorless Signal Net Reliability Analysis (VSIGRA)

Vectorless Signal Net Reliability Analysis can be used to quickly and accurately
capture a design's signal net resistors' current densities to determine any
potential electro-migration (EM) threshold violations without depending on the
design's input vector set.

VSIGRA also accurately and dynamically captures the currents flowing through
device instance pins connected to signal nets. However, analyzing EM effects
on a design's signal nets highly depends on the input vector stimulus required
to switch or activate these signal nets, thus if a less-than-complete vector is
supplied, not all signal nets may be simulated thus not fully analyzing all nets in
any particular design.
122 HSIMplus® Reference Manual
C-2009.06

Chapter 5: Signal Net Reliability Analysis (SIGRA)
Vectorless Signal Net Reliability Analysis (VSIGRA)
By building a representative circuit that represents each signal net, including
functional driving and receiving devices as well as all parasitic elements
connected to each signal net, VSIGRA is independent of a design's vector set,
thus overcoming any coverage limitations. These individual signal net circuits
are then simulated through the standard SIGRA flow to calculate any potential
EM violations.

VSIGRA Flow

The VSIGRA flow consists of a netlist generation phase as well as the reliability
analysis phase (simulation and analysis). VSIGRA generates a flat netlist
(vsigra.sp) consisting of a unique circuit for each net defined within the
extracted DSPF netlist which is also found within the pre-layout schematic
netlist. You can also choose which nets are processed or ignored using the
existing HSIMRANET command. Another way to select the nets for processing
is to specify the minimum net capacitance. Only the net matching the pattern(s)
of HSIMRANET and with net capacitance greater than a specified value are
selected for processing.

VSIGRA reads in a pre-layout schematic netlist and an extracted DSPF netlist
as well as configuration parameters to help drive the simulation. In addition, the
VSIGRA flow also requires its own configuration file (HSIMVSIGRATCL) to
control the netlist generation phase.
HSIMplus® Reference Manual 123
C-2009.06

Chapter 5: Signal Net Reliability Analysis (SIGRA)
Vectorless Signal Net Reliability Analysis (VSIGRA)
Figure 10 VSIGRA Flow

VSIGRA's netlist generation phase consists of reading in both the pre-layout
and DSPF netlists and generating a new simulation netlist achieving full
coverage on all specified signal nets for reliability analysis. The input DSPF
netlist must be extracted up to the transistor level, it means its instance pin
statements should correspond to the MOS transistor terminals.

To turn on VSIGRA the you must set the HSIMVSIGRA and the
HSIMVSIGRATCL parameters.

Within the VSIGRA flow, you must provide HSIM with the following:
■ Pre-layout SPICE netlist(s) (schematic netlist)
■ DSPF netlist containing signal nets
■ SPICE device models
■ Configuration files:

• A set of parameters to set up the SIGRA run as if the run was executed
for the Phase I of SIGRA. This might include HSIMRANET parameter to
filter all the nets that should be a subject for RA

Extracted
DSPF netlist
Extracted

DSPF netlist
Schematic

Pre-layout Netlist
Schematic

Pre-layout Netlist HSIM CFGHSIM CFGHSIMVSIGRATCLHSIMVSIGRATCL

HSIMplus VSIGRAHSIMplus VSIGRA

HSIMplus SigRAHSIMplus SigRA

EM Results
(gds2, ascii,

etc.)

EM Results
(gds2, ascii,

etc.)

vsigra.ntlvsigra.ntl
124 HSIMplus® Reference Manual
C-2009.06

Chapter 5: Signal Net Reliability Analysis (SIGRA)
Vectorless Signal Net Reliability Analysis (VSIGRA)
• A VSIGRA CFG TCL File.

VSIGRA generates a new flat pre-layout netlist containing an individual circuit
for each parasitic net processed. The new output netlist is then fed into SIGRA
for the simulation and reliability analysis phase.

HSIMVSIGRA

.param HSIMVSIGRA=0|1

To initiate VSIGRA, set HSIMVSIGRA=1. The default is 0.

HSIMVSIGRATCL

.param HSIMVSIGRATCL=<vsigra_cfg_tcl_file>

Use the HSIMVSIGRATCL parameter to identify the VSIGRATCL configuration
file.

VSIGRA CFG TCL File

The VSIGRA_CFG_TCL file read in by the HSIMVSIGRATCL parameter
supports the following syntax definitions:

outfile <filename>

Controls the name of the resulting output netlist. If this command is not set,
the resulting output netlist name is vsigra.sp. All nets are in this one file.

autorun_outfile <filename>

Controls the name of the output file(s) for the run initiated with the autorun
command (see autorun below). If this command is not set, the resulting
output name is outfile file name without the file extension.

include <filename>

Specifies the name of the file to be included into the output file. This file
should contain all of the necessary models and simulation setup
information.

pwr <nodename>, gnd <nodename>, driver <nodename>

Specifies the names and values for the nodes of the power, ground, and
driver accordingly. It is assumed that the include file contains the voltage
sources statements connected to those nodes.
HSIMplus® Reference Manual 125
C-2009.06

Chapter 5: Signal Net Reliability Analysis (SIGRA)
Vectorless Signal Net Reliability Analysis (VSIGRA)
cmin <value>

Specifies the minimum value of the net capacitance (in farads) that is used
to select the nets for VSIGRA along with the HSIMRANET parameter.

autorun <1|0>

1: (default) Continue on to simulation and reliability analysis (SIGRA) phase
immediate following netlist generation phase.

0: Exit after netlist generation phase is complete (do not run SIGRA).

A brief example of a VSIGRA_CFG_TCL file is provided in Example 26 below.

Example 26
.param HSIMVSIGRA=1
.param HSIMVSIGRATCL=myfile.vsigra

myfile.vsigra:

outfile vsigra_tt108_nets.sp
include vsigra_setup.sp
driver in
pwr vdd
gnd vss
cmin 1e-15
autorun 0

The output VSIGRA netlist is named vsigra_tt108_nets.sp and each unique
circuit within this netlist is driven by voltage sources defined in the file
vsigra_setup.sp.
126 HSIMplus® Reference Manual
C-2009.06

6
6MOSFET Reliability Analysis (MOSRA)

This chapter describes how to use MOSFET reliability analysis (MOSRA) for
both fresh and post-stress simulations. It also describes the HSIM API for
defining custom HCI equations and for defining stress model equations. The
Overview of the Unified MOSRA Solution section describes the unified MOSRA
solution with HSPICE®.

Overview of MOSFET Reliability Analysis (MOSRA)

Hot-carrier injection (HCI) is a key reliability concern for MOSFETs in 90-nm
technologies and below.

Device aging effects include changes in the following:
■ Current-driving capability
■ Threshold voltage (Vth)
■ Trans-conductance value (gm)
■ Sub-threshold slope (S)

A MOSRA license is required for the two-stage MOSRA flow:
■ Stage 1: Fresh simulation; computes the stress (EAge) of each transistor in

a circuit.
■ Stage 2: Post-stress simulation; simulates a design with degraded model

parameters based on the expected life-time of circuit usage.

Figure 11 shows the HSIM reliability simulation flow.
HSIMplus® Reference Manual 127
C-2009.06

Chapter 6: MOSFET Reliability Analysis (MOSRA)
Fresh Simulation
Figure 11 HSIM Reliability Simulation Flow Chart

Fresh Simulation

The fresh simulation is similar to a normal HSIM simulation except that
MOSFET reliability analysis (MOSRA) is enabled for devices with transistor
models containing the MOSRA parameters. At the end of the fresh simulation,
the stress (EAge) of the devices for the duration of the simulation are reported
in the .eage file and stored in the .eageba back-annotation file. The electron
age (EAge) is a measurement of the amount of stress level induced in the
devices.

Post-Stress Simulation

The aim of the fresh simulation is to compute the electron age of each
transistor in a circuit. The aim of post-stress simulation is to simulate the
degradation of the circuit, based on the stress information of each transistor
produced by the fresh simulation and a degraded set of model cards. Refer to
Figure 11 on page 128.

Fresh HSIM
Simulation

Fresh
Model
Cards

Customer
HCI
Equations

Degraded
Model
Cards

Stress Info
for Each

Netlist

Device
(.eageba)

URI

Degraded HSIM Simulation

API

Fresh Simulation
Results

Transistor

Degraded Simulation
Results

Degradation Equation
Shared Library

HSIM_REL

Information
Degraded

Model
Cards
128 HSIMplus® Reference Manual
C-2009.06

Chapter 6: MOSFET Reliability Analysis (MOSRA)
User Reliability Interface (URI)
User Reliability Interface (URI)

In addition to the built-in HCI reliability model equation, HSIM provides an
application procedure interface (API) that permits users to define custom HCI
equations and define stress model equations. Refer to API Access on
page 137.

Simulation Control Parameters

HSIMAGINGINST

HSIMAGINGINST enables user-specified instances for reliability analysis for
both fresh and post-stress simulation using the following syntax:

.param HSIMAGINGINST=<instance_name>

The following example shows the command required to get a report of the
electronic ages of the transistors for the xcore sub-circuit:

.param HSIMAGINGINST=x3m.x0.x0.xcore.*

HSIMAGINGSTART, HSIMAGINGSTOP

HSIMAGINGSTART and HSIMAGINGSTOP report device aging values for a
specified time period. These commands are used for both fresh and post-
stress simulation as shown in the following syntax:

.param HSIMAGINGSTART=<start_time>

.param HSIMAGINGSTOP=<stop_time>

HSIMHCIEAGEREFINST

HSIMHCIEAGEREFINST reports relative age values instead of absolute age
values. This parameter is used for both fresh and post-stress simulation of HCI.

.param HSIMHCIEAGEREFINST=m1

The reported HCI age values of each element as a ratio of this element, m1.
HSIMplus® Reference Manual 129
C-2009.06

Chapter 6: MOSFET Reliability Analysis (MOSRA)
Simulation Control Parameters
HSIMHCIEAGETHRESHOLD

HSIMHCIEAGETHRESHOLD is used with the stressed model library to allow you
to define whether a new model card is needed for each transistor, based on the
HCI threshold. The default is value=0. This parameter is only used with URI in
post-stress simulation. The following example illustrates the syntax.

.param HSIMHCIEAGETHRESHOLD=1e-12

HSIMHCIEAGESAMPLING

HSIMHCIEAGESAMPLING is used with the stressed model library to allow users
to group new models cards. This parameter is only used with URI in post-stress
simulation. The default is value=0. The following example illustrates the syntax.

.param HSIMHCIEAGESAMPLING=10

HSIMMOSRASIM

HSIMMOSRASIM is used to control both fresh and stress simulation runs using
the following syntax:

.param HSIMMOSRASIM=<parameter>

Parameters
0

[default] Performs fresh simulation only.

1

Performs post-stress simulation only.

2

Performs both fresh and post-stress simulation.

HSIMRELMODE

HSIMRELMODE is used for both fresh and stress simulation as a selector for
controlling whether a simulation will account for HCI effects as follows:

The following example illustrates the HSIMRELMODE syntax:

.param HSIMRELMODE=1
130 HSIMplus® Reference Manual
C-2009.06

Chapter 6: MOSFET Reliability Analysis (MOSRA)
Modeling
HSIMRELTOTALTIME

HSIMRELTOTALTIME permits users to specify the time length of circuit usage
prior to post-stress simulation in seconds. This value typically corresponds to
the expected life-time of the circuit, prorated with active usage. The default
value is the transient simulation time at the fresh simulation.
HSIMRELTOTALTIME is only used for post-stress simulation. The following
example illustrates the hsimreltotaltime syntax:

.param HSIMRELTOTALTIME=6.3e+7 *corresponds to 2 years

The .eageba file generated by the fresh simulation will be scaled by the total
reliability time in order to determine the stress level for the post-stress
simulation.

HSIMURILIB

HSIMURILIB defines the stressed model library for both fresh simulation and
post-stress simulation. The default is value=NULL. The example below
illustrates the syntax.

Note:

HSIMURILIB is similar to HSIMCOILIB.

.param HSIMURILIB=”../../general/mylib.so”

Note:

Appendix 17, User Reliability Interface provides a description of the URI to
define the HCI equations. Appendix 16, MOSRA Stressed Model
Application defines the extensions required to include the stressModel
equation API.

Modeling

Fresh Simulation Models

HCI
n-MOSFET model card must be extended to support reliability simulation for
fresh simulation runs.
HSIMplus® Reference Manual 131
C-2009.06

Chapter 6: MOSFET Reliability Analysis (MOSRA)
Modeling
HCI model parameters are defined as follows:

hcim

Exponent for substrate current-to-drain current ratio. default is value=3.0.

hcih

Pre-factor coefficient for HCI effect. The default is value=1.0. hcih cannot
be zero.

mosralevel

The type of MOSRA reliability model that should be used:

• 0 - no MOSRA reliability effect

• 1 - build-in equation, HCI effect only

These parameters can be added to a model card as shown in the following
syntax:

.model model_name mosra
* reliability flag
+ mosralevel=1
* HCI parameters
+ hcim=val_1 hcih=val_2

Note:

mosralevel=1 indicates that the HCI effect is calculated for all MOSFET
devices linked to this model card.

appendmodel
Since the model cards are typically contained in model libraries, it is often
inconvenient (or prohibited) to edit the model libraries. The appendmodel
command can be used to append the MOSRA parameters to the model cards.

To minimize explicit changes to the existing model card libraries, appendmodel
uses the following syntax:

.appendmodel src_mod [model_keyword1] dest_mod
[model_keyword2] [paramorder = val]

appendmodel appends the parameter values from the src_mod_name source
model card to the dest_mod_name destination model card.

src_mod

The source model name, which should be the name of the MOSRA model.
132 HSIMplus® Reference Manual
C-2009.06

Chapter 6: MOSFET Reliability Analysis (MOSRA)
Modeling
model_keyword1

The model type for src_mod. This field is optional and it can be the keyword
"mosra".

dest_mod

The destination model name, which should be the name of the original
model in the model library.

model_keyword2

The model type for dest_mod. This field is optional and it can be ‘nmos’.

paramorder

The order of the model parameters in the modified model. The default value
is 0.

Note:

model_keyword1, model_keyword2 and paramorder are optional and do not
have to be specified for the fresh simulation model.

Note:

MOSRA supports binning parameters. It does not support any wild cards.

The appendmodel syntax can be used in either of the following ways:

.appendmodel hci_1 b3_nch

appendmodel appends the content of the model card hci_1 to the b3_nch
BSIM3 model card. It can also be written as:

.appendmodel hci_1 mosra b3_nch nmos

Where mosra and nmos are the optional model type keywords.

Note:

HSIM supports user-specified reliability models in addition to the above
built-in models. Refer to Appendix 17, User Reliability Interface for
additional information.

Post-Stress Simulation Models

For post-stress simulation, the corresponding degraded models need to be
applied to the devices based on the aging (EAge) of the device.
HSIMplus® Reference Manual 133
C-2009.06

Chapter 6: MOSFET Reliability Analysis (MOSRA)
Modeling
The following additional model card parameters are used in degraded model
cards to group the similarly aged transistors together in a process similar to the
binning approach.

HCIMIN

Minimum HCI electron age. [default] 0

HCIMAX

Maximum HCI electron age. [default] 1.0e32

Note:

Degraded model cards with the binning parameters HCIMIN and
HCIMAX are associated with the original model names since the
original model names are used in the transistor cards. The degraded
model names are formed by appending eageN to the original model
name, where N is an arbitrary number. For example, if the original
model name is modn.5, the degraded model names can be
modn.5eage1, modn.5eage2, modn.5eage3, ...

Example 27 provides an example of a degraded model card.
134 HSIMplus® Reference Manual
C-2009.06

Chapter 6: MOSFET Reliability Analysis (MOSRA)
Modeling
Example 27 Degraded Model Card
.model modn.1 level=49
+lmin=0.06u lmax=0.1u wmin=0.1u wmax=0.3u vth0=0.6 u0=0.063
+ mosralevel=1 hcim=3 hcih=1
+
+ hcimin=0 hcimax=1.5
.model modn.2 level=49
+lmin=0.06u lmax=0.1u wmin=0.3u wmax=0.5u vth0=0.58 u0=0.067
+ mosralevel=1 hcim=3 hcih=1
+
+ hcimin=0 hcimax=1.5
.model modp level=49
+ lmin=0.06u lmax=5u wmin=0.1u wmax=5u vth0=-0.6 u0=0.025
+ mosralevel=1 hcim=3 hcih=1
+
+ hcimin=0 hcimax=1.0e32
****** Additional model cards for stressed results ******
.model modn.1eage1 level=49
+lmin=0.06u lmax=0.1u wmin=0.1u wmax=0.3u vth0=0.63 u0=0.061
+ mosralevel=1 hcim=3 hcih=1
+
+ hcimin=1.5 hcimax=20
.model modn.1eage2 level=49
+lmin=0.06u lmax=0.1u wmin=0.1u wmax=0.3u vth0=0.69 u0=0.06
+ mosralevel=1 hcim=3 hcih=1
+
+ iceman=20 hcimax=1.0e32
.model modn.2eage1 level=49
+lmin=0.06u lmax=0.1u wmin=0.3u wmax=0.5u vth0=0.62 u0=0.064
+ mosralevel=1 hcim=3 hcih=1
+
+ hcimin=1 hcimax=20
.model modn.2eage2 level=49
+lmin=0.06u lmax=0.1u wmin=0.3u wmax=0.5u vth0=0.64 u0=0.062
+ mosralevel=1 hcim=3 hcih=1
+
+ hcimin=20 hcimax=1.0e32

Typically, there are many device model parameters in the original model and
there are only a few parameters that are added or changed in the post-stress
binned models. The .appendmodel command can be used for the generation of
the binned post-stress models. The binned models with the corresponding
post-stress parameters must first be generated in a file. The following is an
example to append the post-stress parameters to the standard model
parameters for the model name appended with .eageN.
HSIMplus® Reference Manual 135
C-2009.06

Chapter 6: MOSFET Reliability Analysis (MOSRA)
Output Files

.appendmodel n5v.1 nmos n5v.1eage0 mosra paramorder = 1
.appendmodel n5v.1 nmos n5v.1eage1 mosra paramorder = 1

Since some of the post-stress model parameters, such as vtho, can be defined
in both the standard model and also the post-stress model, the post-stress
model parameters need to be appended to the standard model parameters.
This can be accomplished by using "paramorder =1" in the .appendmodel
command.

Output Files

Fresh Simulation

In addition to normal HSIM output files, two output files are generated from the
MOSRA flow:

eage File
The eage file contains the HCI_EAGE values for devices in the
HSIMAGINGINST list as shown in the following example.

hci_min=2.649110e-07 hci_max=5.367516e-07
m4
HCI_EAGE=5.367516e-07
m2
HCI_EAGE=2.649110e-07

In the eage file, the HCI stress value for each device is reported as the value of
HCI_EAGE. The minimum and maximum values of all the devices are reported
in the hci_min and hci_max values.

eageba File
The .eageba file is the Electron Age Back-Annotation file from a fresh
simulation for post-stress model generation. Example 28 illustrates the syntax:

Example 28
.param HSIMRELFRESHTIME=5.000000e-08
.HSIMPARAM inst=m2 HSIMAGEMODEL=n.8
+ HSIMAGEHCI=2.649110e-07
+ HSIMAGE1=1.200000e-06 HSIMAGEW=1.500000e-05
.HSIMPARAM inst=m4 HSIMAGEMODEL=n.8
+ HSIMAGEHCI=5.367516e-07
+ HSIMAGEl=1.200000e-06 HSIMAGEW=1.500000e-05
136 HSIMplus® Reference Manual
C-2009.06

Chapter 6: MOSFET Reliability Analysis (MOSRA)
API Access
The eageba file is used for post-stress simulation. The fresh simulation time,
reported as the HSIMRELFRESHTIME values, is used to calculate the EAge
value for the transistors at the circuit usage time specified by
HSIMRELTOTALTIME.

The model name used for each device is reported as the value of the
HSIMAGEMODEL in the eagaba file. The hci values reported in the eagaba file
must be the same as those in the eage file.

Post-Stress Simulation

Similar to the fresh simulation, eage and eageba files are generated during
post-stress simulation. These files have the same format as the fresh
simulation eage and eageba files respectively. The eageba file contains the
model name used for each transistor. This can be used to identify the model
used for the post-stress simulation. The eage file contains the HCI aging values
used for post-stress simulation.

API Access

URI for HCI Equations

In addition to the built-in reliability model equation for HCI, HSIM permits
defining custom HCI equations using the URI model programming interface.
The URI model is a dynamic library implemented with C language and the
Synopsys-supplied API. Appendix 17, User Reliability Interface describes the
procedure to define custom HCI equations.

URI Extension for Customized Stressed Model Equations

The URI for HCI equations includes custom stress model parameters. This
flexible solution provides the ability to write custom equations and generate
degraded transistor model card parameters based on length, width, and stress
conditions. Appendix 16, MOSRA Stressed Model Application describes the
MOSRA stressed model URI.
HSIMplus® Reference Manual 137
C-2009.06

Chapter 6: MOSFET Reliability Analysis (MOSRA)
MOSRA Print Commands
MOSRA Print Commands

.print LR91(<device instance>): hot-carrier static
substrate current;

.print LR92(<device instance>): hot-carrier stress mileage;

Note:

The LX91, LX92, LX93 print commands that were sometimes used for
MOSRA-relate prints are replaced by the LR91, LR92, LR93 print
commands.

MOSRA Examples

Fresh Simulation Netlist Example

Example 29 Fresh simulation netlist of a two-inverter design.
* Netlist for MOSRA flesh simulation
vdd vdd 0 1.5
.subckt inv in out width=0.2u
m1 out in 0 0 modn w=width l=0.09u
+ as=4e-14 ad=4e-14 ps=1.0u pd-1.0u
m2 out in vdd vdd modp w='2*width' l=0.09u
+ as=4e-14 ad=4e-14 ps=1.0u pd-1.0u
.ends
x1 1 2 inv width=0.2u
x2 2 3 inv width=0.4u
.tran 0.1n 1u
.print tran v(1) v(2) v(3)
.param HSIMAGINGINST=*
.param HSIMRELMOD=1
.inc "model/modellib"
138 HSIMplus® Reference Manual
C-2009.06

Chapter 6: MOSFET Reliability Analysis (MOSRA)
MOSRA Examples
Example 30 Model lib using width and length binning for the models.
.model modn.1 level=49
+ lmin=0.06u lmax=0.1u wmin=0.1u wmax=0.3u vth0=0.6 uo=0.063
+ mosralevel=1 hcim=3 hcih=1 na=1 nhv=0.2 nga=1.0
+ ...
.model modn.2 level=49
+ lmin=0.06u lmax=0.1u wmin=0.3u wmax=0.5u vth0=0.6 uo=0.063
+ mosralevel=1 hcim=3 hcih=1 na=1 nhv=0.2 nga=1.0
+ ...
.model modp level=49
+ lmin=0.06u lmax=5u wmin=0.1u wmax=5u vth0=-0.6 uo=0.025
+ mosralevel=1 hcim=3 hcih=1 na=1 nhv=0.2 nga=1.0
+ ...

The only difference between a MOSRA fresh simulation from a HSIM
simulation is the additional HSIMAGINGINST and HSIMRELMOD parameters
and the inclusion of the hcim and hcih parameters in the model cards.

In the fresh circuit, the binning model approach is used. Inside HSIM, the n-
MOSFET transistor x1.m1 is linked to model modn.1, and the transistor x2.m1
is linked to model modn.2. Notice that the p-MOSFET transistors x1.m2 and
x2.m2 are both linked to model modp.

Fresh Simulation Outputs

The eage and eageba files are generated in addition to normal HSIM output
files.

eage file:

hci_min=2.649110e-07 hci_max=5.367516e-07
x1.m1 HCI_EAGE=5.367516e-07
x2.m1 HCI_EAGE=2.649110e-07

eagea file:

.param HSIMRELFRESHTIME=1.000000e-06

.hsimparam inst=x1.m1 HSIMAGEMODEL=n.8
+ HSIMAGEHCI=2.649110e-07
+ HSIMAGEL=9.000000e-08 HSIMAGEW=2.000000e-07
.hsimparam inst=x2.m1 HSIMAGEMODEL=n.8
+ HSIMAGEHCI=5.367516e-07
+ HSIMAGEL=9.000000e-08 HSIMAGEW=4.000000e-07
HSIMplus® Reference Manual 139
C-2009.06

Chapter 6: MOSFET Reliability Analysis (MOSRA)
MOSRA Examples
Note:

In the example above, only HCI_EAGE values are reported because only
HCI analysis was specified in the HSIMRELMOD parameter.

Post-Stress Simulation Netlist Example

The following syntax illustrates a MOSFET post-stress reliability simulation
inverter chain.

*Netlist for MOSRA simulation with degraded model cards
vdd vdd 0 1.5
.subckt inv in out width=0.2u
m1 out in 0 0 modn w=width l=0.09u
+ as=4e-14 ad=4e-14 ps=1.0u pd=1.0u
m2 out in vdd vdd modp w='2 * width' l=0.09u
+ as=4e-14 ad=4e-14 ps=1.0u pd=1.0u
.ends
x1 1 2 inv width=0.2u
x2 2 3 inv width=0.4u
.tran 0.1n 1u
.print tran v(1) v(2) v(3)
.param HSIMAGINGINST=*
.param HSIMRELMOD=1
.param HSIMMOSRASIM=1
.param HSIMRELTOTALTIME=6.3e7
.inc “age0/hsim.eageba”
.inc “model/degraded.modellib”

Degraded model card:
140 HSIMplus® Reference Manual
C-2009.06

Chapter 6: MOSFET Reliability Analysis (MOSRA)
MOSRA Examples
.model modn.1 level=49
+lmin=0.06u lmax=0.1u wmin=0.1u wmax=0.3u vth0=0.6 u0=0.063
+ mosralevel=1 hcim=3 hcih=1
+
+ hcimin=0 hcimax=1.5
.model modn.2 level=49
+lmin=0.06u lmax=0.1u wmin=0.3u wmax=0.5u vth0=0.58 u0=0.067
+ mosralevel=1 hcim=3 hcih=1
+
+ hcimin=0 hcimax=1.5
.model modp level=49
+ lmin=0.06u lmax=5u wmin=0.1u wmax=5u vth0=-0.6 u0=0.025
+ mosralevel=1 hcim=3 hcih=1
+
+ hcimin=0 hcimax=1.0e32
****** Additional model cards for stressed results ******
.model modn.1eage1 level=49
+lmin=0.06u lmax=0.1u wmin=0.1u wmax=0.3u vth0=0.63 u0=0.061
+ mosralevel=1 hcim=3 hcih=1
+
+ hcimin=1.5 hcimax=20
.model modn.1eage2 level=49
+lmin=0.06u lmax=0.1u wmin=0.1u wmax=0.3u vth0=0.69 u0=0.06
+ mosralevel=1 hcim=3 hcih=1
+
+ iceman=20 hcimax=1.0e32
.model modn.2eage1 level=49
+lmin=0.06u lmax=0.1u wmin=0.3u wmax=0.5u vth0=0.62 u0=0.064
+ mosralevel=1 hcim=3 hcih=1
+
+ hcimin=1 hcimax=20
.model modn.2eage2 level=49
+lmin=0.06u lmax=0.1u wmin=0.3u wmax=0.5u vth0=0.64 u0=0.062
+ mosralevel=1 hcim=3 hcih=1
+
+ hcimin=20 hcimax=1.0e32

The post-stress simulation is specified by the HSIMMOSRASIM=1.

The hci_eage transistor values from the fresh simulation are specified in the
age0/hsim.eageba file. hci_eage values will be converted to the corresponding
values for the user-specified value of 6.3e7 seconds; approximately 2 years.
HSIMplus® Reference Manual 141
C-2009.06

Chapter 6: MOSFET Reliability Analysis (MOSRA)
Overview of the Unified MOSRA Solution
Associated Transistors Using the Degraded Model

If we assume that the converted value of HCI_EAGE for x1.m1 is 15, then
transistor x1.m1 will be linked to the modn.1eage1 model for the degraded
simulation. If we also assume that the converted value of HCI_eage for x2.m1
is 25, then transistor x2.m1 will be linked to the modn.2eage2 model for the
degraded simulation. p-MOSFET transistors x1.m2 and x2.m2 will still be
linked to the modp model.

Overview of the Unified MOSRA Solution

HSIMplus and HSPICE introduced two unified MOSRA solutions for HCI and
NBTI analysis:
■ Unified built-in MOSRA equations

The same MOSRA model equations are shared between HSIMplus and
HSPICE. The device threshold voltage and mobility are the two degradation
monitoring parameters.

■ Unified customized MOSRA equations

The compiled customized MOSRA model equations in C-source can be
shared and dynamically linked to HSIMplus and HSPICE at runtime. The
common set of API functions is shared by HSIMplus and HSPICE.

Figure 12 shows an overview of the MOSRA unified simulation flow.
142 HSIMplus® Reference Manual
C-2009.06

Chapter 6: MOSFET Reliability Analysis (MOSRA)
Overview of the Unified MOSRA Solution
Figure 12 Simulation Overview

All the HSIMplus existing MOSRA simulation control parameters listed in the
Simulation Control Parameters section are supported in the unified MOSRA
flow. In addition, HSPICE MOSRA syntax is also supported.

Note:

For more about the MOSRA flow, see the HSPICE User Guide: Simulation
and Analysis, HSPICE MOSFET Model Reliability Analysis (MOSRA)
chapter.
HSIMplus® Reference Manual 143
C-2009.06

Chapter 6: MOSFET Reliability Analysis (MOSRA)
Overview of the Unified MOSRA Solution
To set up the unified MOSRA flow, specify the following parameter and option:

HSIMUNIFIEDMOSRA

This command selects the unified built-in MOSRA equations or the MOSRA
analysis using the following syntax:

.param HSIMUNIFIEDMOSRA=<0|1>

0

Uses the built-n MOSRA equations (the default).

1

Uses the unified HSIMplus and HSPICE MOSRA equations.

Using Fresh and Post-Stress Simulation Models

To run the built-in MOSRA flow, define the model level as level=1. For
example:

.model pch_age mosra level=1

After specifying the MOSRA model card, use .appendmodel to append
MOSRA parameters to the model card. For example:

.appendmodel pch_age mosra pch pmos

During the post-stress simulation, HSIMplus MOSRA automatically includes the
changes from device stress effect based on the model parameter degradations
or the aging of the device (.eagba file). No other model card is needed.

Output Files for Fresh and Post-Stress Simulations

For the fresh simulation, the default HSIMplus output file, hsim_fresh.log
and the waveform output file are created. HSIMplus also output an
hsim_post.log file for post-stress simulation. In addition, .radeg and
.eageba files are created. The .radeg file contains the aging information for
the devices defined in HSIMAGEINGINST. For example:
144 HSIMplus® Reference Manual
C-2009.06

Chapter 6: MOSFET Reliability Analysis (MOSRA)
Running the MOSRA Flow
x2.m2
Device Type: PMOS
L = 9.0000E-08
W = 4.0000E-05
Bias Direction: bi-direction
DegFP = 0.1
dvth = 1.469055E-01
mulu0 = 100.000%

The .eageba file is the electron age back-annotation file from a fresh
simulation for post-stress simulation. For example:

.hsimparam inst=x2.m2 hsimagemodel=pch hsimmosra_dvt =
1.469055E-01
.hsimmosra_mulu0 = 1.000000E+00

API Access

HSIMplus MOSRA allows the custom HCI and NBTI equations using a common
set of modeling APIs with HSPICE. The custom models are implemented in the
C language. For HSIMplus to link to the compiled library at runtime, set the
environment variable setenv hspice_mosra_models to point to the
compiled library. For example:

setenv hspice_mosra_models /home/sim/lib

The supported platforms are Solaris 32/64 bit, Linux 32 bit, and AMD 64 bit.

Running the MOSRA Flow

The unified flow supports fresh and post-stress simulations. Both phases can
run in one simulation or in two separate runs.

Running a MOSRA Example with Built-In Equations

The following example shows a MOS NBTI reliability simulation using a unified
built-in model on an inverter chain.
HSIMplus® Reference Manual 145
C-2009.06

Chapter 6: MOSFET Reliability Analysis (MOSRA)
Running the MOSRA Flow
* netlist for mosra simulation with degradation model card
vdd vdd 0 1.5
vin 1 0 pwl 0n 0v 1n 0v 1.01n 1.5 2n 1.5 2.01n 0 R
.subckt inv in out vdd width=0.2u
m1 out in 0 0 nch w=width l=0.09u as=4e-14 ad=4e-14 ps=1.0u pd=1.0u
m2 out in vdd vdd pch w='2*width' l=0.09u as=4e-14 ad=4e-14 ps=1.0u
pd=1.0u
.ends

x1 1 2 vdd inv width=10u
x2 2 3 vdd inv width=20u
cload 3 0 1p
.tran 0.1n 1u
.print tran v(1) v(3)
.PARAM HSIMAGINGINST='*'
.param hsimreltotaltime=6.3e+7
.param hsimunifiedmosra=1

.model nch nmos level=54 version=4.5

.model pch pmos level=54 version=4.5

.model nbti_p mosra level=1
+tit0 = 5e-7 titfd = 7.5e-10 tittd = 1.45e-20
+tn = 0.25
.appendmodel nbti_p mosra pch pmos
.end

After the MOSRA fresh and post-stress simulations run, check v(3) on the
timing shift by comparing waveforms.
146 HSIMplus® Reference Manual
C-2009.06

Chapter 6: MOSFET Reliability Analysis (MOSRA)
Correlating the MOSRA Output Files with HSPICE
Running a MOSRA API Example
This section uses a MOSRA API netlist example to run the unified flow.

* test circuit using demo MOSRA API model
.option mraapi=1
.model n1 nmos level=54
+version = 4.4
+vth0 = 0.25
.model p1 pmos level=54
+version = 4.4
+vth0 = -0.25
* mos reliability model card, MRA demo models
.model n1_ra mosra level=101
+ rela=1e-4 relb=2 reln=0.25
.model p1_ra mosra level=101
+ rela=1e-4 relb=2 reln=0.25
* appendmodel command
.appendmodel n1_ra mosra n1 nmos
.appendmodel p1_ra mosra p1 pmos
.mosra reltotaltime = 3.1536e+8 aginginst = ‘*’
.tran 1n 100n
.print tran v(*)
.end

Correlating the MOSRA Output Files with HSPICE

To correlate the results between HSIMplus and HSPICE simulations, run the
test.sp netlist in HSPICE. Below are the fresh and post-stress sample timing
outputs from the HSPICE runs.

HSPICE Fresh Simulation Results

HSPICE reports the signal delays from fresh simulation in hspice.mt0:
$DATA1 SOURCE='HSPICE' VERSION='A-2007.12'
.TITLE '* test circuit using demo mosra api model'
 delayr delayf periodr periodf
 temper alter#
 1.236e-10 1.236e-10 2.060e-11 2.059e-11
 27.0000 1.0000
HSIMplus® Reference Manual 147
C-2009.06

Chapter 6: MOSFET Reliability Analysis (MOSRA)
Correlating the MOSRA Output Files with HSPICE
HSPICE Post-Stress Simulation Results

The delays after post-stress simulation are reported in hspice.mt1:

$DATA1 SOURCE='HSPICE' VERSION='A-2007.12'
.TITLE '* test circuit using demo mosra api model'
 delayr delayf periodr periodf
temper alter#
 1.280e-10 1.281e-10 2.134e-11 2.134e-11

 27.0000 1.0000

The HSIMplus MOSRA timing shift after post-stress simulation is within a 2%
difference of HSPICE MOSRA simulation.
148 HSIMplus® Reference Manual
C-2009.06

7

7HSIMplus-PrimeRail Interface

This chapter describes the flow, parameters, and available options for using the
HSIMplus-PrimeRail interface.

HSIMplus PrimeRail Flow

The HSIMplus-PrimeRail flow allows you to perform top-level rail analysis using
HSIMplus to simulate transistor-level blocks within the design. This flow
accurately solves for all necessary dynamic data (currents, voltages), which is
crucial during top-level power and rail analysis.

As shown in Figure 13, PrimeRail relies upon HSIMplus for the transistor-level
dynamic simulation results prior to solving the global matrix for top-level
analysis.

The transistor-level designs are simulated using HSIM, which solves for all
device currents. These dynamic results are then fed back to PrimeRail's top-
level matrix solver for accurate top-level power and rail analysis results.
PrimeRail gives users the capability of analyzing designs containing mixed
gate- and transistor-level blocks. PrimeRail's transistor-level analysis portion
relies on HSIMplus for transistor-level SPICE simulation and Star-RCXT™ for
transistor-level device and parasitic extraction.

Chapter 7: HSIMplus-PrimeRail Interface
HSIMplus PrimeRail Flow
Figure 13 HSIMplus-PrimeRail Integration Flow

HSIM Simulation

The HSIM simulation portion of this flow follows that of a typical HSIM-RA
(Reliability Analysis) Phase I simulation with two additional parameters
activating the PrimeRail flow: HSIMPRIMERAIL and HSIMPRIMERAILTCL.

T x -
le v

T x -
le v

T x -
le v

T x - le v e l
B lo c k

G a te -
le v e l

B lo c k

G a te -
le v e l

B lo c k

G a te -
le v e l

B lo c k

G a te -
le v e l

B lo c k

G a t
e -

T x -G a te -

P r im e R a il

T x - le v e l
B lo c k T x - le v e l

B lo c k T x - le v e l
B lo c k T x - le v e l

B lo c k

H S IM p lu s T x - le v e l

B lo c k

C F G

* . iv e c

T o p -
L e v e l

A n a ly s is

H S IM In te g ra t io n

T o p - le v e l
150 HSIMplus® Reference Manual
C-2009.06

Chapter 7: HSIMplus-PrimeRail Interface
HSIMplus PrimeRail Flow
The IR drop analysis flow supports a choice of use models, depending on
circuit size capacity that is required and accuracy/performance requirements.
These flows, as depicted in Figure 14, are:

1. Recommended: HSIM simulation with back-annotation, compression and
reduction of power/ground net parasitics. Post-Layout Acceleration (PLX) is
optional.

2. Complete (Optional): HSIM simulation with HSIMplus PWRA and PLX in
addition to the Recommended flow above.

3. Minimal: HSIM standalone simulation with no back-annotation,
compression or reduction of power/ground net parasitics. DLF files are
required for power nets whose currents are desired as they are not back-
annotated from the extracted DSPF netlist in this flow.

Figure 14 IR Drop Analysis Flows for the HSIMplus-PrimeRail Interface

In the Preferred flow, for optimum accuracy and performance with power/
ground bus parasitics, the following files must be input to HSIM:
■ Ideal input SPICE netlist(s) (schematic netlist)
■ Extracted parasitic netlist(s) (DSPF) containing both power and signal nets
HSIMplus® Reference Manual 151
C-2009.06

Chapter 7: HSIMplus-PrimeRail Interface
HSIMplus PrimeRail Flow
■ SPICE device models / technology file
■ Configuration files, including the HSIM CFG and the IVEC CFG files
■ Input vector stimulus / simulation vectors
■ Device List file (DLF) — this file is optional

By default, HSIM back-annotates all devices and nets found in the DSPF netlist
and collects all currents from devices connected to the nets defined in the IVEC
CFG file. In the event that there are no extracted parasitic (DSPF) netlists
available, PrimeRail supplies HSIM with a Device List File (DLF) containing all
devices connected to a particular net of which currents are to be collected.

Figure 15 HSIM Simulation Flow

Note:

HSIM parameters can be defined in the HSIM CFG file, the input SPICE
deck read into HSIM, or in any file that is included (.inc) within the input
SPICE deck. HSIM also reserves the hsim.ini file for defining any HSIM
parameters to be used during a simulation.

In addition to all of the HSIM parameters used in the HSIM CFG file, the
parameters HSIMPRIMERAIL and HSIMPRIMERAILTCL must also be
included to activate HSIM in the PrimeRail flow.

HSIMplus

IVEC
CFG

HSIM CFG
.param

 HsimPrimeRail

Input
Vectors

Ideal
Netlist

DSPF

IVEC
File

Transistor-level
dynamic simulation

Current vector
waveform(s)

DLF

SPICE
Process
Models

Simulation
Results
152 HSIMplus® Reference Manual
C-2009.06

Chapter 7: HSIMplus-PrimeRail Interface
HSIMplus PrimeRail Flow
HSIMPRIMERAIL
The HSIMPRIMERAIL parameter is used to indicate whether or not the
HSIMplus Primerail flow is activated.

Syntax
.param HSIMPRIMERAIL=0|1

HSIMPRIMERAILTCL
The HSIMPRIMERAILTCL is used to specify the name of the current vector
waveform (IVEC) TCL configuration file that is generated by HSIMplus and
subsequently passed to PrimeRail.

Syntax
.param HSIMPRIMERAILTCL=<ivec_cfg_tcl_filename>

Combining HSIMplus-PrimeRail Interface with PWRA Options

The preferred flow takes advantage of the capabilities in the HSIMplus Power
Net Reliability Analysis (PWRA) option. The following scenarios depict the
expected behavior of the flow depending on which combination of HSIM RA
parameters are used in conjunction with the PrimeRail interface.

1. HSIMplus-PrimeRail Interface with Power Net Reduction
(HSIMSPFPWNET) and no PWRA

In this scenario, the CFG file contains the HSIMSPFPWNET parameter,
which controls RC reduction on power nets. HSIM reduces the RC network
of power nets but will not run Reliability Analysis. This command requires
the hsim-pra license FEATURE but will not run Reliability Analysis unless
HSIMPWRA is set.

Here, if a net is defined in the SPF netlist, there is no need for a DLF file to
be supplied for this net. HSIM back-annotates the corresponding parasitics
from the SPF file and performs RC reduction to the degree set in the
HSIMSPFPWNET parameter. All currents from devices connected to this
net will be stored and written to the *.ivec file.

If a net is defined in the -net section of the IVEC TCLCFG file, but it is not
present in the SPF netlist, a DLF file for that net is required for HSIM to know
which device currents to store.
HSIMplus® Reference Manual 153
C-2009.06

Chapter 7: HSIMplus-PrimeRail Interface
HSIMplus PrimeRail Flow
This is the recommend flow as the design is simulated with the power net in
place giving more accurate current results in the resulting *.ivec file.

For more information on the HSIMSPFPWNET parameter, refer to
HSIMSPFPWNET on page 36.

2. HSIMplus-PrimeRail Interface with HSIM-PWRA (HSIMSPFPWNET)
Optional

This flow is similar to the recommended flow described above, with the
addition of the HSIMPWRA parameter. This parameter is set in the HSIM
CFG file and it turns on the HSIMplus Power Net Reliability option. You also
have the choice of running with or without power net RC reduction controlled
by the HSIMSPFPWNET parameter.

If a net is defined in the IVEC CFG TCL file but is not found in the SPF
netlist, a DLF file is required for that net so HSIM knows which device
currents to store for devices connected to the net. Otherwise, if a net exists
in the SPF netlist and is defined in the TCL file, HSIM back-annotates all
parasitics, performs RC reduction if set by you, and stores currents of all of
the devices connected to the net.

In addition, HSIM also writes out the corresponding HSIM-RA files (*.ranet,
*rasim, *.npf, etc.) expected after Phase I of RA simulation. These files are
required if the customer has interest in running the HSIM Re-use Simulation
Results Option (Phase I RA Results Re-use) described on page 155.

Note:

Phase II of RA simulation is not performed if both of the HSIMPWRA
and HSIMPRIMERAIL parameters are set in the HSIM CFG file.

For more information on the HSIMPWRA parameter, refer to HSIMPWRA
on page 45

3. HSIMplus-PrimeRail Interface with no HSIM-RA Parameters or no HSIM-
PRA License Available

In this case, no hsim-pra license is available or the setup does not include
either HSIMPWRA or HSIMSPFPWNET parameters.

When there are not any HSIM PWRA parameters set in the HSIM CFG file,
a Device List File (DLF) is required as an expected input file. HSIM reads in
and back-annotates all of the nets found within the extracted SPF netlist,
except those nets that are defined in the -net section of the IVEC CFG TCL
154 HSIMplus® Reference Manual
C-2009.06

Chapter 7: HSIMplus-PrimeRail Interface
HSIMplus PrimeRail Flow
file. A DLF file must be supplied for each of those nets. HSIM takes the
information from the DLF file and stores currents from all of the devices
connected to the net as described in the DLF file.

If a net happens to be defined in both the DLF and SPF files, HSIM does not
back-annotate the net from the SPF data and runs the simulation as if no
parasitics are connected to the net, instead relying on the information from
the DLF file. This is similar to running HSIM-PWRA with an ideal power
network (HSIMSPFPWNET=5).

The *.ivec file generated in this case only contains current information from
the nets defined in the IVEC CFG TCL file and the respective devices found
in the corresponding DLF files.

HSIM Re-use Simulation Results Option (Phase I RA Results
Re-use)

The HSIM simulation portion of the HSIMplus-PrimeRail flow is similar to that of
the 1st phase of HSIMplus PWRA. After Phase I of reliability analysis is
completed, all of the necessary dynamic simulation results are written to files
(*.ranet, *.rasim, *.npf), which are later used during Phase II RA.

When HSIMplus PWRA has been previously run on a particular transistor-level
design, and the dynamic simulation results are available, re-use is desirable. In
this verification flow, top-level power and rail analysis using PrimeRail is
desired, but rather than re-running the transistor-level simulation portion of the
flow using HSIM, the re-use option can be chosen. This option simply converts
the HSIMplus PWRA Phase I results into *.ivec file syntax, which PrimeRail
understands. The flow is shown in Figure 16 is different than the other HSIM/
PrimeRail flows, in that the re-use flow is a command line IVEC generation run.
Please see usage below for more detail.

This flow is ideal if you use HSIM-RA for block-level reliability analysis and then
scale-up to perform rail analysis on the top-level. Rather than rerunning the
block-level transistor simulation, you can re-use your existing HSIM-RA results
and ultimately feed the resulting *.ivec files into PrimeRail.
HSIMplus® Reference Manual 155
C-2009.06

Chapter 7: HSIMplus-PrimeRail Interface
IVEC CFG TCL File Syntax
Figure 16 HSIMplus-PrimeRail PWRA Re-use Option

To run HSIM with the PWRA re-use option, use the following syntax:

hsim -primerail <ivec_cfg_file> -i <rasim_prefix> -o
<output_pfx>

IVEC CFG TCL File Syntax

The IVEC CFG TCL file read in by HSIMPRIMERAILTCL supports the following
syntax:

time -start <start_time> -stop <end_time> -tau
<ivec_step_size>

net -name <net_name> -dlf <DLF_filename>
input -case <0|1>
output -pres <1|10> -ctype <max|avg> -compress <0|1|2>

HSIMplus *.npf

*.ranet

*.r

IVEC
CFG

IVEC
File

RA Phase 1
Simulation results
156 HSIMplus® Reference Manual
C-2009.06

Chapter 7: HSIMplus-PrimeRail Interface
IVEC CFG TCL File Syntax
Syntax Definitions
time: (all times in ns)

start - transient start time of current information written to *.ivec file (default:
0ns)

stop - transient stop time of current information written to *.ivec file (default:
stop time set by .tran statement)

tau - step size of currents written to *.ivec file (default: HSIMRATAU or 1ns)

net:

name - power net(s) to be analyzed (VDD, VSS, etc.)

dlf - PG netlist of connected device nodes (Device List File)

input:

case - automatically adjust case sensitivity to HSIM settings during IVEC
generation. The possible values are 0 (case insensitive) and 1 (case
sensitive). The default is 0.

output:

pres - print resolution time unit: 1(default) = 1ps; 10 = 10ps

ctype - current type: max or avg (default)

compress - 0: no compression (default); 1:UNIX compress; 2:gzip

Note:

For the Recommended, Complete and Minimal flows HSIM, by default,
automatically adjusts all net names to match the case of the internal
database settings. This is to account for running with case sensitive netlists
in Spectre® format where case sensitivity is supported. The -case switch
within the IVEC TCL file is not necessary for these flows.

However, for the RA Re-use flow, HSIM does not recall the case settings
used during the simulation to generate the RA results. Therefore, you must
provide HSIM with the correct case switch in the input section of the IVEC
TCL file. By default, the switch is set to case insensitive (-case 0).

Example

An example of an IVEC CFG TCL file that is passed to the
HSIMPRIMERAILTCL parameter is provided below. The IVEC CFG TCL file
HSIMplus® Reference Manual 157
C-2009.06

Chapter 7: HSIMplus-PrimeRail Interface
IVEC CFG TCL File Syntax
can only contain one time and one output section but can contain several net
sections.

.param HSIMPRIMERAIL=1

.param HSIMPRIMERAILTCL=myfile.pr

myfile.pr:

time -start 0 -stop 50 -tau 0.02
net -name VDD
input -case 0
output -pres 1 -ctype avg -compress 1

The example file measures all average currents of devices connected to net
VDD, starting at time 0ns and ending at time 50ns with a time step of 20ps. The
resulting *.ivec file will be compressed using UNIX compression.

HSIMRATAU vs. IVEC tau

If HSIMPWRA=0 or is not defined, HSIM takes the value from IVEC TCL -tau
and uses it for the simulation and generation of the *.ivec file. HSIM does not
print any warning message in this case.

If HSIMPWRA=1, HSIM takes the value from the HSIMRATAU parameter
(default 1ns) and uses this value for the simulation and generation of the RA
output files. If the value of IVEC TCL -tau is smaller than HSIMRATAU, HSIM
may not be able to provide the desired granularity in the *.ivec file. In this case
the value of .ivec tau is increased to equal HSIMRATAU and a warning
message is printed.
158 HSIMplus® Reference Manual
C-2009.06

8
8CircuitCheck

Provides information on the HSIMplus CircuitCheck (CCK) option and it’s
capabilities including: reporting potential circuit problems during the early stage
of simulation, detecting incorrect input data or tool usage, analyzing latch
condition before simulation starts, monitoring node voltages, generating reports,
comparing waveforms to determine when and why a circuit node is triggered to
change its value, computing static rise and fall delays to transistor gates, and
analyzing crosstalk noise voltage caused by coupling capacitors.

Overview of CircuitCheck (CCK) Option

The CircuitCheck (CCK) option detects design problems that may lead to
lengthy simulation times, and which automates circuit debugging and
diagnostics checks. The capabilities include:
■ For static DC paths, visual active circuit debugging (ACD) by designated DC

path number through the supplied ACD browser.
■ Reporting potential problems in the circuit before running simulation.
■ Scanning the netlist for geometric and electrical parameter errors.
■ Identifying uninitialized latches before simulation starts.
■ Monitoring node voltages during a simulation and generate a report when

they detect the constraints set by user.
■ Tracing circuit paths to find the source of state changes.
■ Computing the static rise and fall delays to transistor gates.
■ Analyzing the crosstalk noise voltage caused by coupling capacitors.
■ Locating leakage paths and monitor standby conditions.

The CircuitCheck commands are executed in different stages when running
HSIMplus and provide various reports, warning or error messages. Unless
HSIMplus® Reference Manual 159
C-2009.06

Chapter 8: CircuitCheck
CircuitCheck Command Usage
otherwise specified, the CircuitCheck commands are invoked by adding a list of
CircuitCheck commands in a single file. The CircuitCheck command file must
be specified in the HSIM input file using the HsimCktCheck parameter as
illustrated below:

.param hsimCktCheck=cck_cmd_file

In this example, cck_cmd_file is the name of the CircuitCheck command file.

CircuitCheck Tutorial

For a comprehensive CircuitCheck Tutorial, see the CircuitCheck Tutorial on
page 351.

Conventions

The following conventions are used for CircuitCheck commands and
processing:
■ The terms VDD (voltage source) and GND (ground) are used as generic

terms. CircuitCheck does not look for VDD and GND, but rather the values
they represent.

■ In CircuitCheck only, a back slash character (\) indicates a continuation of
the code onto the next line. When entering this code string, the back slash
is omitted.

■ The /* and */ comment delimiters are used in the CircuitCheck command
language. The beginning is indicated by a /* and the end of a comment is
indicated by a */. CircuitCheck treats everything between the /* and */
delimiters as part of the comment.

CircuitCheck Command Usage

The CircuitCheck commands provide a wide array of functions designed to
support various simulation, processing, and testing options. The CircuitCheck
commands have been developed in functional groups to provide various types
of testing. Some of the commands are expected to be used in a group, and
some provide stand-alone functions. The commands are presented in the
following categories and in the following sections.
160 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
CircuitCheck Command Usage
■ Parametric Checks on page 162
■ Design and Electrical Rules Check on page 172
■ Digital Logic and Memory Diagnostics on page 234
■ Timing Checks on page 250
■ Dynamic Device Voltage Check on page 266
■ Signal Integrity Checks on page 279
■ Leakage Current Detection on page 296
■ CircuitCheck Utilities on page 311

The following tables list the commands most likely to be used for the listed
applications. The commands listed in the tables are not always exclusive to
that application and may be used for a variety of applications.

Design and Electrical Rules Check

cckAntGate on page 231 cckCapV on page 180

cckDiode on page 188 cckDioV on page 180

cckElemI on page 191 cckMatchSub on page 192

cckExiPath on page 192 cckFloatGateIsrc on page 194

cckMosV on page 173 cckNmosG_gt_DS on page 200

cckNmosB_gt_DS on page 196 cckNmosNodeToVdd on page 205

cckNodeVoltage on page 206 cckPathToVsrc on page 208

cckPmosB_lt_DS on page 213 cckPmosG_lt_DS on page 217

cckPmosNodeToGnd on page 223 cckResV on page 180

cckSOA on page 225 cckSubstrate on page 228

cckAntGate on page 231 tcheck mosv on page 266a

a. This command and its parameters are used for Dynamic Device Voltage Check
during simulation .
HSIMplus® Reference Manual 161
C-2009.06

Chapter 8: CircuitCheck
CircuitCheck Command Usage
Note:

For more information on parametric checks, see Design and Electrical
Rules Check on page 172.

Note:

For more information on signal integrity checks, see Digital Logic and
Memory Diagnostics on page 234.

Note:

For more information on leakage current detection, see Timing Checks on
page 250.

Digital Logic and Memory Diagnostics

cckFlashcore on page 235 cckLatchUnInit on page 236

cckLatchInElem on page 238

cckLatchSkipElem on page 238a

a. These are sub-commands for cckLatchUnInit

cckMaxStackUpNmos on page 239

cckMaxStackUpPmos on page 239 cckMaxStuckAt on page 240

cckToggleCount on page 241 ntrig on page 242

intrig on page 247

Timing Checks

cckMaxNmosToVdd on page 251 cckMaxPmosToGnd on page 252

cckMaxStackUpNmos on page 239 cckMaxStackUpPmos on page 239

cckMeasPathDelay on page 253 cckNodeMaxRF on page 255

cckParasiticRC on page 170 cckRCDlyPath on page 257a

a. See cckRCDlyPath for a description of the group of commands needed to
support this function.

Parametric Checks

cckParam on page 162 cckParasiticRC on page 170
162 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
CircuitCheck Command Usage
Note:

For more information on signal integrity checks, see Signal Integrity Checks
on page 279.

Note:

For more information on parametric checks, see Parametric Checks on
page 162.

Note:

For more information on leakage current detection, see Leakage Current
Detection on page 296.

Signal Integrity Checks

cckDXtalk on page 280a

a. This is the Dynamic Crosstalk command.

cckParasiticRC on page 170

cckStaticXtalk_GroupCmd on page 287b

b. This is a link to a series of commands that are used as a group to test Static
Crosstalk.

Leakage Current Detection

cckAnalogPDown on page 305 cckAnalogPDownIth on page 305

cckElemI on page 191 cckExiPath on page 192

cckMaxStaticLeak on page 297 cckOffLeakI on page 298

cckStaticHZNode on page 308 cckStaticDCPath on page 310

CircuitCheck Utilities

cckBasic on page 311 cckCompareOp on page 312

cckMatchSub on page 314 cckPatternMatch on page 316

cckPatternConstraint on page 317 cckSetMosDir on page 259

cckTgPair on page 319
HSIMplus® Reference Manual 163
C-2009.06

Chapter 8: CircuitCheck
CircuitCheck Command Usage
Note:

For more information on CircuitCheck utilities, see CircuitCheck Utilities on
page 338.

Table 1 lists commonly used commands for basic design, electrical
parameters, and logic check as sorted by analysis type.

Table 1 Basic Design, Electrical Parameters, and Logic Check

Static Analysis Dynamic Analysis Multiple Mode

cckAntGate cckElemI cckDiode

cckCapV cckExiPath cckSubstrate

cckDioV cckFlashCore

cckFloatGateIsrc cckLatchInElem

cckMatchSub cckLatchSkipElem

cckMaxPmosToGnd cckLatchUninit

cckMaxStackUpNmos cckMeasPathDelay

cckMaxStackUpPmos cckNodeVoltage

cckMaxStuckAt cckSOA

cckMosV cckToggleCount

cckNmosB_gt_DS Intrig

cckNmosG_gt_DS Ntrig

cckNmosNodeToVdd Tcheck mosv

cckParasiticRC

cckPathToVsrc

cckPmosB_lt_DS

CckPmosG_lt_DS

cckPmosNodeToGnd
164 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
CircuitCheck Command Usage
Table 2 lists commonly used commands for device dependent characteristics,
as sorted by analysis type.

Specifying Circuit Checks in Command Files

Circuit Check allows you to specify static or dynamic check commands to
conduct specific analyses throughout the simulation. To use this capability, you
need to group all the commands in a file and add the following command in the
netlist:

.param hsimCktCheck=<cck_cmd_filename>

cckRCDlypath

cckRCDlypath

ckMaxNmosToVdd

Table 2 Device Dependent Characteristics

Static Dynamic

cckBasic cckAnalogPdown

cckMaxStaticLeak cckAnalogPDownIth

cckParam cckCompareOp

cckparasiticRC cckDXtalk

cckPattern*** cckExiPath

cckPatternMatch cckOffLeakI

cckSetMosDir

cckStaticXtalk_GroupC

cckTgPair

Table 1 Basic Design, Electrical Parameters, and Logic Check

Static Analysis Dynamic Analysis Multiple Mode
HSIMplus® Reference Manual 165
C-2009.06

Chapter 8: CircuitCheck
CircuitCheck Command Usage
For example, suppose you want to conduct a CCK static floating gate check.
Create a cck.cmd CCK command file and add the following content to the file:

cckFloatGateIsrc 1

Then in the netlist you also need to add a statement for CCK command file
specification:

.param hsimCktCheck=cck.cmd

In addition to the static and dynamic CCK commands, there is a special group
of commands that conduct dynamic device voltage checks (see the Dynamic
Device Voltage Check on page 294 for details). You must group all the related
dynamic device voltage check commands in a command file and specify it in
the netlist with the following statement:

.param hsimDeviceV=<deviceV_cmd_filename>

For example, suppose you want to conduct a CCK dynamic mosv check.
Create a deviceV.cmdCCK command file with the following content in the file:

.tcheck test1 mosv model=* lvgs=-0.6

Then in the netlist you also need to add a statement for CCK command file
specification:

.param hsimDeviceV=deviceV.cmd

Running Circuit Check Operations without DC Initialization and
Transient Simulation

Most of the static CCK commands conduct analyses are based on netlist
connectivity data and do not require DC initialization or transient simulation
results. By default, HSIMplus always conducts full DC initialization and transient
simulation whether CCK commands are used or not. However, sometimes you
only want to focus on static CCK checks, so a cckNoSimu control parameter
(described in the next section) is available to allow HSIMplus to skip the DC
initialization and transient steps.

cckNoSimu
Accelerates the static CCK commands by skipping DC initialization and
transient simulation.
166 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
CircuitCheck Command Usage
Syntax
cckNoSimu [0|1] level=[0|1|2]

Description
Lets you run static CCK commands without running DC initialization or
transient simulation first.

Arguments

Examples
The following CCK command file conducts static floating gate analysis based
on the netlist connectivity database and skips transient simulation:

cckNoSimu 1

cckFloatGateIsrc 1

or

cckNoSimu level=1

cckFloatGateIsrc 1

The following CCK command file conducts static floating gate analysis based
on the netlist connectivity database and goes directly to the end of the
simulation process by skipping DC initialization, transient simulation, and
partitioning (building the circuit database).

cckNoSimu level=2

cckFloatGateIsrc 1

Note:

The cckNoSimu command has no effect with the cckStaticXTalk and
cckRCDlyPath static CCK commands, which conduct static crosstalk glitch
analysis and static path delay analysis, respectively. If you use one or both

Argument Description

level=0 Runs both DC initialization and transient simulation
(same as 0 .)

level=1 Disables transient simulation (same as 1.)

level=2 Disables DC initialization, transient simulation, and
partitioning (building the circuit database).
HSIMplus® Reference Manual 167
C-2009.06

Chapter 8: CircuitCheck
Passing Parameters Into CircuitCheck Commands
commands in the CCK command file, HSIMplus automatically disables
transient simulation even without the cckNosimu command. Do not use the
cckStaticXTalk and cckRCDlyPath commands with other static CCK
commands to try to save memory and runtime. For example:

cckNoSimu level=2

cckFloatGateIsrc 1

cckRCDlyPath 1

Disables transient simulation only because cckRCDlyPath is specified, but
still runs DC initialization and builds the circuit database. so these steps do
not achieve the original goal to save memory and runtime.

You need to properly specify cckNoSimu to avoid design flow problems. For
example, if you conduct a static floating gate check and dynamic device
voltage check at the same and include cckNoSimu, HSIMplus runs but does
not perform a dynamic check because DC initialization and transient
simulation are disabled.

Passing Parameters Into CircuitCheck Commands

To provide the freedom to organize HSIMplus inputs and CircuitCheck
command files, the parameter-passing capabilities in both HSIMplus and
CircuitCheck are provided in the CircuitCheck Command groups.

Parameter values are passed into CircuitCheck command files by specifying
them in either the input netlist file or CircuitCheck command files.

Parameters specified in the netlist or CircuitCheck command file are subject to
the following constraints:

1. The .param statement in the HSIM input netlist or the CircuitCheck
Command file must follow spice format; i.e., a .param is only assigned a
value or an expression. However, string is not allowed in a parameter
specification.

2. If the same parameter is specified in the netlist file, via .param
HSIMCKTCHECK=cck_cmd_File, or via .param
HSIMDEVICEV=dev_v_file, there are priority rules for Circuit Check to pick
the values:

• In non-post-process cases:
168 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Passing Parameters Into CircuitCheck Commands
.param in HSIM netlist > .param HSIMCKTCHECK=cck_cmd_File >

.param HSIMDEVICEV=dev_v_file

• In post-process cases:

.param in HSIM netlist > .param HSIMDEVICEV=dev_v_file > .param
HSIMCKTCHECK=cck_cmd_File

When the following parameter definitions are added into the HSIM input file, the
CircuitCheck command files use these values and not the CircuitCheck
command values.

Example 31 Parameter Definitions
.param min=1.0
.param base='min + 0.5'
.param max='2.0*min + base'
.param duration='3*(-min+max)'
.param HsimCktCheck=CircuitCheck.cck

Where min is an assigned value, and base, max, and duration are all given
with an expression. These expressions are converted to values by the HSIM
parser.

CircuitCheck.cck

In this CircuitCheck command file example, the parameters vg and vs are
defined using the parameter values passed from the netlist file. For example:

Example 32 CircuitCheck Command File
.param vg=base+min
.param vs=-min+2*max
cckMosv tag model=p vhth=min lvd=base uvd=max
cond=‘(uvg<vg || lvd>=vs)’

If the same parameter is specified in multiple places, priority rules of
parameter-passing apply, and a Warning message is issued in the log file, such
as:

WARNING '.param vdd1' has already been defined, ignore!!

Note:

In the cond expression, combinations of parameters such as base+min,
-min+2*max are also supported.

In the above example, the parameter definitions are specified in either
netlist file or CircuitCheck command file.
HSIMplus® Reference Manual 169
C-2009.06

Chapter 8: CircuitCheck
Parametric Checks
Include Statements

The include statement can be used to include files into CircuitCheck command
files. Multiple include statements are allowed in a CircuitCheck command file.
For example:

/* file: cck_cmd */
include cck_cmd1
cckPmosG_lt_DS

/* file: cck_cmd1 */
cckNmosG_gt_DS
include cck_cmd2

/* file: cck_cmd2 */
cckMosv plv_vgs1 model=plv cond='lvg-uvs < -1.7' rpttrace=1

Parametric Checks

These CircuitCheck commands are designed to help check min/max device
dimensions, temperature, post-layout parasitic effects, etc.

Check Electrical Parameters

cckParam
The cckParam command checks for:
■ Normal element size
■ Correct model usage
■ Reasonable temperature usage

CircuitCheck commands are executed in different stages when running HSIM.
Figure 15 graphically illustrates the high and low limits where warning or error
messages are generated and when required, CircuitCheck stops. When data
being checked exceeds CircuitCheck’s soft upper bound a warning message is
issued. As the data abnormality exceeds CircuitCheck’s absolute upper bound,
an error message is generated and CircuitCheck stops.
170 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Parametric Checks
Figure 17 CircuitCheck Checking Methodology

When a very large MOSFET width is detected such as 1 meter which is above
the absolute upper bound, it will be considered an error and simulation will
stop. If the width appears to be larger than ordinary, but has not reached the
absolute upper bound, a warning message will be generated and checking will
continue.

CircuitCheck checks the following device parameters:

<erMaxCap=v> <waMaxCap=v>

<erMaxMosW=v> <waMaxMosW=v>

<erMinMosW=v> <waMinMosW=v>

<erMaxMosL=v> <waMaxMosL=v>

<erMinMosL=v> <waMinMosL=v>

<erMaxMosAD=v> <waMaxMosAD=v>

<erMaxMosAS=v> <waMaxMosAS=v>

<erMaxMosPD=v> <waMaxMosPD=v>

<erMaxMosPS=v> <waMaxMosPS=v>

<erMaxMosTox=v> <waMaxMosTox=v>

<erMinMosTox=v> <waMinMosTox=v>

<erMaxTemp=v> <waMaxTemp=v>

<erMinTemp=v> <waMinTemp=v>

absolute
lower
bound

soft
lower
bound

soft
upper
bound

absolute
upper
bound

issue
error &

stop

issue
error &

stop
issue

warning
issue

warning
HSIMplus® Reference Manual 171
C-2009.06

Chapter 8: CircuitCheck
Parametric Checks
Note:

Resistor size is checked by using the hsimrmin and hsimrmax commands.

CircuitCheck parameters are described in the following sections.

Capacitor Values
Cap (Capacitor) has two bounds:
■ erMaxCap: Absolute upper bound
■ waMaxCap: Soft-upper bound

The results of a capacitor value causes one of the following to occur:
■ HSIM stops: If a capacitor exceeds the absolute upper bound.
■ Prints warning message: If the capacitor is larger than the soft-upper bound,

but not the absolute upper bound.

The error message and warning message will be reported in hsim.cck.

MOSFET Width
There are four bounds associated with MOSFET width:
■ erMaxMosW: Absolute upper bound
■ waMaxMosW: Soft-upper bound

<erMaxDiodeW=v> <waMaxDiodeW=v>

<erMaxDiodeL=v> <waMaxDiodeL=v>

<erMaxDiodeA=v> <waMaxDiodeA=v>

<erMinDiodeW=v> <waMinDiodeW=v>

<erMinDiodeL=v> <waMinDiodeL=v>

<erMinDiodeA=v> <waMinDiodeA=v>

<erMinMfactor=v> <waMinMfactor=v>

<model=m>
172 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Parametric Checks
■ erMinMosW: Absolute lower bound
■ waMinMosW: Soft-lower bound

MOSFET Width: Upper Bounds If the width of a MOSFET is larger than
erMaxMosW, an ERROR message is reported and HSIM is stopped. If the
width is between waMaxMosW and erMaxMosW, a Warning message is
printed.

MOSFET Width: Lower Bounds If the width of a MOSFET is smaller than
erMinMosW, an ERROR message is reported and HSIM is stopped. If the
width of a MOSFET is between waMinMosW and erMinMosW, a Warning
message is printed.

MOSFET Length
MOSFET length has the following bounds:
■ erMaxMosL: Absolute upper bound
■ waMaxMosL: Soft-upper bound
■ erMinMosL: Absolute lower bound
■ waMinMosL: Soft-lower bound

MOSFET Length: Upper Bounds If MOSFET length exceeds erMaxMosL,
HSIM is stopped. If the length is between waMaxMosL and erMaxMosL, a
Warning message is printed.

MOSFET Length: Lower Bounds If the length of a MOSFET is smaller than
erMinMosL, HSIM is stopped. If the width of a MOSFET is between
waMinMosL and erMinMosL, a Warning message is printed.

MOSFET Drain/Source Area and Drain/Source Perimeter
MOSFET Drain Area has the following bounds:
■ erMaxMosAD: Absolute upper bound
■ waMaxMosAD: Soft-upper bound

MOSFET Source Area has the following bounds:
HSIMplus® Reference Manual 173
C-2009.06

Chapter 8: CircuitCheck
Parametric Checks
■ erMaxMosAS: Absolute upper bound
■ waMaxMosAS: Soft-upper bound

MOSFET Drain Perimeter has the following bounds:
■ erMaxMosPD: Absolute upper bound
■ waMaxMosPD: Soft-upper bound

MOSFET Source Perimeter has the following bounds:
■ erMaxMosPS: Absolute upper bound
■ waMaxMosPS: Soft-upper bound

MOSFET Gate Oxide Thickness
The MOSFET tox is checked. The upper and lower bounds are set to detect
design problems as follows:
■ erMaxMosTox: Absolute upper bound
■ waMaxMosTox: Soft-upper bound
■ erMinMosTox: Absolute lower bound
■ waMinMosTox: Soft-lower bound

Diode Width, Length, and Area
The twelve values associated with diode are:
■ erMaxDiodeW: Absolute upper bound for diode width
■ waMaxDiodeW: Soft upper bound for diode width
■ erMaxDiodeL: Absolute upper bound for diode length
■ waMaxDiodeL: Soft upper bound for diode length
■ erMaxDiodeA: Absolute upper bound for diode area
■ waMaxDiodeA: Soft upper bound for diode area
■ erMinDiodeW: Absolute lower bound for diode width
■ waMinDiodeW: Soft lower bound for diode width
■ erMinDiodeL: Absolute lower bound for diode length
■ waMinDiodeL: Soft lower bound for diode length
174 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Parametric Checks
■ erMinDiodeA: Absolute lower bound for diode area
■ waMinDiodeA: Soft lower bound for diode area

Simulation Run Temperature
Simulation run temperature is checked. The upper and lower bounds are set to
detect simulation problems as follows:
■ erMaxTemp: Absolute upper bound
■ waMaxTemp: Soft-upper bound
■ erMinTemp: Absolute lower bound
■ waMinTemp: Soft-lower bound

If the temperature exceeds the absolute upper bound defined as erMaxTemp,
HSIM is stopped.

Model
Allow different parameter values for different models. Each line contains all the
specific values for each individual model.

The default values are defined in the table below:

Table 3 Model Default Parameter Values

Default Value Measurement Unit

erMaxCap=0.001 units=F

waMaxCap=1.e-8 units=F. This value is 10000 pF

erMaxMosW=0.01 units=meter. This value is 10000 um.

waMaxMosW=0.001 units=meter. This amounts to 1000 um.

erMinMosW=1.e-8 units=meter. This amounts to 0.01 um.

waMinMosW=1.e-7 units=meter. This amounts to 0.1um.

erMaxMosL=0.01 units=meter

waMaxMosL=0.001 units=meter. This amounts to 1000 um.

erMinMosL=1.e-8 units=meter.This value is 0.01 um.
HSIMplus® Reference Manual 175
C-2009.06

Chapter 8: CircuitCheck
Parametric Checks
waMinMosL=1.e-7 units=meter.This amounts to 0.1 um.

erMaxMosAD=0.0001 units=meter square

waMaxMosAD=1.e-6 units=meter square

erMaxMosAS=0.0001 units=meter square

waMaxMosAS=1.e-6 units=meter square

erMaxMosPD=0.01 units=meter. This value is 10000 um.

waMaxMosPD=0.001 units=meter

erMaxMosPS=0.01 units=meter

waMaxMosPS=0.001 units=meter

erMaxMosTox=5.e-8 units=meter

waMaxMosTox=3e-8 units=meter

erMinMosTox=5.e-10 units=meter

waMinMosTox=5.e-9 units=meter

erMaxDiodeW=1.e-2 units=meter

waMaxDiodeW=1.e-3 units=meter

erMaxDiodeL=1.e-2 units=meter

waMaxDiodeL=1.e-3 units=meter

erMaxDiodeA=1.e-4 units=meter square

waMaxDiodeA=1.e-6 units=meter square

erMinDiodeW=1.e-8 unit=meter

waMinDiodeW=1.e-7 unit=meter

Table 3 Model Default Parameter Values (Continued)

Default Value Measurement Unit
176 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Parametric Checks
These defaults may be overridden by using the commands listed above.

The following is an example of the cckParam command.

Example 33 cckParam Command
cckParam erMaxCap=2000p waMaxCap=1.e-9
cckParam erMaxMosW=0.1 waMaxMosW=0.03 erMinMosW=0.01u
waMinMosW=0.1u

A capacitor with these characteristics is reported as follows:
■ An ERROR message is reported for a value > 2000 pf (picofarad).
■ A Warning message is printed for capacitor values between 1000 pF and

2000 pF.

A MOSFET with these widths is reported as follows:
■ HSIM stops and an ERROR message is reported if its width is one of the

following:

• > 0.1 m

erMinDiodeL=1.e-8 unit=meter

waMinDiodeL=1.e-7 unit=meter

erMinDiodeA=1.e-16 unit=meter square

waMinDiodeA=1.e-14 unit=meter square

erMaxTemp=500 units=Celsius

waMaxTemp=100 units=Celsius

erMinTemp=-200 units=Celsius

waMinTemp=-100 units=Celsius

erMinMfactor=-0.001

waMinMfactor=0

Table 3 Model Default Parameter Values (Continued)

Default Value Measurement Unit
HSIMplus® Reference Manual 177
C-2009.06

Chapter 8: CircuitCheck
Parametric Checks
• < 0.01 um.
■ A Warning message is printed if it’s width is between either of the following:

• 0.03 meter and 0.1 meter.

• 0.01 micron and 0.1 micron.

The following is a sample output (hsim.cck or out_file.cck) resulting from the
command shown in the previous example.

Example 34 Output File

* Check Elem Size, Model, Temperature

Warning: find a mos (mi8x) with unusual width (0.04 M) in subckt
(fuse)
Error: can't allow mos (mc2, width 0.155 M) in subckt (fuse10)
Warning: find a mos (mi8) with unusual width (0.05 M) in subckt
(cgdv)
Error: can't allow too large a capacitor (cext, 3e-6 F) in subckt
(TLC)

In the sample file shown above, the following definitions apply:
■ mi8x: Element name
■ fuse: Sub-circuit name
■ cext: Capacitor name
■ TLC: Top-Level Circuit

Limiting the Number of Violations Reported
The "num" parameter limits the number of violations reported, for avoiding
lengthy output files. For example, "cckParam num=10" allows up to 10
warnings or errors in the violation report. The default number is 300.

M-factor
If there are elements with a zero or negative m-factor, warnings are reported.
The following is a sample .cck output:

Warning: find a mos (xt.xcore.x256m4) with unusual m factor (0)
in subckt (epju)
Warning: find a mos (xt.xbist.xm4) with unusual m factor (0) in
subckt (enll)
178 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Parametric Checks
When HSIM checks parameters, it creates a default template containing all the
default values, as indicated in Table on page 161. This template is used to
examine all the transistors. If any default needs to be changed, simply specify a
cckParam statement without any model keyword, as in the following example:

cckParam erMaxMosW=0.05
cckParam model=nch1 erMaxMosW=0.06

For example, the first statement of cckParam overwrites the value of
erMaxMosW to 0.05 meter. The second statement has a keyword model=nch1,
which creates a new template consisting of the default values, except that
erMaxMosW is changed to 0.06 meter for model nch1.

It is suggested to group the parameters for general purpose checking first.
Those values will overwrite the default settings. Then, create a new statement
with model and the associated values. If the line is too long, a back slash (\) is
used to indicate the continuation of the line. Parameters for each model must
be on a separate line.

Post-Layout RC Checking

cckParasiticRC
Reports data about the parasitic RC during netlist loading to aid in post layout
circuit debugging.

Syntax
cckParasiticRC <rmin=rmin_value> <cmin=cmin_value>

<ccmin=ccmin_value> <numr=num_of_r> <numc=num_of_c>
<numcc=num_of_cc> <outFile=output_file_name>

Parameters
rmin

Minimum value of parasitic resistors to report. The default is rmin=0.

cmin

Minimum value of parasitic of grounded capacitors to report The default is
cmin=0.

ccmin

Minimum value of parasitic coupling capacitors to report. The default is
ccmin=0.
HSIMplus® Reference Manual 179
C-2009.06

Chapter 8: CircuitCheck
Parametric Checks
numr

Maximum number of resistors to report. The default is numr=100.

numc

Maximum number of grounded capacitors to report. The default is
numc=100.

numcc

Maximum number of coupling capacitors to report. The default is
numcc=100.

outFile

Output file name for saving Warning messages. The default is
parasiticRC.cck.

Description
cckParasiticRC reports data about the parasitic RC during netlist loading to
aid in post layout circuit debugging. If the resistance, coupling capacitance and
node capacitance are greater than the predetermined values specified in the
rmin, cmin and ccmin respectively, cckParasiticRC will report the nodes along
with the corresponding resistor or capacitor values. This report is stored in the
file, output_file_name, which is specified in the outFile. The default output file
name is parasiticRC.cck.

Example
The following is an example of adding cckParasiticRC to the CircuitCheck
command file:

cckParasiticRC rmin=1 cmin=0.1p ccmin=0.1p numr=100 numc=200
numcc=200 outFile=”tt.out”

After simulation is completed, HSIM reports the resistors, capacitors, and
coupling capacitors with values greater than 1 Ohm, 0.1pF, and 0.1pF
respectively as shown in the following report. The number of resistor nodes and
capacitor nodes are limited to 100 and 200 respectively due to the numr, numc
and numcc setup. The statistical results are stored in the file, tt.out. The
following shows a portion of the report from the above example.
180 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
* Check parasitic R
r3215 n_14:5944 n_14:f258 r=143.889
r1197 n_10:2332 n_10:f524 r=143.889
* Check parasitic C
c44127 vdd:4600 vdd:4522 c=3.49101e-017
c40397 vdd:8035 vdd:7957 c=3.49101e-017
* Check parasitic CC
cg8188 n_9:1473 0 cc=3.64899e-017
cg32864 n_15:7189 0 cc=3.70265e-017
cckParasiticRC rmin=1 cmin=0.1p ccmin=0.1p numr=100 numc=200
numcc=200 outFile=”tt.out”

Design and Electrical Rules Check

These CircuitCheck commands are designed to help check over-voltage
conditions, excessive device currents, forward-biased diodes, shorts to VDD or
GND, missing VDD and GND connections, floating gates, and voltage-domain
interface errors.

Static Device Voltage Analysis

The concept of static analysis is the ability to propagate characteristics of the
design, in this case voltages, throughout the whole design without the need of
vectors or transient simulation. To propagate voltages through the design it is
necessary to define rules associated with the propagation. These propagation
rules are used to determine if a voltage (or voltage range) can be seen by a
node through a network of design elements like MOSFETs, resistors,
capacitors, and diodes. Using these rules HSIMplus, along with the Circuit
Check Option, can analyze voltage biasing conditions and report user-defined
violations, with a minimum of a design netlist and supply voltages defined.

By performing static voltage propagation you can apply electrical rule checks to
determine if damaging voltage biases exists. Because the voltage propagation
is performed statically, the coverage is greater than what can be achieved via
dynamic simulation, ensuring more violations are reported. Ultimately more
corrections can be implemented to ensure design correctness.
HSIMplus® Reference Manual 181
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
Device Voltage Analysis for Transistors

cckMosV
 cckMosV performs a static check on user-specified transistors. If a violation
occurs, a warning is printed to the hsim.cckmosv or output.cckmosv report file.
Also, refer to Device Voltage Analysis for Capacitor, Resistor and Diode on
page 190.

Syntax
cckMosV tagName <model=model_name> <subckt=subckt_name>

<inst=inst_name> <rmSub=subckt_name> <rmInst=inst_name>
<skipSub=suckt_name> <skipInst=inst_name>
<limitMos=num> <vhth=vh> <vlth=vl> <vnth=v1> <vpth=v2>
<lvd=v7> <uvd=v8> <lvg=v9> <uvg=v10> <lvs=v11> <uvs=v12>
<lvb=v13> <uvb=v14><cond='expression'> <num=n>
<separate_file=[0|1]> <rptTrace=[0|1]>
<risePmosFallNmos=[0|1]> <subinfo=[0|1]>
<filterAlert=[0|1]> <pwl_time=time>
<fvsrc='(e_name,vmin,vmax)'>
<fvsrcnd='(vsrc_node_name,vmin,vmax)'> <extTrace=[0|1]>
<–connSub=subckt_name> <–connInst=inst_name>
<–connNode=node_name> <autoFvsrcnd=[0|1]>

Parameters
tagName

tagName is a label in the report file to make searching easier.

model=<model_name>

model causes CircuitCheck to go through all instances of <model_name>
during path tracing. CircuitCheck does not consider other model devices.

subckt=<subckt_name>, inst=<inst_name>

subckt=subckt_name and inst=inst_name examine all instances of
<inst_name> in all of the instances of sub-circuit <subckt_name>. Instance
names may contain wild cards; the sub-circuit name can not.
182 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
rmSub=<subckt_name>, rmInst=<inst_name>

If one or both of these parameters are used, elements that satisfy the
defined conditions are not checked. The parameter rmSub prevents
devices which reside in the subcircuit <subckt_name> to be reported. The
parameter rmInst prevents devices which match the instance <inst_name>
to be reported. Both parameters allow the use of wildcards.

skipSub=<subckt_name>, skipInst=<inst_name>

If one or both parameters are used, subcircuits matching <subckt_name>
and instances matching <inst_name> prevent voltage propagation from
occurring through elements within their coverage. Both parameters allow
the use of wildcards.

limitMos=<number>

limitMos defines the expansion limit from the given voltage source that is not
to exceed <number> transistors. This parameter can be specified with
global settings. Refer to Global Parameter Settings on page 349.

vlth=<vl>

The low voltage threshold. If vlth is specified, then CircuitCheck will trace
from the voltage sources with values less than or equal to <vl>. This
parameter can be specified with global settings. Refer to Global Parameter
Settings on page 321.

vhth=<vh>

The high voltage threshold. If vhth is specified, then CircuitCheck will trace
only from sources with values equal to or greater than <vh>. This parameter
can be specified with global settings. Refer to Global Parameter Settings on
page 349.

vnth=<v1>

vnth specifies the n-MOSFET threshold voltage.The value <v1> is used
during voltage propagation to determine whether a full voltage, vt dropped
voltage, or no voltage is passed across a n_MOSFET transistor channel.
The default value for this parameter is 0.5. This parameter can be specified
with global settings. Refer to Global Parameter Settings on page 349.
HSIMplus® Reference Manual 183
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
vpth=<v2>

vpth specifies the p-MOSFET threshold voltage.The value <v2> is used
during voltage propagation to determine whether a full voltage, vt dropped
voltage, or no voltage is passed across a p-MOSFET transistor channel.
The default value for this parameter is -0.5. This parameter can be specified
with global settings. Refer to Global Parameter Settings on page 349.

lvd=<v7>

The lower bound of drain node voltage to be <v7>. If a device's drain
terminal is less than <v7> a warning is generated. This parameter can be
specified with global settings. Refer to Global Parameter Settings on
page 349.

uvd=<v8>

The drain node voltage upper boundary. If a device's drain terminal is
greater than <v8> a warning is generated. This parameter can be specified
with global settings. Refer to Global Parameter Settings on page 349.

lvg=<v9>

The gate node voltage lower boundary. If a device's gate terminal is less
than <v9> a warning is generated. This parameter can be specified with
global settings. Refer to Global Parameter Settings on page 349.

uvg=<v10>

The gate node voltage upper boundary. If a device’s gate terminal is greater
than <v10> a warning is generated. This parameter can be specified with
global settings. Refer to Global Parameter Settings on page 349.

lvs=<v11>

The source node voltage lower boundary. If a device's source terminal is
less than <v11> a warning is generated. This parameter can be specified
with global settings. Refer to Global Parameter Settings on page 349.

uvs=<v12>

The source node voltage upper boundary. If a device's source terminal is
greater than <v12> a warning is generated. This parameter can be specified
with global settings. Refer to Global Parameter Settings on page 349.

lvb=<v13>

The bulk node voltage lower boundary. If a device's bulk terminal is less
than <v13> a warning is generated. This parameter can be specified with
global settings. Refer to Global Parameter Settings on page 349.
184 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
uvb=<v14>

The bulk node voltage upper boundary. If a device's bulk terminal is greater
than <v14> a warning is generated. This parameter can be specified with
global settings. Refer to Global Parameter Settings on page 349.

cond=expression

A voltage constraint can be a Boolean expression such as: cond='(uvp <
1 || lvn >= 0.5) or mathematical operations (+,-,*, /, and abs()).
Operators, +,-,*, / and abs(), are allowed for both side of inequality
operations. <expression> can contain the parameters lvp, uvp, lvn, uvn, lvd,
uvd, lvg, uvg, lvs, uvs, lvb, uvb, && ('and' operator), and, || ('or' operator).
When this expression is true, a warning is generated.

num=<n>

num limits the number of warnings generated by a particular analysis
command defining it. Only <n> warnings are generated for a particular
analysis command as defined by that command. The default value is 300. If
<n> is set to less than or equal to 0, the warnings are unlimited. This
parameter can be specified with global settings. Refer to Global Parameter
Settings on page 349.

separate_file=[0|1]

separate_file=0 is the default which causes all warning messages to be
reported in the <hsim_output_prefix>.cck file. If separate_file=1, warning
messages are reported in a separate <hsim_output_prefix>.cckmosv_
<command_tag>file. This parameter can be specified with global settings.
Refer to Global Parameter Settings on page 349.

rptTrace=[0|1]

rptTrace indicates whether (1) or not (0) Circuit Check reports a transistor's
conductive path that leads from its node(s) to a voltage source. The default
value is 0. This parameter can be specified with global settings. Refer to
Global Parameter Settings on page 349.

risePmosFallNmos=[0|1]

risePmosFallNmos indicates whether (1) or not (0) Device Voltage Analysis
propagation applies restrictions with positive, zero, or negative voltage
sources relative to element type. If risePmosFallNmos is set to 1, positive
voltage sources can only be propagated through p-MOSFET devices, and
negative or zero voltage sources can only be propagated through n-
MOSFET devices. The default value is 0. This parameter can be specified
with global settings. Refer to Global Parameter Settings on page 349.
HSIMplus® Reference Manual 185
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
subinfo=[0|1]

subinfo indicated whether (1) or not (0) subcircuit information about the
violation node path is included in the warnings. The default value is 0. This
parameter can be specified with global settings. Refer to Global Parameter
Settings on page 349.

filterAlert=[0|1]

filterAlert indicates whether (1) or not (0) CircuitCheck produces an error
message and the entire process is terminated when the scope of a given
command, defined by the 'model', 'subckt' and/or 'inst' parameters, is found
to be empty. The default is 0. This parameter can be specified with global
settings. Refer to Global Parameter Settings on page 349.

pwl_time=<time>

pwl_time, when specified, is used to propagate time specific voltage
value(s) from a piece-wise-linear (pwl) voltage source(s). The voltage value
(v(time)) used for propagation is defined by the pwl voltage source at
time=<time>. This voltage value (v(time)) is then propagated under the
same restrictions/application as a constant voltage source of value=v(time).
By default Circuit Check only propagates from constant voltage sources. All
<time> units are in seconds (s). For example: pwl_time=10n.

fvsrc='(<e_name>,<vmin>,<vmax>)'

fvsrc is used to propagate from voltage source element <e_name> with
values <vmin> and <vmax>. If vhth is set, constant voltage sources greater
than or equal to the value set for vhth is used as a starting point for
propagation. If vlth is set, constant voltage sources less than or equal to the
value set for vlth is used as a starting point for propagation. By default
Circuit Check will only propagate from constant voltage sources.

fvsrcnd='(<vsrc_node_name>,<vmin>,<vmax>)'

fvsrcnd is used propagate from voltage source node <vsrc_node_name>
with values <vmin> and <vmax>. If vhth is set, constant voltage sources
greater than or equal to the value set for vhth is used as a starting point for
propagation. If vlth is set, constant voltage sources less than or equal to the
value set for vlth is used as a starting point for propagation. By default
Circuit Check will only propagate from constant voltage sources.

extTrace=[0|1]

extTrace indicates whether (1) or not (0) Circuit Check selects two constant
voltage sources and starts propagation from these only. If a violation is
found a warning is generated. The default 0, meaning propagation starts
186 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
from all constant voltage sources, satisfying the rules set by vhth and/or vlth.
This parameter can be specified with global settings. Refer to Global
Parameter Settings on page 349.

–connSub=subckt_name

Limits elements to be reported to those that have a direct connection to the
ports (except Power/Ground) inside of the specified subcircuit name.

–connInst=inst_name

Limits elements to be reported to those that have a direct connection to the
ports (except Power/Ground) inside of the specified instance name. Note
that the specified instance name only applies to subcircuit instance name,
and the instance name specified by this argument must use a full
hierarchical naming convention.

–connNode=node_name

Limits elements to be reported to those that have a direct connection to the
specified node name.

autoFvsrcnd=[0|1]

If set to 1 enables the automatic pwl voltage range feature. This feature
conducts the following additional steps before the static check:

1. Search for any pwl or pulse Vsrc definition in the netlist

2. For any found pwl or pulse Vsrc, obtain its voltage range info (Vmin,
Vmax)

3. Based on the obtained voltage range information, perform an operation
equivalent to "fvsrcnd(<VsrcNodeName>, Vmin, Vmax)"

The default is 0.

Note:

Among the -connSub, -connInst, and -connNode arguments, if you apply
more than one or mix arguments there is no scoping relationship and CCK
operates based on a pure OR Boolean operation in reporting the violations
collected through each of the specified arguments. These three arguments
can use wildcard characters.

Note:

vlth and vhth act like filters; not like checking criteria. Their purpose is to filter
out other voltage sources so that cckMosV starts tracing only with voltage
sources lower than vlth or higher than vhth. The actual checking criteria are
specified in lvg, uvg, lvd, uvd, lvs, and uvs.
HSIMplus® Reference Manual 187
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
Note:

Circuit Check can pass other variables defined by .param into CCK
commands. If users want to define a variable, this variable must be defined
by .param and then be passed into CCK commands.

Examples
The following is an example of passing user-defined parameters into a CCK
command:

.param vxx=2.5
cckMosV tagName inst=inv cond='(lvd*3 - uvs >= -vxx)'

The following is an example of using the cond= options:

(a) cond='(lvd - 0.5*uvs >= 1.5)'
(b) cond='(lvd >= 0.5*uvg + 1.5)'
(c) cond ='(uvd-lvs*0.5 > 1.5 *2)'
(d) cond ='(uvd-abs(lvs-lvg) > 1.5 *2)'

The following are static device voltage checking examples:

cckMosv tn subckt=a0tc inst=* uvg=2.9 limitMos=2
risePmosFallNmos=1 skipInst=aa*

In the above example:
■ All instances of a0tc are checked because subckt=a0tc inst=*.
■ Since risePmosFallNmos=1, when a voltage source is traced then:
■ Positive: Go through p-MOSFET then, only go through p-MOSFETS.
■ GND or Negative: Only go through n-MOSFET.
■ Since skipInst=aa*, when tracing, instances with the prefix aa are not gone

through.
■ Since limitMos=2, only nodes reached from a voltage source by going

through no more than 2 transistors are considered.
■ Transistor node voltages are then checked to see if their gate node exceeds

2.9 V. Transistors that meet this criteria are reported.

cckMosv tn subckt=b1tr inst=* vlth=0.4 uvg=2.9

In the above example, since subckt=b1tr and inst=*, all transistors in all the
instantiations of b1tr are checked. Since vlth=0.4, the power supplies with less
than or equal t 0.4 V are traced. since limitMos is not set, any node can be
traced. If a transistor's gate node exceeds 2.9 V, then it is reported.
188 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
cckMosV tag model=nch cond='(uvg>=0.4||lvd <-1.8)'

In the above example, the syntax checks all the nch transistors. If a nch
MOSFET has gate node voltage larger or equal to 0.4 V or drain voltage
smaller than -1.8 V, then it is reported.

cckMosV tag model=nch vlth=0.5 cond='(uvg >=0.4||lvd <-1.8)'

In the above example, the syntax traces from nch MOSFET to see if it will
reach any logic-0 voltage sources. If the upper bound of voltage source
reached by gate node is larger than 0.4 V or the lower bound of voltage
sources seen by a drain node is less than -1.8 V, then it is reported.

cckMosV tpc model=pch inst=* vhth=0.7 cond='(lvg <=1.1||uvd >1.8)'

In the above example, the syntax checks pch MOSFETs to find the logic-
1voltage source range using vhth=0.7 V as seen from the gate node. If the
lower bound is less than or equal to 1.1 V, it is reported. Similarly, the upper
voltage source bound seen from the drain node can be checked. If it is larger
than 1.8 V, then it is reported.

cckMosV tn model=nch inst=* vlth=0.2 uvg=0.3 limitMos=2
risePmosFallNmos=1 skipInst=xram.xwr2_7*

In the above example, nch transistors are checked to determine if their nodes
can reach logic-low voltage source with values less than 0.2V. When tracing,
the process can only go through two MOSFETS and must go through a nch
MOSFET. If a gate node voltage is greater than 0.3V, it is reported.

Note:

Tracing can not go through any MOSFETS named xram.xwr2_7*.

The following example assumes this Vsrc definition in the netlist:

...

.param pvdd = 1.11v

.param pvdd2 = 0.8v
vvdd vddx 0 pvdd
vvde vvdex 0 pwl 0ns 0 0.1ns pvdd
vshift shift 0 pwl 0ns 0 0.1ns pvdd2
...

And also assumes the following command set

cckMosv vhth=0.5 vnth=0.3 vt=0.1 autoFvsrcnd=1

CCK operates equivalently to following syntax:
HSIMplus® Reference Manual 189
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
cckMosv vhth=0.5 vnth=0.3 vt=0.1 fvsrcnd=(vvdex, 0, 1.11)
fvsrcnd=(shift, 0, 0.8)

The report header is updated to include the autoFvsrcnd setting:

**
* PMOS gate vsrc valu
e less than D/S vsrc:
*
* vnth=0.300 vpth=-0.500
* vhth=0.500
*
* vt=0.10 num=300
*
* autoFvsrcnd=1
* format: instName gate_volt d/s_volt
**

Device Voltage Analysis for Capacitor, Resistor and Diode

With some analog designs, it is important to check the voltage for 2-terminal
devices such as capacitors, resistors, and diodes. cckCapV performs a static
voltage check on user-specified capacitors similarly to the tests conducted by
cckMosV. A warning message is printed to the hsim.cckcapv or output.cckcapv
report file if a violation occurs.

cckResV and cckDioV perform static voltage checking for specified resistors
and diodes. A warning message is reported in either the .cckResV or .cckDioV
report files if a violation occurs.

The syntax and parameters for cckCapV, cckDioV, and cckResV are as
follows:

cckCapV
cckCapv is used to perform analysis checks on capacitors. Based on the rules
defined by this command, voltage propagation is performed and the resulting
voltages are compared against your defined rules.

Syntax
cckCapV tagName <model=m> <subckt=subckt_name>

<inst=instName> <rmSub=subckt_name> <rmInst=instName>
<skipSub=subckt_name> <skipInst=instName>
<limitMos=num> <vhth=vh> <vlth=vl> <vnth=v1> <vpth=v2>
<lvp=v3> <uvp=v4> <lvn=v5> <uvn=v6> <cond='expression'>
<num=n> <separate_file=[0|1]> <rptTrace=[0|1]>
190 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
<risePmosFallNmos=[0|1]> <subinfo=[0|1]>
<filterAlert=[0|1]> <pwl_time=time>
<fvsrc='(e_name,vmin,vmax)'>
<fvsrcnd='(vsrc_node_name,vmin,vmax)'> <extTrace=[0|1]>

cckDioV
cckDioV is used to perform analysis checks on diodes. Based on the rules
defined by this command, voltage propagation is performed and the resulting
voltages are compared against your defined rules.

Syntax
cckDioV tagName <model=m> <subckt=subckt_name>

<inst=instName> <rmSub=subckt_name> <rmInst=instName>
<skipSub=subckt_name> <skipInst=instName>
<limitMos=num> <vhth=vh> <vlth=vl> <vnth=v1> <vpth=v2>
<lvp=v3> <uvp=v4> <lvn=v5> <uvn=v6> <cond='expression'>
<num=n> <separate_file=[0|1]> <rptTrace=[0|1]>
<risePmosFallNmos=[0|1]> <subinfo=[0|1]>
<filterAlert=[0|1]> <pwl_time=time>
<fvsrc='(e_name,vmin,vmax)'>
<fvsrcnd='(vsrc_node_name,vmin,vmax)'> <extTrace=[0|1]>

cckResV
cckResV is used to perform analysis checks on resistors. Based on the rules
defined by this command, voltage propagation is performed and the resulting
voltages are compared against your defined rules.

Syntax
cckResV tagName <model=m0del_name> <subckt=subckt_name>

<inst=instName> <rmSub=subckt_name> <rmInst=instName>
<skipSub=subckt_name> <skipInst=instName>
<limitMos=num> <vhth=vh> <vlth=vl> <vnth=v1> <vpth=v2>
<lvp=v3> <uvp=v4> <lvn=v5> <uvn=v6> <cond='expression'>
<num=n> <separate_file=[0|1]> <rptTrace=[0|1]>
<risePmosFallNmos=[0|1]> <subinfo=[0|1]>
<filterAlert=[0|1]> <pwl_time=time>
<fvsrc='(e_name,vmin,vmax)'>
<fvsrcnd='(vsrc_node_name,vmin,vmax)'> <extTrace=[0|1]>

Parameters
The following parameters are used for cckCapV, cckDioV, and cckResV.
HSIMplus® Reference Manual 191
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
tagName

tagName is a label in the report file to make searching easier.

model=<model_name>

model causes CircuitCheck to go through all instances of <model_name>
during path tracing. CircuitCheck will not consider other model devices.

subckt=<subckt_name>, inst=<inst_name>

subckt=subckt_name and inst=inst_name examine all instances of
<inst_name> in all of the instances of sub-circuit <subckt_name>. Instance
names may contain wild cards; the sub-circuit name can not.

rmSub=<subckt_name>, rmInst=<inst_name>

If one or both of these parameters are used, elements that satisfy the
defined conditions are not checked. The parameter rmSub prevents
devices which reside in the subcircuit <subckt_name> to be reported. The
parameter rmInst prevents devices which match the instance <inst_name>
to be reported. Both parameters allow the use of wildcards.

skipSub=<subckt_name>, skipInst=<inst_name>

If one or both parameters are used, subcircuits matching <subckt_name>
and instances matching <inst_name> prevent voltage propagation from
occurring through elements within their coverage. Both parameters allow
the use of wildcards.

limitMos=<number>

limitMos defines the expansion limit from the given voltage source that is not
to exceed <number> transistors. This parameter can be specified with
global settings. Refer to Global Parameter Settings on page 349.

vlth=<vl>

The low voltage threshold. If vlth is specified, then CircuitCheck will trace
from the voltage sources with values less than or equal to <vl>. This
parameter can be specified with global settings. Refer to Global Parameter
Settings on page 349.

vhth=<vh>

The high voltage threshold. If vhth is specified, then CircuitCheck will trace
only from sources with values equal to or greater than <vh>. This parameter
can be specified with global settings. Refer to Global Parameter Settings on
page 349.
192 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
vnth=<v1>

vnth specifies the n-MOSFET threshold voltage. The value <v1> is used
during voltage propagation to determine whether a full voltage, vt dropped
voltage, or no voltage is passed across a n-MOSFET transistor channel.
The default value for this parameter is 0.5. This parameter can be specified
with global settings. Refer to Global Parameter Settings on page 349.

vpth=<v2>

vpth specifies the p-MOSFET threshold voltage.The value <v2> is used
during voltage propagation to determine whether a full voltage, vt dropped
voltage, or no voltage is passed across a p-MOSFET transistor channel.
The default value for this parameter is -0.5. This parameter can be specified
with global settings. Refer to Global Parameter Settings on page 349.

lvp=<v3>

lvp specifies the lower bound of the anode voltage. If a resistor's,
capacitor's, or diode's anode voltage is less than <v3>, a warning is
generated. This parameter can be specified with global settings. Refer to
Global Parameter Settings on page 349.

uvp=<v4>

lvp specifies the upper bound of the anode voltage. If a resistor's,
capacitor's, or diode's anode voltage is greater than <v3>, a warning is
generated. This parameter can be specified with global settings. Refer to
Global Parameter Settings on page 349.

lvn=<v5>

lvn specifies the lower bound of the cathode voltage. If a resistor's,
capacitor's, or diode's cathode voltage is less than <v5>, a warning is
generated. This parameter can be specified with global settings. Refer to
Global Parameter Settings on page 321.

uvn=<v6>

uvn specifies the upper bound of the cathode voltage. If a resistor's,
capacitor's, or diode's cathode voltage is greater than <v5>, a warning is
generated. This parameter can be specified with global settings. Refer to
Global Parameter Settings on page 321.

cond=expression

A voltage constraint can be a Boolean expression such as: cond='(uvp <
1 || lvn >= 0.5) or mathematical operations (+,-,*, /, and abs()).
Operators, +,-,*, / and abs(), are allowed for both side of inequality
HSIMplus® Reference Manual 193
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
operations. <expression> can contain the parameters lvp, uvp, lvn, uvn, lvd,
uvd, lvg, uvg, lvs, uvs, lvb, uvb, && ('and' operator), and, || ('or' operator).
When this expression is true, a warning is generated.

num=<n>

num limits the number of warnings generated by a particular analysis
command defining it. Only <n> warnings are generated for a particular
analysis command as defined by that command. The default value is 300. If
<n> is set to less than or equal to 0, the warnings are unlimited. This
parameter can be specified with global settings. Refer to Global Parameter
Settings on page 321.

separate_file=[0|1]

separate_file indicates whether (1) or not (0) warnings are diverted to a
different output file. This parameter can be specified with global settings.
Refer to Global Parameter Settings on page 321.

• For cckResV, if set to 1, warnings are diverted from <hsim output
prefix>.cckresv to <hsim output prefix>.cckresv_<command tag>
output file(s).

• For cckCapV, if set to 1, warnings are diverted from <hsim output
prefix>.cckcapv to <hsim output prefix>.cckcapv_<command tag>
output file(s).

• For cckDioV, if set to 1, warnings are diverted from <hsim output
prefix>.cckdiov to <hsim output prefix>.cckdiov_<command tag> output
file(s).

rptTrace=[0|1]

rptTrace indicates whether (1) or not (0) Circuit Check reports a transistor's
conductive path that leads from its node(s) to a voltage source. The default
value is 0. This parameter can be specified with global settings. Refer to
Global Parameter Settings on page 321.

risePmosFallNmos=[0|1]

risePmosFallNmos indicates wheter (1) or not (0) Device Voltage Analysis
propagation applies restrictions with positive, zero, or negative voltage
sources relative to element type. If risePmosFallNmos is set to 1, positive
voltage sources can only be propagated through p-MOSFET devices, and
negative or zero voltage sources can only be propagated through n-
MOSFET devices. The default value is 0. This parameter can be specified
with global settings. Refer to Global Parameter Settings on page 321.
194 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
subinfo=[0|1]

subinfo indicated whether (1) or not (0) subcircuit information about the
violation node path is included in the warnings. The default value is 0. This
parameter can be specified with global settings. Refer to Global Parameter
Settings on page 321.

filterAlert=[0|1]

filterAlert indicates whether (1) or not (0) CircuitCheck produces an error
message and the entire process is terminated when the scope of a given
command, defined by the 'model', 'subckt' and/or 'inst' parameters, is found
to be empty. The default is 0. This parameter can be specified with global
settings. Refer to Global Parameter Settings on page 321.

pwl_time=<time>

pwl_time, when specified, is used to propagate time specific voltage
value(s) from a piece-wise-linear (pwl) voltage source(s). The voltage value
(v(time)) used for propagation is defined by the pwl voltage source at
time=<time>. This voltage value (v(time)) is then propagated under the
same restrictions/application as a constant voltage source of value=v(time).
By default Circuit Check only propagates from constant voltage sources. All
<time> units are in seconds (s). For example: pwl_time=10n.

fvsrc='(<e_name>,<vmin>,<vmax>)'

fvsrc is used to propagate from voltage source element <e_name> with
values <vmin> and <vmax>. If vhth is set, constant voltage sources greater
than or equal to the value set for vhth is used as a starting point for
propagation. If vlth is set, constant voltage sources less than or equal to the
value set for vlth is used as a starting point for propagation. By default
Circuit Check will only propagate from constant voltage sources.

fvsrcnd='(<vsrc_node_name>,<vmin>,<vmax>)'

fvsrcnd is used propagate from voltage source node <vsrc_node_name>
with values <vmin> and <vmax>. If vhth is set, constant voltage sources
greater than or equal to the value set for vhth is used as a starting point for
propagation. If vlth is set, constant voltage sources less than or equal to the
value set for vlth is used as a starting point for propagation. By default
Circuit Check will only propagate from constant voltage sources.

extTrace=[0|1]

extTrace indicates whether (1) or not (0) Circuit Check selects two constant
voltage sources and starts propagation from these only. If a violation is
found a warning is generated. The default 0, meaning propagation starts
HSIMplus® Reference Manual 195
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
from all constant voltage sources, satisfying the rules set by vhth and/or vlth.
This parameter can be specified with global settings. Refer to Global
Parameter Settings on page 321.

Note:

Circuit Check can pass other variables defined by .param into CCK
commands. If users want to define a variable, this variable must be defined
by .param and then be passed into CCK commands.

Examples
The following example passes user-defined parameters into a CCK command:

.param vol=3
cckCapV check_bias cond='(uvp*2 - lvn + 2*2 > vol*3)'

The following example uses the cond= options:

(a) cond='(lvp - 0.5*uvn >= 1.5)'
(b) cond='(lvp >= 0.5*uvn + 1.5)'
(c) cond ='(uvp-lvp*0.5 > 1.5 *2)
(d) cond ='(uvp-abs(lvn-0.5) > 1.5 *2)'

The following are examples of static device voltage checking:

Add the following syntax to the CircuitCheck command file:

cckCapV cap_report model=CMOD inst=* uvp=2.0 uvn=2.0 vnth=1 vpth=1
rptTrace=1
cckDioV dio_report model=DMOD inst=* uvp=2.0 uvn=2.0 vnth=2 vpth=2
rptTrace=1
cckResV res_report model=RMOD inst=* uvp=2.0 uvn=2.0 vnth=1 vpth=1
rptTrace=1 separate_file=1

Report File Examples
The resulting report files are shown in the following three examples.

Sample .cckcapv Report:
196 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
Sample .cckcapv Report
tag=cap_report vnth=1.000 vpth=1.000 brief=0 rptTrace=1

extTrace=0
limitCap=0 separate_file=0 risePmosFallNmos=0 model=cmod
inst=*
uvg=2.00 uvb=2.00

format: tag instName constraint-violated-node-name
(node voltage)

cap_report xi11.x2.c1
(P) net277 (3.00)

thruI xi10.mxmp1_1_1
frmNd vddh (constant node)

cap_report xi12.x3.c1
(P) xi12.net3 (3.00)

thruI xi12.mxmp1_1_1
thruI xi12.x1.r1
frmNd vddh (constant node)

cap_report xi17.x3.c1
(P) xi17.net3 (3.00)

thruI xi17.mxmp1_1_1
thruI xi17.x1.r1
frmNd vddh (constant node)

Sample .cckdiov Report:

Sample .cckdiov Report
* tag=dio_report vnth=2.000 vpth=2.000 brief=0 rptTrace=1

extTrace=0
* limitDio=0 separate_file=0 risePmosFallNmos=0 model=dmod
* inst=*
* uvg=2.00 uvb=2.00
*
* format: tag instName constraint-violated-node-name

(node voltage)
dio_report xi11.x2.d1

(P) net277 (3.00)
thruI xi10.mxmp1_1_1
frmNd vddh (constant node)

dio_report xi12.x1.d1
(P) vddh (3.00)
(N) xi12.net1 (3.00)

thruI xi12.x1.d1
frmNd vddh (constant node)

Sample .cckresv Report:
HSIMplus® Reference Manual 197
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
Sample .cckresv Report
* tag=res_report vnth=1.000 vpth=1.000 brief=0 rptTrace=1

extTrace=0
* limitRes=0 separate_file=0 risePmosFallNmos=0 model=rmod
* inst=*
* uvg=2.00 uvb=2.00
*
* format: tag instName constraint-violated-node-name

(node voltage)
res_report xi11.x2.r1

(P) net277 (3.00)
thruI xi10.mxmp1_1_1
frmNd vddh (constant node)

res_report xi12.x1.r1
(P) vddh (3.00)
(N) xi12.net1 (3.00)

thruI xi12.x1.r1
frmNd vddh (constant node)

res_report xi12.x3.r1
(P) xi12.net3 (3.00)

thruI xi12.mxmp1_1_1
thruI xi12.x1.r1
frmNd vddh (constant node)

Subcircuit-Based Voltage Analysis Using the Static Approach

You use the cckSubV command to perform a subcircuit-based voltage analysis
using the static approach.

cckSubV
This command performs a static subcircuit port voltage check, which can be
considered an extension of the existing static cckMosV command. However,
unlike cckMosV, which performs a voltage check at the device (for example,
MOSFET) level, cckSubV provides the ability to check the port/pin voltage in a
subcircuit with a regular expression rather than a device terminal- specific
pattern.

Syntax
cckSubV tagName <subckt=subckt_name> <inst=inst_name>

<rmsub=subckt_name> <rmInst=inst_name>
<skipInst=inst_name> <limitMos=num> <vhth=vh> <vlth=vl>
<vnth=v2> <vpth=v3> <cond='expression'> <num=n>
<separate_file=[0|1]> <rptTrace=[0|1]>
198 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
<risePmosFallNmos=[0|1]> <subinfo=[0|1]>
<filterAlert=[0|1]> <pwl_time=time>
<fvsrc='(e_name,vmin,vmax)'>
<fvsrcnd='(vsrc_node_name,vmin,vmax)'> <extTrace=[0|1]>

Parameters
The cckSubV command uses the following parameters.

tagName

tagName is a label in the report file to make searching easier.

subckt=<subckt_name>, inst=<inst_name>

The subckt parameter enforces that the node being analyzed is associated
with the specified subckt <subckt_name>. Similarly, the inst parameter
enforces that the node being analyzed is associated with the defined
instance <inst_name>. If “subckt” is not specified, cckSubV looks for all
subcircuits in the netlist. “subckt” does not support a “*” wild card, but “inst”
does.

rmSub=<subckt_name>, rmInst=<inst_name>

The rmSub parameter prevents nodes that reside in the subcircuit
<subckt_name> from being reported. The rmInst parameter prevents
nodes that reside in the instance matching <inst_name> expression from
being reported. “rmsub” does not support a “*” wild card, but “rmInst” does.

 skipInst=<inst_name>

If this parameter is used, instances matching <inst_name> prevent voltage
propagation from occurring through elements within their coverage. This
parameter allows the use of a “*” wildcard.

limitMos=<number>

limitMos defines the expansion limit from the given voltage source that is not
to exceed <number> transistors. This parameter can be specified with
global settings.

vhth=<vh>

The high voltage threshold. If vhth is specified, then Circuit Check traces
only from sources with values equal to or greater than <vh>. This parameter
can be specified with global settings.
HSIMplus® Reference Manual 199
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
vlth=<vl>

The low voltage threshold. If vlth is specified, then Circuit Check traces from
the voltage sources with values less than or equal to <vl>. This parameter
can be specified with global settings.

vnth=<v2>

vnth specifies the n-MOSFET threshold voltage. The value <v2> is used
during voltage propagation to determine whether a full voltage, vt dropped
voltage, or no voltage is passed across a n-MOSFET transistor channel.
The default value for this parameter is 0.5. This parameter can be specified
with global settings.

vpth=<v3>

vpth specifies the p-MOSFET threshold voltage.The value <v3> is used
during voltage propagation to determine whether a full voltage, vt dropped
voltage, or no voltage is passed across a p-MOSFET transistor channel.
The default value for this parameter is -0.5. This parameter can be specified
with global settings.

cond=’expression’[

You can use a Boolean expression to define a constraint as violation
reporting criteria. If the Boolean value returned is logically true, it means the
analysis satisfies the reporting criteria and the violation is reported. An
expression can be formed by voltage of the node using lv(<node_name>) or
uv(<node_name>), which means the lower range and upper range of node
voltage respectively.

num=<n>

num limits the number of warnings generated by a particular analysis
command defining it. Only <n> warnings are generated for a particular
analysis command as defined by that command. The default value is 300. If
<n> is set to less than or equal to 0, the warnings are unlimited. This
parameter can be specified with global settings.

separate_file=[0|1]

separate_file indicates whether (1) or not (0) warnings are diverted to a
different output file. This parameter can be specified with global settings.

If set to separate_file=1, warnings are diverted from <hsim output
prefix>.ccksubv to the <hsim output prefix.ccksubv_<command tag> output
file(s).
200 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
rptTrace=[0|1]

rptTrace indicates whether (1) or not (0) Circuit Check reports a conductive
transistor path that leads from its node(s) to a voltage source. The default
value is 0. This parameter can be specified with global settings.

risePmosFallNmos=[0|1]

risePmosFallNmos indicates wheter (1) or not (0) Device Voltage Analysis
propagation applies restrictions with positive, zero, or negative voltage
sources relative to element type. If risePmosFallNmos is set to 1, positive
voltage sources can only be propagated through p-MOSFET devices, and
negative or zero voltage sources can only be propagated through n-
MOSFET devices. The default value is 0. This parameter can be specified
with global settings.

subinfo=[0|1]

subinfo indicated whether (1) or not (0) subcircuit information about the
violation node path is included in the warnings. The default value is 0. This
parameter can be specified with global settings.

filterAlert=[0|1]

filterAlert indicates whether (1) or not (0) Circuit Check produces an error
message and the entire process is terminated when the scope of a given
command, defined by the 'model', 'subckt' and/or 'inst' parameters, is found
to be empty. The default is 0. This parameter can be specified with global
settings.

pwl_time=<time>

pwl_time, when specified, is used to propagate time specific voltage
value(s) from a piece-wise-linear (pwl) voltage source(s). The voltage value
(v(time)) used for propagation is defined by the pwl voltage source at
time=<time>. This voltage value (v(time)) is then propagated under the
same restrictions/application as a constant voltage source of value=v(time).
By default Circuit Check only propagates from constant voltage sources. All
<time> units are in seconds (s). For example: pwl_time=10n.

fvsrc='(<e_name>,<vmin>,<vmax>)'

fvsrc is used to propagate from voltage source element <e_name> with
values <vmin> and <vmax>. If vhth is set, constant voltage sources greater
than or equal to the value set for vhth is used as a starting point for
propagation. If vlth is set, constant voltage sources less than or equal to the
value set for vlth is used as a starting point for propagation. By default
Circuit Check will only propagate from constant voltage sources.
HSIMplus® Reference Manual 201
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
fvsrcnd='(<vsrc_node_name>,<vmin>,<vmax>)'

fvsrcnd is used propagate from voltage source node <vsrc_node_name>
with values <vmin> and <vmax>. If vhth is set, constant voltage sources
greater than or equal to the value set for vhth is used as a starting point for
propagation. If vlth is set, constant voltage sources less than or equal to the
value set for vlth is used as a starting point for propagation. By default
Circuit Check only propagates from constant voltage sources.

extTrace=[0|1]

extTrace indicates whether (1) or not (0) Circuit Check selects two constant
voltage sources and starts propagation from these sources only. If a
violation is found a warning is generated. The default 0, meaning
propagation starts from all constant voltage sources, satisfying the rules set
by vhth and/or vlth. This parameter can be specified with global settings.

Note:

Circuit Check can pass other variables defined by .param into CCK
commands. If you want to define a variable, this variable must be defined by
.param and then be passed into CCK commands.

Examples
cckSubV sub1 subckt=tg cond=’lv(in) <0 || uv(in) > 1’ rptTrace=1

This command performs a subcircuit voltage check with the tag name sub1.
According to the subckt=tg and the “cond=” expression, it looks for the voltage
of node “in” defined within the tg subcircuit. If this node has its lower end
voltage less than 0 or upper end voltage greater than 1V, a violation is
reported.

cckSubV sub3 subckt=tg cond=’lv(in)<1 || uv(out)>3’ rptTrace=1

Violations are reported if the lower end of voltage of node “in” is less than 1V or
the upper end of voltage of node “out” is greater than 3V.

The following example shows a cckSubV report:
202 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
* Static Device-V Analysis
* command= cckSubV
* tag=tag2
* cond=’lv(out)<0 || uv(out) > 2’
* vpth=-0.500 vnth=0.500
* rptTrace=1 limitMos=0 separate_file=0
* risePmosFallNmos=0 subinfo=0 FilterAlert=0
*
* subckt= tg
*
* format: tag instName constraint-violated-node-name (minv
- maxv)
tag2 x27
(2) n73 (0.00 - 3.00)
thruI x27.mn1 (V=3)
thruI x25.mp1 (V=3)
frmNd vdd (constant node

Diode Forward Bias Analysis

cckDiode is used to perform forward bias checks on diodes.

cckDiode
Syntax
cckDiode <mode=0|1|2> <num=n> <separate_file=0|1>

<subinfo=[0|1]> <vt=vt0> <start=t1> <stop=t2>
<model=model_name> <tag=t>

Parameters
mode=<0|1|2>

mode determines the mode of analysis. The possible values are:

• mode=0 performs a static check.

• mode=1 performs a dynamic check.

• mode=2 performs both a static and dynamic check.

This parameter can be specified with global settings. Refer to Global
Parameter Settings on page 321.
HSIMplus® Reference Manual 203
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
num=n

num limits the number of warnings generated by a particular analysis
command defining it. Only <n> warnings are generated for a particular
analysis command as defined by that command. The default is 300. If num
is set to less than or equal to 0, the warnings are unlimited. This parameter
can be specified with global settings. Refer to Global Parameter Settings on
page 321.

separate_file=[0|1]

separate_file=0 is the default which causes all warning messages to be
reported in the <hsim_output_prefix>.cck file. If separate_file=1, warning
messages are reported in a separate <hsim_output_prefix>.cckDiode file.
This parameter is valid only in static mode (mode=0). This parameter can
be specified with global settings. Refer to Global Parameter Settings on
page 321.

subinfo=[0|1]

subinfo indicated whether (1) or not (0) subcircuit information about the
violation node path is included in the warnings. The default value is 0. This
parameter can be specified with global settings. Refer to Global Parameter
Settings on page 321.

vt=<vt0>

This control parameter is used in both static and dynamic modes. After
voltage propagation, <vt0> is used to determine if a violation is warranted
based on the following equation:

V(anode) >= V(cathode) +<vt0>

The default value for this parameter is 0.5. This parameter can be specified
with global settings. Refer to Global Parameter Settings on page 321.

start=<t1>

Specifies the start time for vt checks.

stop=<t2>

Specifies the stop times for vt checks.

model=<model_name>

model causes CircuitCheck to go through all instances of <model_name>
during path tracing. CircuitCheck will not consider other model devices. The
diode types to be checked using the model parameter are user-selected.
204 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
tag=<t>

t is printed in the report file at the beginning of the readability line for a
forward-based diode.

Description
In transient simulation, it is necessary to determine if any diode becomes
forward-biased. If an anode’s voltage is greater than a cathode’s voltage by a
threshold value, a Warning message will be printed. The default threshold is
overwritten using vt=parameter.

The Warning message is written into one of the following files:
■ hsim.cck
■ out_file.cck

Examples
cckDiode mode=2 num=100 start=100n stop=500n model=pdio tag=t1\
separate_file=1

Anode and cathode voltage are checked in static mode and dynamic mode
because mode=2. While in dynamic mode, the checks occur between 100 ns
and 500 ns for diode model pdio. If the anode voltage is larger than the cathode
voltage by 0.5V, a Warning message is reported in the hsim.cck or out_file.cck
file. When the number of warnings exceeds 100, the checking will be stopped.
The following is the MOSFET Bulk and Diode Forward-Biased in Simulation
(hsim.cck or out_file.cck) output sample resulting from the command shown in
the example above.

Report from static mode:

**
* Diode forward-bias checking before DC
*
* tag=t1
* model=pdio
* vt=0.5
* ith=5e-05
* seperate_file = 1
* num = 100
* start=0 stop=0
*
**
Diode (d1) is forward-biased (anode (dvdd_o, 3.3 volt) cathode
(net1, 0 volt)), via serial res/ind.

Report from dynamic mode:
HSIMplus® Reference Manual 205
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
**
* MOS-Bulk/Diode Forward Bias and Node Voltage Check
* diode forward bias: tag=t1 model=pdio vt=0.5
* start=1e-07 stop=5e-07
**
(t1) @100.00n, diode (d1) forward biased
 v(anode)=3.3 v(cathode)=1.67559

In this output sample derived from the previous example, it reads as follows: at
time 100 ns, a diode (d1) becomes forward-biased with the following
parameters.
■ Anode voltage: 3.3V
■ Cathode voltage: 1.67559V

Element Current Analysis

cckElemI
In transient simulation, CircuitCheck monitors the current through each
element. If the absolute value of the current exceeds the threshold ith,
CircuitCheck reports the element name, current, and time. If tag is specified,
the Warning will be prefixed with the tag.

Syntax
cckElemI <start=t1> <stop=t2> <tag=t> <subckt=s> <inst=name>

<ith=v> <model=m> <rms=[0|1]> <avg=[0|1]> <num=n>
<ithAbs=[0|1]>

Parameters
subckt

Instance current to be checked by using subckt=s and inst=name is user-
selectable.

inst

Instance current to be checked by using subckt=s and inst=name is user-
selectable.

rms

The option rms=1 is to permits checking the root-mean-square current of
the specified element during a given time window [t1, t2]. If this rms current
exceeds the threshold ith=v, then this element will be reported.
206 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
avg=1

avg=1 checks the average current in an element during a given time
window. If the average current is larger than the ith=v threshold, the element
is printed.

ithAbs

Setting ithAbs=1 report the current with sign value instead of reporting the
absolute value. CircuitCheck reports absolute current values by default.

Example
cckElemI start=10n stop=76n tag=t1 subckt=aa inst=* ith=1.e-6
model=pch rms=1

Within a specified time window from 10n to 76n, all instances in all
instantiations of subckt=aa are examined. The root-mean-square current of
each pch transistor is then computed. If the current is greater than 1u Amp, the
element is reported using a t1 tag.

Instance and Subcircuit Reference Check

cckMatchSub
Syntax
cckMatchSub <subckt=subckt_name> <ReptHierNode=1|0>

Parameters
subckt

Specifies the subckt name as the matching target.

ReptHierNode

When ReptHierNode=1, both the matched nodes and the associated
upstream hierarchical nodes are reported.

Description
cckMatchSub conducts a reference check and lists all instances associated
with a specified subckt, with the port mapping information. While
cckPatternMatch on page 316 performs detailed pattern matching by traversing
design hierarchy and/or flattening certain levels during the operation, its
intensive approach may require a certain amount of computing resource.
cckMatchSub is used as a supplement to cckPatternMatch to gain early and
final design-phase matching results.
HSIMplus® Reference Manual 207
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
Excessive Current Path Detection

cckExiPath
cckExiPath detects excessive current paths from a power supply to the ground.
Both current thresholds and time duration thresholds are specified by you.

Syntax Definitions
cckExiPath <ith=cur> <tth=time> <from=vsrc1 <from=vsrc2

...>> <to=gnd <to=vss ...>> <start=t1> <stop=t2>

Parameters
ith

ith is current threshold. All the elements in a path must have current larger
than the ith value.

tth

tth is the time threshold. The excessive current path must exist for more than
this time interval.

from

from defines the power supply. Multiple from nodes are allowed in a
command.

to

to defines the ending nodes. Multiple to nodes are allowed in a command.

Note:

If "from" and "to" options are not specified, cckExiPath searches the dc
paths with all combinations of all voltage sources (VSRCs).

Examples
Given a netlist with VSRC nodes, VDD, VCC and VSS, if "from" and "to" are
not specified, cckExiPath searches the paths "from VDD to VSS" and "from
VCC to VSS" and from "VDD to VCC".

The following is an example of excessive current path detection syntax:

cckExiPath ith=10u tth=0.6n from=vdd from=xam.d1 to=gnd start=10n
stop=100n

cckExiPath starts monitoring from 10 ns to 100 ns. If a path exists from VDD or
node xam.d1 to GND and all the elements in this path have current greater
208 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
than 10uAmp and last for more than 0.6 ns, then this path is reported. The
output of the Warning goes to file hsim.cckexipath.

The following is a sample cckExiPath output produced using the syntax shown
above.

**
* cckExiPath ith=1e-005 tth=6e-010 stop=1e-007
* from=xam.d1
* from=vdd
* to=gnd
**
path 0: from xam.x8.n to gnd, time 5e-009 - 6e-008 (duration 5.5e-
008)

xam.xcr8.mn (eid=25508) I=0.000197307
node gnd

path 1: from vdd to gnd, time 3.2384e-008 - 4.0598e-008 (duration
8.214e-009)

xam.xrd.mu1 (eid=50071) I=0.000146329
node xam.xu8.p1

xam.xr.mu2 (eid=50072) I=0.000141375
node xam.npf<1>

xam.xrd1.mn (eid=49985) I=4.14077e-005
node gnd

Floating Gates and Current Sources Analysis

cckFloatGateIsrc
Description
cckFloatGateIsrc is used to perform both floating gate checks on nmos/pmos
transistors and checks to see if a current source is only connected to nmos/
pmos transistor gates.

Syntax
cckFloatGateIsrc [1|0] <listall=0|1> <num=n> <subinfo=0|1>

<skipport=0|1> <extTrace=0|1>

Parameters
0|1

Enter 0 to turn checking OFF
HSIMplus® Reference Manual 209
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
num=n

This parameter limits the total number of Warnings reported. This parameter
can be specified with global settings. Refer to Global Parameter Settings on
page 321.

listall= [0|1]

listall, when set to 0, reports only one representative floating gate per gate
node, and whether it is a PMOS or NMOS. When set to 1, both NMOS and
PMOS devices are reported when their gates are connected together and
are floating. The default value is 0. This parameter can be specified with
global settings. Refer to Global Parameter Settings on page 321.

subinfo=[0|1]

subinfo indicates whether (1) or not (0) subcircuit information about the
violation node path is included in the warnings. The default value is 0. This
parameter can be specified with global settings. Refer to Global Parameter
Settings on page 321.

skipport=[0|1]

skipport indicates whether (1) or not (0) all top level ports and nodes
connected to top level ports through resistors and/or inductors are excluded
from the floating node report.

extTrace=[0|1]

extTrace indicates whether (1) or not (0) Circuit Check selects two constant
voltage sources and starts propagation from these only. If a violation is
found a warning is generated. The default 0, meaning propagation starts
from all constant voltage sources, satisfying the rules set by vhth and/or vlth.
This parameter can be specified with global settings. Refer to Global
Parameter Settings on page 321.

Examples
cckFloatGateIsrc 1

The following is the Floating gate nodes and Floating isrc nodes (hsim.cck or
out_file.cck) output sample resulting from the command example above.

Note:

Only representative devices are reported, since listall parameter is not used.
210 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check

* Floating gate nodes

mos (x1.mn) gate node (x1.p) floats

* Floating isrc nodes

current src node (x2.i) floats

An intuitive example for listall is that three inverters, inv1, inv2, and inv3,
have their gates connected together to an input node, but nothing drives the
input.
■ listall=0 (default): cckFloatGateIsrc reports only one representative MOS

device from the inv1, inv2, and inv3 as a floating gate.
■ listall=1: cckFloatGateIsrc reports all the MOS devices in inv1, inv2, and

inv3 as floating gates.

Check NMOS Bulk Connections

cckNmosB_gt_DS
Note:

See cckPmosG_lt_DS on page 217 for detailed explanation of the
parameters and examples for using this command.

Syntax
cckNmosB_gt_DS <model=model_name> <subckt=subckt_name>

<inst=inst_name> <rmSub=subckt_name> <rmInst=inst_name>
<skipSub=suckt_name> <skipInst=inst_name> <vlth=vl>
<vt=vt0> <vnth=v1> <vpth=v2> <num=n> <rptv=[0|1]>
<rptTrace=[0|1]> <subinfo=[0|1]> <filterAlert=[0|1]>
<pwl_time=time> <fvsrc='(e_name,vmin,vmax)'>
<fvsrcnd='(vsrc_node_name,vmin,vmax)'> <extTrace=[0|1]>
<–connSub=subckt_name> <–connInst=inst_name> <–
connNode=node_name> <autoFvsrcnd=[0|1]>

Default Values
vlth=0.4

vt=0.3

vnth=0.5
HSIMplus® Reference Manual 211
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
vpth=-0.5

Parameters
model=<model_name>

model causes CircuitCheck to go through all instances of <model_name>
during path tracing. CircuitCheck will not consider other model devices.

subckt=<subckt_name>, inst=<inst_name>

subckt=subckt_name and inst=inst_name examine all instances of
<inst_name> in all of the instances of sub-circuit <subckt_name>. Instance
names may contain wild cards; the sub-circuit name can not.

rmSub=<subckt_name>, rmInst=<inst_name>

If one or both of these parameters are used, elements that satisfy the
defined conditions are not checked. The parameter rmSub prevents
devices which reside in the subcircuit <subckt_name> to be reported. The
parameter rmInst prevents devices which match the instance <inst_name>
to be reported. Both parameters allow the use of wildcards.

skipSub=<subckt_name>, skipInst=<inst_name>

If one or both parameters are used, subcircuits matching <subckt_name>
and instances matching <inst_name> prevent voltage propagation from
occurring through elements within their coverage. Both parameters allow
the use of wildcards.

vlth=<vl>

The low voltage threshold. If vlth is specified, then CircuitCheck will trace
from the voltage sources with values less than or equal to <vl>. The default
value is 0.4. This parameter can be specified with global settings. Refer to
Global Parameter Settings on page 321.

vt=<vt0>

After voltage propagation <vt0> is used to determine if a violation is
warranted based on the equation:

max(Vb) >= min(Vd/s)+<vt0>

The default value for this parameter is 0.3. This parameter can be specified
with global settings. Refer to Global Parameter Settings on page 321.
212 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
vnth=<v1>

The value <v1> is used during voltage propagation to determine whether a
full voltage, vt dropped voltage, or no voltage is passed across a
n_MOSFET transistor channel. The default value for this parameter is 0.5.
This parameter can be specified with global settings. Refer to Global
Parameter Settings on page 321.

vpth=<v2>

The value <v2> is used during voltage propagation to determine whether a
full voltage, vt dropped voltage, or no voltage is passed across a p-MOSFET
transistor channel. The default value for this parameter is -0.5. This
parameter can be specified with global settings. Refer to Global Parameter
Settings on page 321.

num=<n>

num limits the number of warnings generated by a particular analysis
command defining it. Only <n> warnings are generated for a particular
analysis command as defined by that command. The default value is 300. If
<n> is set to less than or equal to 0, the warnings are unlimited. This
parameter can be specified with global settings. Refer to Global Parameter
Settings on page 321.

rptv=[0|1]

rptv idicates whether (1) or not (0) voltage ranges are reported. The default
value is 1.

Note:

This parameter is now obsolete, as this is now the default behavior. It
will no longer be supported in future releases.

rptTrace=[0|1]

rptTrace indicates whether (1) or not (0) Circuit Check reports a transistor's
conductive path that leads from its node(s) to a voltage source. The default
value is 0. This parameter can be specified with global settings. Refer to
Global Parameter Settings on page 321.

subinfo=[0|1]

subinfo indicated whether (1) or not (0) subcircuit information about the
violation node path is included in the warnings. The default value is 0. This
parameter can be specified with global settings. Refer to Global Parameter
Settings on page 321.
HSIMplus® Reference Manual 213
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
filterAlert=[0|1]

filterAlert indicates whether (1) or not (0) CircuitCheck produces an error
message and the entire process is terminated when the scope of a given
command, defined by the 'model', 'subckt' and/or 'inst' parameters, is found
to be empty. The default is 0. This parameter can be specified with global
settings. Refer to Global Parameter Settings on page 321.

pwl_time=<time>

pwl_time, when specified, is used to propagate time specific voltage
value(s) from a piece-wise-linear (pwl) voltage source(s). The voltage value
(v(time)) used for propagation is defined by the pwl voltage source at
time=<time>. This voltage value (v(time)) is then propagated under the
same restrictions/application as a constant voltage source of value=v(time).
By default Circuit Check only propagates from constant voltage sources. All
<time> units are in seconds (s). For example: pwl_time=10n.

fvsrc='(<e_name>,<vmin>,<vmax>)'

fvsrc is used to propagate from voltage source element <e_name> with
values <vmin> and <vmax>. If vhth is set, constant voltage sources greater
than or equal to the value set for vhth is used as a starting point for
propagation. If vlth is set, constant voltage sources less than or equal to the
value set for vlth is used as a starting point for propagation. By default
Circuit Check will only propagate from constant voltage sources.

fvsrcnd='(<vsrc_node_name>,<vmin>,<vmax>)'

fvsrcnd is used propagate from voltage source node <vsrc_node_name>
with values <vmin> and <vmax>. If vhth is set, constant voltage sources
greater than or equal to the value set for vhth is used as a starting point for
propagation. If vlth is set, constant voltage sources less than or equal to the
value set for vlth is used as a starting point for propagation. By default
Circuit Check will only propagate from constant voltage sources.

extTrace=[0|1]

extTrace indicates whether (1) or not (0) Circuit Check selects two constant
voltage sources and starts propagation from these only. If a violation is
found a warning is generated. The default 0, meaning propagation starts
from all constant voltage sources, satisfying the rules set by vhth and/or vlth.
This parameter can be specified with global settings. Refer to Global
Parameter Settings on page 321.
214 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
–connSub=subckt_name

Limits elements to be reported to those that have a direct connection to the
ports (except Power/Ground) inside of the specified subcircuit name.

–connInst=inst_name

Limits elements to be reported to those that have a direct connection to the
ports (except Power/Ground) inside of the specified instance name. Note
that the specified instance name only applies to subcircuit instance name,
and the instance name specified by this argument must use a full
hierarchical naming convention.

–connNode=node_name

Limits elements to be reported to those that have a direct connection to the
specified node name.

autoFvsrcnd=[0|1]

If set to 1 enables the automatic pwl voltage range feature. This feature
conducts the following additional steps before the static check:

1. Search for any pwl or pulse Vsrc definition in the netlist

2. For any found pwl or pulse Vsrc, obtain its voltage range info (Vmin,
Vmax)

3. Based on the obtained voltage range information, perform an operation
equivalent to "fvsrcnd(<VsrcNodeName>, Vmin, Vmax)"

The default is 0.

Note:

Among the -connSub, -connInst, and -connNode arguments, if you apply
more than one or mix arguments there is no scoping relationship and CCK
operates based on a pure OR Boolean operation in reporting the violations
collected through each of the specified arguments. These three arguments
can use wildcard characters.

Description
cckNmosB_gt_DS is used to perform analysis checks on n-MOSFET
transistors specifically to see if the maximum bulk voltage (maxVb) is greater
than the minimum drain/source voltages (minVd/s). Based on the rules defined
by this command, voltage propagation is performed and the resulting voltages
are compared. If maxVb >= minVd/s + vt warnings are generated. The
num parameter is used to limit the number of warnings that are reported.
HSIMplus® Reference Manual 215
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
Example
The following example assumes this Vsrc definition in the netlist:

...

.param pvdd = 1.11v

.param pvdd2 = 0.8v
vvdd vddx 0 pvdd
vvde vvdex 0 pwl 0ns 0 0.1ns pvdd
vshift shift 0 pwl 0ns 0 0.1ns pvdd2
...

And also assumes the following command set

cckNmosB_gt_DS vhth=0.5 vnth=0.3 vt=0.1 autoFvsrcnd=1

CCK operates equivalently to following syntax:

cckNmosB_gt_DS vhth=0.5 vnth=0.3 vt=0.1 fvsrcnd=(vvdex, 0, 1.11)
fvsrcnd=(shift, 0, 0.8)

The report header is updated to include the autoFvsrcnd setting:

**
* PMOS gate vsrc valu
e less than D/S vsrc:
*
* vnth=0.300 vpth=-0.500
* vhth=0.500
*
* vt=0.10 num=300
*
* autoFvsrcnd=1
* format: instName gate_volt d/s_volt
**

Find Potentially Conducting NMOS Devices

cckNmosG_gt_DS
Syntax
cckNmosG_gt_DS> <model=model_name> <subckt=subckt_name>

<inst=inst_name> <rmSub=subckt_name> <rmInst=inst_name>
<skipSub=suckt_name> <skipInst=inst_name> <vlth=vl>
<vt=vt0> <vnth=v1> <vpth=v2> <num=n> <rptv=[0|1]>
<rptTrace=[0|1]> <subinfo=[0|1]> <filterAlert=[0|1]>
<pwl_time=time> <fvsrc='(e_name,vmin,vmax)'>
216 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
<fvsrcnd='(vsrc_node_name,vmin,vmax)'> <extTrace=[0|1]>
<–connSub=subckt_name> <–connInst=inst_name> <–
connNode=node_name> <autoFvsrcnd=[0|1]>

Default Values
■ vlth=0.4
■ vt=0.3
■ vnth=0.5
■ vpth=-0.5

Parameters
model=<model_name>

model causes CircuitCheck to go through all instances of <model_name>
during path tracing. CircuitCheck will not consider other model devices.

subckt=<subckt_name>, inst=<inst_name>

subckt=subckt_name and inst=inst_name examine all instances of
<inst_name> in all of the instances of sub-circuit <subckt_name>. Instance
names may contain wild cards; the sub-circuit name can not.

rmSub=<subckt_name>, rmInst=<inst_name>

If one or both of these parameters are used, elements that satisfy the
defined conditions are not checked. The parameter rmSub prevents
devices which reside in the subcircuit <subckt_name> to be reported. The
parameter rmInst prevents devices which match the instance <inst_name>
to be reported. Both parameters allow the use of wildcards.

skipSub=<subckt_name>, skipInst=<inst_name>

If one or both parameters are used, subcircuits matching <subckt_name>
and instances matching <inst_name> prevent voltage propagation from
occurring through elements within their coverage. Both parameters allow
the use of wildcards.

vlth=<vl>

The low voltage threshold. If vlth is specified, then CircuitCheck will trace
from the voltage sources with values less than or equal to <vl>. The default
value is 0.4. This parameter can be specified with global settings. Refer to
Global Parameter Settings on page 321.
HSIMplus® Reference Manual 217
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
vt=<vt0>

After voltage propagation <vt0> is used to determine if a violation is
warranted based on the equation:

max(Vg) >= min(Vd/s)+<vt0>

The default value for this parameter is 0.3. This parameter can be specified
with global settings. Refer to Global Parameter Settings on page 321.

vnth=<v1>

The value <v1> is used during voltage propagation to determine whether a
full voltage, vt dropped voltage, or no voltage is passed across a
n_MOSFET transistor channel. The default value for this parameter is 0.5.
This parameter can be specified with global settings. Refer to Global
Parameter Settings on page 321.

vpth=<v2>

The value <v2> is used during voltage propagation to determine whether a
full voltage, vt dropped voltage, or no voltage is passed across a p-MOSFET
transistor channel. The default value for this parameter is -0.5. This
parameter can be specified with global settings. Refer to Global Parameter
Settings on page 321.

num=<n>

num limits the number of warnings generated by a particular analysis
command defining it. Only <n> warnings are generated for a particular
analysis command as defined by that command. The default value is 300. If
<n> is set to less than or equal to 0, the warnings are unlimited. This
parameter can be specified with global settings. Refer to Global Parameter
Settings on page 321.

rptv=[0|1]

rptv idicates whether (1) or not (0) voltage ranges are reported. The default
value is 1.

Note:

This parameter is now obsolete, as this is now the default behavior. It
will no longer be supported in future releases.
218 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
rptTrace=[0|1]

rptTrace indicates whether (1) or not (0) Circuit Check reports a transistor's
conductive path that leads from its node(s) to a voltage source. The default
value is 0. This parameter can be specified with global settings. Refer to
Global Parameter Settings on page 321.

subinfo=[0|1]

subinfo indicated whether (1) or not (0) subcircuit information about the
violation node path is included in the warnings. The default value is 0. This
parameter can be specified with global settings. Refer to Global Parameter
Settings on page 321.

filterAlert=[0|1]

filterAlert indicates whether (1) or not (0) CircuitCheck produces an error
message and the entire process is terminated when the scope of a given
command, defined by the 'model', 'subckt' and/or 'inst' parameters, is found
to be empty. The default is 0. This parameter can be specified with global
settings. Refer to Global Parameter Settings on page 321.

pwl_time=<time>

pwl_time, when specified, is used to propagate time specific voltage
value(s) from a piece-wise-linear (pwl) voltage source(s). The voltage value
(v(time)) used for propagation is defined by the pwl voltage source at
time=<time>. This voltage value (v(time)) is then propagated under the
same restrictions/application as a constant voltage source of value=v(time).
By default Circuit Check only propagates from constant voltage sources. All
<time> units are in seconds (s). For example: pwl_time=10n.

fvsrc='(<e_name>,<vmin>,<vmax>)'

fvsrc is used to propagate from voltage source element <e_name> with
values <vmin> and <vmax>. If vhth is set, constant voltage sources greater
than or equal to the value set for vhth is used as a starting point for
propagation. If vlth is set, constant voltage sources less than or equal to the
value set for vlth is used as a starting point for propagation. By default
Circuit Check will only propagate from constant voltage sources.

fvsrcnd='(<vsrc_node_name>,<vmin>,<vmax>)'

fvsrcnd is used propagate from voltage source node <vsrc_node_name>
with values <vmin> and <vmax>. If vhth is set, constant voltage sources
greater than or equal to the value set for vhth is used as a starting point for
HSIMplus® Reference Manual 219
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
propagation. If vlth is set, constant voltage sources less than or equal to the
value set for vlth is used as a starting point for propagation. By default
Circuit Check will only propagate from constant voltage sources.

extTrace=[0|1]

extTrace indicates whether (1) or not (0) Circuit Check selects two constant
voltage sources and starts propagation from these only. If a violation is
found a warning is generated. The default 0, meaning propagation starts
from all constant voltage sources, satisfying the rules set by vhth and/or vlth.
This parameter can be specified with global settings. Refer to Global
Parameter Settings on page 321.

–connSub=subckt_name

Limits elements to be reported to those that have a direct connection to the
ports (except Power/Ground) inside of the specified subcircuit name.

–connInst=inst_name

Limits elements to be reported to those that have a direct connection to the
ports (except Power/Ground) inside of the specified instance name. Note
that the specified instance name only applies to subcircuit instance name,
and the instance name specified by this argument must use a full
hierarchical naming convention.

–connNode=node_name

Limits elements to be reported to those that have a direct connection to the
specified node name.

autoFvsrcnd=[0|1]

If set to 1 enables the automatic pwl voltage range feature. This feature
conducts the following additional steps before the static check:

1. Search for any pwl or pulse Vsrc definition in the netlist

2. For any found pwl or pulse Vsrc, obtain its voltage range info (Vmin,
Vmax)

3. Based on the obtained voltage range information, perform an operation
equivalent to "fvsrcnd(<VsrcNodeName>, Vmin, Vmax)"

The default is 0.
220 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
Note:

Among the -connSub, -connInst, and -connNode arguments, if you apply
more than one or mix arguments there is no scoping relationship and CCK
operates based on a pure OR Boolean operation in reporting the violations
collected through each of the specified arguments. These three arguments
can use wildcard characters.

Description
cckNmosG_gt_DS is used to perform analysis checks on n-MOSFET
transistors specifically to see if the maximum gate voltage (maxVg) is greater
than the minimum drain/source voltages (minVd/s). Based on the rules defined
by this command, voltage propagation is performed and the resulting voltages
are compared. If maxVg >= minVd/s + vt warnings are generated. Refer
to Figure 16.

Figure 18 Report Warning Circuit

Examples
cckNmosG_gt_DS vlth=0.4 vt=0.3 inst=xam*

The following is the .cck file output sample resulting from the command
example above.

**
* NMOS gate vsrc value greater than D/S vsrc: inst=xam*
* vlth=0.40 vt=0.30
* format: instName gate_volt d/s_volt
**
 xam.xctl.mu30 Vg (0.6) Vs (0)
 xam.xu22.mu2 Vg (0.6) Vs (0)
 xam.xi14.mu30 Vg (0.6) Vs (0)

The following example assumes this Vsrc definition in the netlist:

Channel-connected
path

VBB

channel-
connected path

VSS
If VSS > VBB + vt, issue warning
If maxVg >= min Vd/s + vt issue warning

maxVg
HSIMplus® Reference Manual 221
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
...

.param pvdd = 1.11v

.param pvdd2 = 0.8v
vvdd vddx 0 pvdd
vvde vvdex 0 pwl 0ns 0 0.1ns pvdd
vshift shift 0 pwl 0ns 0 0.1ns pvdd2
...

And also assumes the following command set

ckNmosG_gt_DS vhth=0.5 vnth=0.3 vt=0.1 autoFvsrcnd=1

CCK operates equivalently to following syntax:

ckNmosG_gt_DS vhth=0.5 vnth=0.3 vt=0.1 fvsrcnd=(vvdex, 0, 1.11)
fvsrcnd=(shift, 0, 0.8)

The report header is updated to include the autoFvsrcnd setting:

**
* PMOS gate vsrc valu
e less than D/S vsrc:
*
* vnth=0.300 vpth=-0.500
* vhth=0.500
*
* vt=0.10 num=300
*
* autoFvsrcnd=1
* format: instName gate_volt d/s_volt
**

Check NMOS Node to VDD Connection

cckNmosNodeToVdd
Description
Checks NMOS terminals (drain/source/gate/bulk). If any one is connected to
logic-high voltage source (whose value is larger than vhth), report it.

Usage Syntax 1
cckNmosNodeToVdd <tag=tagName> <num=n> <vhth=v>

<inst=inst_name> <model=model_name> <node=drain>
<node=source> <node=gate> <node=bulk>
222 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
Usage Syntax 2
cckNmosNodeToVdd <tag=tagName> <num=n> <vhth=v>

<inst=inst_name> <model=model_name>
<node='drain|source|gate|bulk'>

Note:

Usage Syntax 2 is a version of Usage Syntax 1 to simplify the "node"
specification. Node='drain | source' is the same as node=drain
node=source.

Parameters
tag

Specifies the label in the report.

num

Specifies the total number of violations to be reported

vhth

Specifies the threshold voltage to be checked. The default is 0.7V.

inst

Specifies the instance name in the design to be checked.

model

Specifies the model to be checked.

node

Specifies the nodes to be checked. The keyword, "*" and "all", are supported
for checking on four terminals of a MOS.

Note:

Multiple cckNmosNodeToVdd commands can be specified in the CCK
command file.

Examples
The following examples are equivalent. They check the node voltage inside
instance, x03 with model=nmos. If the voltages of gate node and drain node
are higher than 0.7V, they will be reported.

cckNmosNodeToVdd tag=tag2 vhth=0.7 node=gate node=drain
inst=x03.* model=nmos
cckNmosNodeToVdd tag=tag2 vhth=0.7 node='gate| drain' inst=x03.*
model=nmos
HSIMplus® Reference Manual 223
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
The following example checks the four terminals of the NMOS device in a
design since "node=*" is specified.

cckNmosNodeToVdd tag=tag4 vhth=0.7 node=*

The following example checks the four terminals of the NMOS device inside
instance x03 with model name, nmos, because the keyword, "all", is used in the
"node=" control parameter.

cckNmosNodeToVdd tag=tag5 vhth=0.7 node=all inst=x03.* model=nmos

Check Node Voltage

cckNodeVoltage
Checks if the voltage of a node exceeds specified limits.

Syntax
cckNodeVoltage <num=n> <vmax=v1> <vmin=v2> <start=t1>

<stop=t2> <model=m> <tag=t> <lvdb=v> <uvdb=v> <lvbd=v>
<uvbd=v> <lvds=v> <uvds=v> <lvsd=v> <uvsd=v> <lvdg=v>
<uvdg=v> <lvgd=v> <uvgd=v> <lvgs=v> <uvgs=v> <lvsg=v>
<uvsg=v> <lvbs=v> <uvbs=v> <lvcs=v> <uvcs=v> <lvsc=v>
<uvsc=v> <lves=v> <uves=v> <lvse=v> <uvse=v> <lvbc=v>
<uvbc=v> <lvcb=v> <uvcb=v> <lvbe=v> <uvbe=v> <lveb=v>
<uveb=v> <lvce=v> <uvce=v> <lvec=v> <uvec=v> <lvsb=v>
<uvsb=v> <lvgb=v> <uvgb=v> <lvbg=v> <uvbg=v> <lvac=v>
<uvac=v> <node=name>

Description
In transient simulation, CircuitCheck monitors node voltage. If any node voltage
is greater than the maximum value (v1), or smaller than the minimum value
(v2), then CircuitCheck reports the following:
■ Node name
■ Voltage
■ Time

num=m: If the number of warnings exceeds a predetermined threshold (num=n),
CircuitCheck stops printing. The time window to monitor the node voltage can
also be specified.

model=m: The type of devices used to check node voltage can be selected.
The following three model types are supported:
224 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
■ MOSFET
■ BJT
■ Diode

cckNodeVoltage compares the voltage of a pair of terminals to user-defined
thresholds. For example, MOSFET elements have four terminals:
■ Drain
■ Source
■ Gate
■ Bulk

For each of these four MOSFET nodes, the following bounds can be applied:
■ lvdb: Lower bound of drain-to-bulk voltage difference.
■ uvdb: Upper bound of drain-to-bulk voltage difference.
■ lvgs: Lower bound of gate-to-source voltage difference.
■ uvgs: Upper bound of gate-to-source voltage difference.

Example
The following example represents a sample device used to check node
voltage:

cckNodeVoltage vmax=10 vmin=-3 model=nch

In the following example, starting from 500ns the gate-to-source voltage
difference of ph1a MOSFET is checked. If it is smaller than 0.5V, it is reported
and output tag ph1a is placed at the beginning of the line. The drain-to-bulk
voltage difference is also checked to see if it is greater than 1.3V.

If the number of Warnings exceeds a predetermined threshold (num=n),
CircuitCheck will stop printing. The time window to monitor the node voltage
can also be specified.

cckNodeVoltage model=ph1a tag=ph1a lvgs=0.5 uvdb=1.3 start=500n

In the following example, starting from 100ns until end of simulation,
CircuitCheck monitors node voltage. If the voltage is > 5 volt, or < –2.3 volt, a
Warning is issued.

cckNodeVoltage num=100 vmax=5 vmin=-2.3 start=100n
HSIMplus® Reference Manual 225
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
The following is the MOSFET Bulk/Diode Forward Bias and Node Voltage
Check (from hsim.cck or out_file.cck) output sample resulting from the
command example above.

**** ***
* MOS-Bulk/Diode Forward Bias and Node Voltage Check
* node voltage: vmax=5, vmin=-2.3
**** ***
@20.4n, node (xx1.pg.a1) voltage (6.71) exceeds vmax
@100.7n, node (x1.asrc.p1) voltage (-3.4) is below vmin

In the following example, nodes in different areas have different voltage
ranges. Node names are allowed in the command. CircuitCheck will examine
those specific nodes to see if their voltages meet the constraint. Otherwise, a
Warning is created. For example, nodes in x1 and x2 instances are limited to
be within -1V and 3V. The nodes in x4 instance need to be within -2V to 4V.

cckNodeVoltage vmax=3 vmin=-1 node=x1* node=x2*
cckNodeVoltage vmax=4 vmin=-2 node=x4*

Check Paths to Voltage Sources

cckPathToVsrc
Checks whether a node has a path to reach VDD, GND, both, or specified
nodes, and reports if no such path is found.

Syntax Usage 1
cckPathToVsrc <fanout=0|1]> <num=N> <node=node_name(s)>

<bjton=0|1> <bjtonc2e=0|1> <bjtonb2e=0|1> <bjtonb2c=0|1>

Syntax Usage 2
cckPathToVsrc <fanout=0|1]> <num=N> <node=node_name(s)>

<ckt_node=internal_node_name(s)>
<vsrc_node=vsrc_node_name(s)> <bjton=0|1>
<bjtonc2e=0|1> <bjtonb2e=0|1> <bjtonb2c=0|1>

Description
cckPathToVsrc checks whether a node has a path to reach VDD, GND, both,
or specified nodes, and reports if no such path is found.

There are two uses for cckPathToVsrc, and the reporting styles are slightly
different in both. When syntax usage 1 is issued, nodes are reported if they can
not reach a constant voltage source, ground, or both. The report has three
categories:
226 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
■ No path to any generic voltage sources or ground node(s)
■ No path to any generic voltage sources
■ No path to any ground nodes

The generic voltage source refers to all of the possible voltage sources in the
design or netlist, regardless of the names and the voltage level of the voltage
sources.

Syntax usage 2 is more enhanced. When this version is issued, it checks if a
node has a path to voltage source, ground source, or specific nodes. The
report contains two categories:
■ No path to the vsrc_node specified_vsrc_node_name
■ No path to the circuit node specified_ckt_node_name

The specified_vsrc_node_name and specified_ckt_node_name
parameters are the node names specified in the control parameters,
vsrc_node= and ckt_node= respectively. Version (2) is more beneficial in a
design with multiple voltage sources. For example, when a design has multiple
voltage sources, (VDD1, VDD2, etc.) the particular VSRC nodes can be
reported in the banner if there are violations.

Parameters
fanout=0|1

To only check nodes that have a direct connection to the transistor gate, set
fanout=1. To check all nodes, set fanout=0. The default is 0.

num=N

num limits the number of Warnings in each category to N

node=node_name(s)

cckPathToVsrc only reports nodes specified in the node parameter.

vsrc_node=vsrc_node_name(s)

This parameter specifies the names of the voltage source node(s).
cckPathToVsrc traces if the specified nodes in node= could reach the
vsrc_node. The vsrc_node must be a voltage source. If non-vsrc-nodes are
chosen, Warnings are issued in the log file.

ckt_node=cke_node_name(s)

This parameter is used to check if there are paths from the nodes to the
internal nodes specified by ckt_node. ckt_node must be internal node(s)
rather than voltage sources.
HSIMplus® Reference Manual 227
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
bjton=0|1

This parameter is used to include all BJT devices in the checking. The
default is 0 which excludes all BJT devices.

bjtonc2e=0|1

This parameter is used to include collector to emitter paths with bjtonc2e=1
for all BJT devices in the checking. The default is 0.

bjtonb2e=0|1

This parameter is used to include base to emitter paths with bjtonb2e=1 for
all BJT devices in the checking. The default is 0.

bjtonb2c=0|1

This parameter is used to include base to collector paths with bjtonb2c=1 for
all BJT devices in the checking. The default is 0.

Note:

If a node has a resistive path to the current source, it will not be reported.

Note:

There is a limitation that the total number of ckt_node and vsrc_node can
not exceed 30 nodes. If the number of given nodes is exceeded, Warning
will be issued in the log file.

Note:

A header is generated in the report file with the information specified in this
CircuitCheck command.

Examples
In the following example, all nodes with fanout are checked to see if constant
voltage sources can be reached. The number of Warnings for each category
will not exceed 300.

cckPathToVsrc num=300 node=*

The following is the Check Path to Voltage Sources (from hsim.cck or
out_file.cck) output sample resulting from the command example above.
228 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
**
* Check Path to Voltage Sources
* fanout = 0
* num = 300
* node = *
**
No path to any generic voltage sources or ground node(s):
 node (to_inv3) has no path to any voltage sources or ground node(s)

No path to any generic voltage sources:
 node (low) has no path to any generic voltage sources

No path to ground node(s):
 node (high) has no path to ground node(s)
~

~

Note:

The report style of version (1) and version (2) are slightly different. See the
variations in the following report examples.

When the command in the example above is changed to the following:

cckPathToVsrc node=* vsrc_node=vdd vsrc_node=vss ckt_node=to_inv3

The report looks like this:

No path to circuit node 'to_inv3':
 node (high) has no path to to_inv3
 node (low) has no path to to_inv3
 node (out) has no path to to_inv3
 node (to_inv3) has no path to to_inv3

No path to specified vsrc_node 'vss':
 node (high) has no path to vss
 node (to_inv3) has no path to vss

No path to specified vsrc_node 'vdd':
 node (low) has no path to vdd
 node (to_inv3) has no path to vdd

In the third example, all transistor nodes including BJTs with fanout=1 are
checked to determine if constant voltage sources can be reached. The number
of Warnings for each category will not exceed 10000.
HSIMplus® Reference Manual 229
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
cckPathToVsrc fanout=1 node=* num=10000 BJTON=1

The following is the Check Path to Voltage Sources (from hsim.cck or
out_file.cck) output sample resulting from the command example above.

**
* Check Path to Voltage Sources
* fanout = 1
* num = 10000
* bjton = 1
* bjtonb2c = 1
* bjtonb2e = 1
* bjtonc2e = 1
* node = *
**
No path to any generic voltage sources or ground node(s):
node(xids3234a1.xoscillator.xosc_biassource.xosc_biasres.net26)
has no path to any voltage sources or ground node(s)
node(xids3234a1.xoscillator.xosc_biassource.xosc_biasres.net28)
has no path to any voltage sources or ground node(s)
node (xids3234a1.xpads_east.dinr) has no path to any voltage
sources or ground node(s)
~
~

Note:

The report includes BJTs on in path checking. You can apply any of the
combinations of bjtonc2e/bjtonb2e/bjtonb2c=0 in this example. However,
HSIM issues a warning when the combination of bjtonc2e/bjtonb2e/
bjtonb2c=1 is used with bjton=0

Check PMOS Bulk Connections

cckPmosB_lt_DS
Syntax
cckPmosB_lt_DS <model=model_name> <subckt=subckt_name>

<inst=inst_name> <rmSub=subckt_name> <rmInst=inst_name>
<skipSub=suckt_name> <skipInst=inst_name> <vhth=vh>
<vt=vt0> <vnth=v1> <vpth=v2> <num=n> <rptv=[0|1]>
<rptTrace=[0|1]> <subinfo=[0|1]> <filterAlert=[0|1]>
<pwl_time=time> <fvsrc='(e_name,vmin,vmax)'>
230 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
<fvsrcnd='(vsrc_node_name,vmin,vmax)'> <extTrace=[0|1]>
<–connSub=subckt_name> <–connInst=inst_name> <–
connNode=node_name> <autoFvsrcnd=[0|1]>

Default Values
vhth=0.7

vt=0.3

vnth=0.5

vpth=-0.5

Parameters
model=<model_name>

model causes CircuitCheck to go through all instances of <model_name>
during path tracing. CircuitCheck will not consider other model devices.

subckt=<subckt_name>, inst=<inst_name>

subckt=subckt_name and inst=inst_name examine all instances of
<inst_name> in all of the instances of sub-circuit <subckt_name>. Instance
names may contain wild cards; the sub-circuit name can not.

rmSub=<subckt_name>, rmInst=<inst_name>

If one or both of these parameters are used, elements that satisfy the
defined conditions are not checked. The parameter rmSub prevents
devices which reside in the subcircuit <subckt_name> to be reported. The
parameter rmInst prevents devices which match the instance <inst_name>
to be reported. Both parameters allow the use of wildcards.

skipSub=<subckt_name>, skipInst=<inst_name>

If one or both parameters are used, subcircuits matching <subckt_name>
and instances matching <inst_name> prevent voltage propagation from
occurring through elements within their coverage. Both parameters allow
the use of wildcards.

vhth=<vh>

The high voltage threshold. If vhth is specified, then CircuitCheck traces
only from sources with values equal to or greater than <vh>. The default
value for this parameter is 0.7. This parameter can be specified with global
settings. Refer to Global Parameter Settings on page 321.
HSIMplus® Reference Manual 231
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
vt=<vt0>

After voltage propagation <vt0> is used to determine if a violation is
warranted based on the equation:

min(Vb) <= max(Vd/s)-<vt0>

The default value for this parameter is 0.3. This parameter can be specified
with global settings. Refer to Global Parameter Settings on page 321.

vnth=<v1>

The value <v1> is used during voltage propagation to determine whether a
full voltage, vt dropped voltage, or no voltage is passed across a
n_MOSFET transistor channel. The default value for this parameter is 0.5.
This parameter can be specified with global settings. Refer to Global
Parameter Settings on page 321.

vpth=<v2>

The value <v2> is used during voltage propagation to determine whether a
full voltage, vt dropped voltage, or no voltage is passed across a p-MOSFET
transistor channel. The default value for this parameter is -0.5. This
parameter can be specified with global settings. Refer to Global Parameter
Settings on page 321.

num=<n>

num limits the number of warnings generated by a particular analysis
command defining it. Only <n> warnings are generated for a particular
analysis command as defined by that command. The default value is 300. If
<n> is set to less than or equal to 0, the warnings are unlimited. This
parameter can be specified with global settings. Refer to Global Parameter
Settings on page 321.

rptv=[0|1]

rptv idicates whether (1) or not (0) voltage ranges are reported. The default
value is 1.

Note:

This parameter is now obsolete, as this is now the default behavior. It
will no longer be supported in future releases.
232 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
rptTrace=[0|1]

rptTrace indicates whether (1) or not (0) Circuit Check reports a transistor's
conductive path that leads from its node(s) to a voltage source. The default
value is 0. This parameter can be specified with global settings. Refer to
Global Parameter Settings on page 321.

subinfo=[0|1]

subinfo indicated whether (1) or not (0) subcircuit information about the
violation node path is included in the warnings. The default value is 0. This
parameter can be specified with global settings. Refer to Global Parameter
Settings on page 321.

filterAlert=[0|1]

filterAlert indicates whether (1) or not (0) CircuitCheck produces an error
message and the entire process is terminated when the scope of a given
command, defined by the 'model', 'subckt' and/or 'inst' parameters, is found
to be empty. The default is 0. This parameter can be specified with global
settings. Refer to Global Parameter Settings on page 321.

pwl_time=<time>

pwl_time, when specified, is used to propagate time specific voltage
value(s) from a piece-wise-linear (pwl) voltage source(s). The voltage value
(v(time)) used for propagation is defined by the pwl voltage source at
time=<time>. This voltage value (v(time)) is then propagated under the
same restrictions/application as a constant voltage source of value=v(time).
By default Circuit Check only propagates from constant voltage sources. All
<time> units are in seconds (s). For example: pwl_time=10n.

fvsrc='(<e_name>,<vmin>,<vmax>)'

fvsrc is used to propagate from voltage source element <e_name> with
values <vmin> and <vmax>. If vhth is set, constant voltage sources greater
than or equal to the value set for vhth is used as a starting point for
propagation. If vlth is set, constant voltage sources less than or equal to the
value set for vlth is used as a starting point for propagation. By default
Circuit Check will only propagate from constant voltage sources.

fvsrcnd='(<vsrc_node_name>,<vmin>,<vmax>)'

fvsrcnd is used propagate from voltage source node <vsrc_node_name>
with values <vmin> and <vmax>. If vhth is set, constant voltage sources
greater than or equal to the value set for vhth is used as a starting point for
HSIMplus® Reference Manual 233
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
propagation. If vlth is set, constant voltage sources less than or equal to the
value set for vlth is used as a starting point for propagation. By default
Circuit Check will only propagate from constant voltage sources.

extTrace=[0|1]

extTrace indicates whether (1) or not (0) Circuit Check selects two constant
voltage sources and starts propagation from these only. If a violation is
found a warning is generated. The default 0, meaning propagation starts
from all constant voltage sources, satisfying the rules set by vhth and/or vlth.
This parameter can be specified with global settings. Refer to Global
Parameter Settings on page 321.

–connSub=subckt_name

Limits elements to be reported to those that have a direct connection to the
ports (except Power/Ground) inside of the specified subcircuit name.

–connInst=inst_name

Limits elements to be reported to those that have a direct connection to the
ports (except Power/Ground) inside of the specified instance name. Note
that the specified instance name only applies to subcircuit instance name,
and the instance name specified by this argument must use a full
hierarchical naming convention.

–connNode=node_name

Limits elements to be reported to those that have a direct connection to the
specified node name.

autoFvsrcnd=[0|1]

If set to 1 enables the automatic pwl voltage range feature. This feature
conducts the following additional steps before the static check:

1. Search for any pwl or pulse Vsrc definition in the netlist

2. For any found pwl or pulse Vsrc, obtain its voltage range info (Vmin,
Vmax)

3. Based on the obtained voltage range information, perform an operation
equivalent to "fvsrcnd(<VsrcNodeName>, Vmin, Vmax)"

The default is 0.
234 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
Note:

Among the -connSub, -connInst, and -connNode arguments, if you apply
more than one or mix arguments there is no scoping relationship and CCK
operates based on a pure OR Boolean operation in reporting the violations
collected through each of the specified arguments. These three arguments
can use wildcard characters.

Description
cckPmosB_lt_DS is used to perform analysis checks on p-MOSFET transistors
specifically to see if the minimum bulk voltage (minVb) is less than the
maximum drain/source voltages (maxVd/s). Based on the rules defined by this
command, voltage propagation is performed and the resulting voltages are
compared. If minVb <= maxVd/s - vt warnings are generated. Setting
num=n limits the number of warnings.

Example
The following example assumes this Vsrc definition in the netlist:

...

.param pvdd = 1.11v

.param pvdd2 = 0.8v
vvdd vddx 0 pvdd
vvde vvdex 0 pwl 0ns 0 0.1ns pvdd
vshift shift 0 pwl 0ns 0 0.1ns pvdd2
...

And also assumes the following command set

cckPmosB_lt_DS vhth=0.5 vnth=0.3 vt=0.1 autoFvsrcnd=1

CCK operates equivalently to following syntax:

cckPmosB_lt_DS vhth=0.5 vnth=0.3 vt=0.1 fvsrcnd=(vvdex, 0, 1.11)
fvsrcnd=(shift, 0, 0.8)

The report header is updated to include the autoFvsrcnd setting:
HSIMplus® Reference Manual 235
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
**
* PMOS gate vsrc valu
e less than D/S vsrc:
*
* vnth=0.300 vpth=-0.500
* vhth=0.500
*
* vt=0.10 num=300
*
* autoFvsrcnd=1
* format: instName gate_volt d/s_volt
**

Find Potentially Conducting PMOS Devices

cckPmosG_lt_DS
Syntax
cckPmosG_lt_DS <model=model_name> <subckt=subckt_name>

<inst=inst_name> <rmSub=subckt_name> <rmInst=inst_name>
<skipSub=suckt_name> <skipInst=inst_name> <vhth=vh>
<vt=vt0> <vnth=v1> <vpth=v2> <num=n> <rptv=[0|1]>
<rptTrace=[0|1]> <subinfo=[0|1]> <filterAlert=[0|1]>
<pwl_time=time> <fvsrc='(e_name,vmin,vmax)'>
<fvsrcnd='(vsrc_node_name,vmin,vmax)'> <extTrace=[0|1]>
<–connSub=subckt_name> <–connInst=inst_name>
<–connNode=node_name> <autoFvsrcnd=[0|1]>

Default Values
vhth=0.7

vt=0.3

vnth=0.5

vpth=-0.5

Parameters
model=<model_name>

model causes CircuitCheck to go through all instances of <model_name>
during path tracing. CircuitCheck will not consider other model devices.
236 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
subckt=<subckt_name>, inst=<inst_name>

subckt=subckt_name and inst=inst_name examine all instances of
<inst_name> in all of the instances of sub-circuit <subckt_name>. Instance
names may contain wild cards; the sub-circuit name can not.

rmSub=<subckt_name>, rmInst=<inst_name>

If one or both of these parameters are used, elements that satisfy the
defined conditions are not checked. The parameter rmSub prevents
devices which reside in the subcircuit <subckt_name> to be reported. The
parameter rmInst prevents devices which match the instance <inst_name>
to be reported. Both parameters allow the use of wildcards.

skipSub=<subckt_name>, skipInst=<inst_name>

If one or both parameters are used, subcircuits matching <subckt_name>
and instances matching <inst_name> prevent voltage propagation from
occurring through elements within their coverage. Both parameters allow
the use of wildcards.

vhth=<vh>

The high voltage threshold. If vhth is specified, then CircuitCheck traces
only from sources with values equal to or greater than <vh>. The default
value for this parameter is 0.7. This parameter can be specified with global
settings. Refer to Global Parameter Settings on page 321.

vt=<vt0>

After voltage propagation <vt0> is used to determine if a violation is
warranted based on the equation:

min(Vg) <= max(Vd/s)-<vt0>

The default value for this parameter is 0.3

vnth=<v1>

The value <v1> is used during voltage propagation to determine whether a
full voltage, vt dropped voltage, or no voltage is passed across a
n_MOSFET transistor channel. The default value for this parameter is 0.5.
This parameter can be specified with global settings. Refer to Global
Parameter Settings on page 321.
HSIMplus® Reference Manual 237
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
vpth=<v2>

The value <v2> is used during voltage propagation to determine whether a
full voltage, vt dropped voltage, or no voltage is passed across a p-MOSFET
transistor channel. The default value for this parameter is -0.5. This
parameter can be specified with global settings. Refer to Global Parameter
Settings on page 321.

num=<n>

num limits the number of warnings generated by a particular analysis
command defining it. Only <n> warnings are generated for a particular
analysis command as defined by that command. The default value is 300. If
<n> is set to less than or equal to 0, the warnings are unlimited. This
parameter can be specified with global settings. Refer to Global Parameter
Settings on page 321.

rptv=[0|1]

rptv idicates whether (1) or not (0) voltage ranges are reported. The default
value is 1.

Note:

This parameter is now obsolete, as this is now the default behavior. It
will no longer be supported in future releases.

rptTrace=[0|1]

rptTrace indicates whether (1) or not (0) Circuit Check reports a transistor's
conductive path that leads from its node(s) to a voltage source. The default
value is 0. This parameter can be specified with global settings. Refer to
Global Parameter Settings on page 321.

subinfo=[0|1]

subinfo indicated whether (1) or not (0) subcircuit information about the
violation node path is included in the warnings. The default value is 0. This
parameter can be specified with global settings. Refer to Global Parameter
Settings on page 321.

filterAlert=[0|1]

filterAlert indicates whether (1) or not (0) CircuitCheck produces an error
message and the entire process is terminated when the scope of a given
command, defined by the 'model', 'subckt' and/or 'inst' parameters, is found
to be empty. The default is 0. This parameter can be specified with global
settings. Refer to Global Parameter Settings on page 321.
238 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
pwl_time=<time>

pwl_time, when specified, is used to propagate time specific voltage
value(s) from a piece-wise-linear (pwl) voltage source(s). The voltage value
(v(time)) used for propagation is defined by the pwl voltage source at
time=<time>. This voltage value (v(time)) is then propagated under the
same restrictions/application as a constant voltage source of value=v(time).
By default Circuit Check only propagates from constant voltage sources. All
<time> units are in seconds (s). For example: pwl_time=10n.

fvsrc='(<e_name>,<vmin>,<vmax>)'

fvsrc is used to propagate from voltage source element <e_name> with
values <vmin> and <vmax>. If vhth is set, constant voltage sources greater
than or equal to the value set for vhth is used as a starting point for
propagation. If vlth is set, constant voltage sources less than or equal to the
value set for vlth is used as a starting point for propagation. By default
Circuit Check will only propagate from constant voltage sources.

fvsrcnd='(<vsrc_node_name>,<vmin>,<vmax>)'

fvsrcnd is used propagate from voltage source node <vsrc_node_name>
with values <vmin> and <vmax>. If vhth is set, constant voltage sources
greater than or equal to the value set for vhth is used as a starting point for
propagation. If vlth is set, constant voltage sources less than or equal to the
value set for vlth is used as a starting point for propagation. By default
Circuit Check will only propagate from constant voltage sources.

extTrace=[0|1]

extTrace indicates whether (1) or not (0) Circuit Check selects two constant
voltage sources and starts propagation from these only. If a violation is
found a warning is generated. The default 0, meaning propagation starts
from all constant voltage sources, satisfying the rules set by vhth and/or vlth.
This parameter can be specified with global settings. Refer to Global
Parameter Settings on page 321.

–connSub=subckt_name

Limits elements to be reported to those that have a direct connection to the
ports (except Power/Ground) inside of the specified subcircuit name.
HSIMplus® Reference Manual 239
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
–connInst=inst_name

Limits elements to be reported to those that have a direct connection to the
ports (except Power/Ground) inside of the specified instance name. Note
that the specified instance name only applies to subcircuit instance name,
and the instance name specified by this argument must use a full
hierarchical naming convention.

–connNode=node_name

Limits elements to be reported to those that have a direct connection to the
specified node name.

autoFvsrcnd=[0|1]

If set to 1 enables the automatic pwl voltage range feature. This feature
conducts the following additional steps before the static check:

1. Search for any pwl or pulse Vsrc definition in the netlist

2. For any found pwl or pulse Vsrc, obtain its voltage range info (Vmin,
Vmax)

3. Based on the obtained voltage range information, perform an operation
equivalent to "fvsrcnd(<VsrcNodeName>, Vmin, Vmax)"

The default is 0.

Note:

Among the -connSub, -connInst, and -connNode arguments, if you apply
more than one or mix arguments there is no scoping relationship and CCK
operates based on a pure OR Boolean operation in reporting the violations
collected through each of the specified arguments. These three arguments
can use wildcard characters.

Description
The cckPmosG_lt_DS command examines every p-MOSFET's channel-
connected paths from drain/source and gate. If the threshold for logic-high
voltage is defined by vhth=vh. If there is a possible channel-connected path
from source or drain to a logic-high voltage source VPP, check the channel-
connected path from gate to another logic-high voltage source VDD. If the
minimum of gate voltage, minVg, is less than the maximum of D/S voltage,
maxVd/s, CircuitCheck reports a warning about this p-MOSFET and the
resulting VPP and VDD, because the p-MOSFET may cause a leakage path.
Refer to Figure 17 on page 221.
240 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
Figure 19 VDD < (VPP – vt) = Report Warning

Note:

The following values are used in voltage drop calculations along with path
tracing:

■ vnth: n-MOSFET turn-on threshold.
■ vpth: p-MOSFET turn-on threshold.

The command allows some portions of the design to be examined by using
subckt and inst options. During the channel-connect path tracing, it allows
some specific instances to be skipped by using skipSub and skipInst. In the
reporting, some instances are repressed using rmSub and rmInst. In addition, it
reports the voltage range at certain nodes with rptv=[0|1].

When rptTrace=1, two paths of transistors are included for each device to be
printed. The first one is a path from a reported device gate node to a voltage
source; the 2nd list is a path from its drain or source node to lead to another
power supply.

cckPmosG_lt_DS and related commands are used immediately after HSIM
netlist parsing as described in the following:
■ Operation parsing is static based and vt in the model file is not used.
■ vnth and vpth in the command option are used for voltage drop

consideration along the path tracing process.

Examples
The following example checks all the p-MOSFETs in instance xcm. Find the
channel-connected paths from drain or source to any high voltage source
whose value is larger than 0.8V. Let the highest voltage of source node be
maxVd/s. Then, look for the channel-connected path from gate to a positive

Channel-connected
path

VPP

channel-
connected path

VDD

If VDD < VPP - vt, issue warning

minVg

maxVd/s
HSIMplus® Reference Manual 241
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
voltage source whose value is larger than vhth=0.8V. Let the lowest voltage
source value seen from gate be minVg. If maxVg is smaller than minVd/s by
0.3V, issue a warning.

cckPmosG_lt_DS vhth=0.8 inst=xcm* vt=0.3 vnth=0.6 vpth=-0.5

The following is the output sample resulting from the command example
above.

**
* PMOS gate vsrc value less than D/S vsrc: inst=xcm
* vhth=0.80 vt=0.30
* format: instName gate_volt d/s_volt
**
 xcm.xdec.xu1.mp1 Vg (1) Vs (1.65)
 xcm.xdec.xu6.mp2 Vg (1) Vs (1.65)
 xcm.xctl.mu2 Vg (1) Vs (1.65)

In the following example, all of the p-MOSFET in subckt cpu and the p-
MOSFET whose names starting with x1 and x2 in subckt fifo are checked. The
command traces to all the logic-high voltage sources, whose values are larger
than 0.8V. During the traversing, it will skip all the transistors in subckt mux2.

cckPmosG_lt_DS vhth=0.8 vt=0.3 vnth=0.6 vpth=-0.5 subckt=cpu
inst=* subckt=fifo inst=x1* inst=x2* skipSub=mux2 skipInst=*
rmInst=x4*

When the tracing is completed, it compares the gate node voltage with those of
drain and source. If the gate voltage is smaller than drain or source by 0.3V, it
reports this device, unless this device's name is prefixed with x4.

The following example uses the rptTrace parameter:

cckPmosG_lt_DS subckt=aa inst=* vhth=0.7 vnth=0.5 vpth=-0.6
vt=0.3 rptTrace=1

For each transistor reported, a transistor path is printed which leads its gate
node to a voltage source.

A sample of the above command example's output is:

xi.mp1 Vg (2.4) Vs (2.8)
(G) wctrl

thruI xi10.m2 (propagate 2.400)
thruI xi10.r3 (propagate 2.400)
thruI xia1.mp1 (propagate 2.400)
frmNd vdd

(S) wa
thruI xi9.m1 (propagate 2.8)
frmNd exvdd
242 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
The gate node of transistor xi.mp1 has a potential voltage of 2.4 volt, which is
less than the source node's potential voltage (2.8 volt). Hence, this device can
be partially conducting and cause large leakage current. To facilitate
debugging the design, a path is shown connecting its gate node to 2.4 volt; a
path connecting its source node to 2.8 volt. In this output, it shows that the gate
node wctrl can reach VDD of 2.4 volt through xi10.m2, xi10.r3 and xia1.mp1.
How voltage is propagated is also shown. If there is a voltage drop, it will be
printed. For its source node wa, it is connected to exvdd which is at 2.8 volt
through xi9.m1. By going through these two lists, the cause for potential large
leakage current can be found.

The following example assumes this Vsrc definition in the netlist:

...

.param pvdd = 1.11v

.param pvdd2 = 0.8v
vvdd vddx 0 pvdd
vvde vvdex 0 pwl 0ns 0 0.1ns pvdd
vshift shift 0 pwl 0ns 0 0.1ns pvdd2
...

And also assumes the following command set

cckPmosG_lt_DS vhth=0.5 vnth=0.3 vt=0.1 autoFvsrcnd=1

CCK operates equivalently to following syntax:

cckPmosG_lt_DS vhth=0.5 vnth=0.3 vt=0.1 fvsrcnd=(vvdex, 0, 1.11)
fvsrcnd=(shift, 0, 0.8)

The report header is updated to include the autoFvsrcnd setting:

**
* PMOS gate vsrc valu
e less than D/S vsrc:
*
* vnth=0.300 vpth=-0.500
* vhth=0.500
*
* vt=0.10 num=300
*
* autoFvsrcnd=1
* format: instName gate_volt d/s_volt
**
HSIMplus® Reference Manual 243
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
Check PMOS Node To GND Connection

cckPmosNodeToGnd
Description
Checks a p-MOSFET's four nodes (drain/source/gate/bulk). If any one is
connected to ground or logic-low voltage source (whose value is less than
vhth), report it.

Usage Syntax 1
cckPmosNodeToGnd <tag=tagName> <num=n> <vlth=v>

<inst=inst_name> <model=model_name> <node=drain>
<node=source> <node=gate> <node=bulk>

Usage Syntax 2
cckPmosNodeToGnd <tag=tagName> <num=n> <vlth=v>

<inst=inst_name> <model=model_name>
<node='drain|source|gate|bulk'>

Note:

Usage Syntax 2 is a version of Usage Syntax 1 to simplify the "node"
specification. Node='drain | source' is the same as node=drain
node=source.

Parameters
tag

Specify the label in the report.

num

Specify the total number of violations to be reported

vlth

Specify the threshold voltage to be checked. The default is 0.4V.

inst

Specify the instance name in the design to be checked.

model

Specify the model to be checked.
244 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
node

Specify the nodes to be checked. The keyword, "*" and "all", are supported
for checking on four terminals of a PMOS device.

Note:

Multiple cckPmosNodeToGnd commands can be specified in the CCK
command file.

Examples
The following two examples are equivalent. They check the node voltage inside
instance, x03 with model=pmos. If the voltages of the gate node and drain
node are less than default vlth (0.4V), they will be reported.

cckPmosNodeToGnd tag=tag2 node=gate node=drain inst=x03.*
model=pmos
cckPmosNodeToGnd tag=tag2 node='gate| drain' inst=x03.*
model=pmos

The following example checks the four terminals of the PMOS device in a
design, since "node=*" is specified and reports the violations if the terminal
voltage is less than 0.3V.

cckPmosNodeToGnd tag=tag4 vlth=0.3 node=*

The following example checks the four terminals of the PMOS device inside
instance x03 with model name, pmos, because the keyword, "all", is used in the
"node=" control parameter.

cckPmosNodeToGnd tag=tag5 vlth=0.7 node=all inst=x03.* model=pmos

Safe Operating Area Check

cckSOA
The cckSOA command checks for any violation against the safe operating area
(SOA) limits specified via the cckSOA constraint expression. If a default is
discovered, a Warning message is printed.

Syntax
cckSOA <inst=instanceScope> <label="labelName">

<model=typeOfModel|VA_model_name>
<num=numberOfViolationTimeWindow>
<constraint=ConstraintExpression> <start=start_time>
<stop=stop_time> <filterAlert 0|1>
HSIMplus® Reference Manual 245
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
Parameters
inst

Specifies the scope of devices in the circuit within which the cckSOA check
will be applied.

label

Specifies a label/tag to be used in the report file for distinguishing each
different cckSOA commands used.

model

Limits the inst scope to be checked one step further so that the check is
applied just on devices with the same model as specified in this option.

You can also specify a Verilog-A module name, which means cckSOA
performs a port voltage check on the instances instantiated from the
matched Verilog-A module.

num

Tells cckSOA how many time windows of violation to be checked and
reported. The num default is 1. If num is negative or 0, then the check
continues until the simulation stops.

constraint

Expression uses the form: '(condition_expression, lower_bound,
upper_bound, time_duration)'

You can also specify a constraint expression to perform analysis on a
targeted Verilog-A module port. For example:

cckSOA label=test model="resVA1" constraint=’(v(in1_b) <
2.0, 0, 0, 5n)’

In this example, cckSOA looks for voltage of “in1_b” port defined in “resVA1”
Verilog-A module. If the port voltage value is less than 2v and the condition
lasts longer than 5ns, it is reported as violation.

Use '(and)' to delimit the constraint expression. Where
condition_expression can be any [+ – * /] combination of cckSOA constraint
functions listed below. The cckSOA constraint functions presently
supported include:

• I: get current of a DIODE

• IB: get BULK current of MOSFET or BASE current of BJT

• IC: get COLLECTOR current of BJT
246 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
• ID: get DRAIN current of MOSFET or JFET

• IE: get EMITTER current of BJT

• IG: get GATE current of MOSFET/JFET

• IS: get SOURCE current of MOSFET/JFET/BJT

• VB: get BULK/BASE voltage of MOSFET/BJT

• VBC: get BASE/COLLECTOR voltage difference of BJT

• VBD: get BULK/DRAIN voltage difference of MOSFET

• VBE: get BASE/EMITTER voltage difference of BJT

• VBS: get BULK(BASE)/SOURCE voltage difference of MOSFET(BJT)

• VC: get COLLECTOR voltage of BJT

• VCE: get COLLECTOR/EMITTER voltage difference of BJT

• VCS: get COLLECTOR/SOURCE voltage difference of BJT

• VD: get DRAIN voltage of MOSFET/JFET

• VDIP: get ANODE/CATHODE voltage difference of DIODE

• VDS: get DRAIN/SOURCE voltage difference of MOSFET/JFET

• VE: get EMITTER voltage of BJT

• VES: get EMITTER/SOURCE voltage difference of BJT

• VG: get GATE voltage of MOSFET/JFET

• VGB: get GATE/BULK voltage difference of MOSFET

• VGD: get GATE/DRAIN voltage difference of MOSFET/JFET

• VGS: get GATE/SOURCE voltage difference of MOSFET/JFET

• VNEG: get CATHODE voltage of DIODE

• VPOS: get ANODE voltage of DIODE

• VS : get SOURCE voltage of MOSFET/JFET/BJT

start

Specifies the start time for the SOA check.

stop

Specifies the stop time for the SOA check.
HSIMplus® Reference Manual 247
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
filterAlert

If set to 0 (the default) issues a warning if there are no matched devices. If
set it to 1, issues an error message and terminates the CircuitCheck
analysis if there are no matched devices.

When the given "condition_expression" is found to be lower than the
"lower_bound" or higher than the "upper_bound" and it lasts for a time period
longer than the "time_duration," then this time window of violation is reported. If
this kind of violation happens frequently and exceeds the option "num"
specified, then cckSOA will cease to check or report more time windows of
violation.

Example
The following commands check the device element x3m.x0.x0.xsap.x1.mp1
with model type p with the constraint '(vgs, -1.5, 0.0, 15n)' expression; check if
the function value vgs (Voltage difference between Gate and Source) is outside
the range (-1.5, 0.0) consecutively for a time period longer than 15
nanoseconds. If such a violation occurs, it is reported. It also checks and
reports occurrences of the violation up to 2 times then ceases checking. At the
same time the commands also check on the same device with constraint
expression '(id, -500u, 5u, 15n)' which focuses its drain current.

cckSOA inst=x3m.x0.x0.xsap.x1.mp1 Label="vgs" model=p num=2\
constraint = '(vgs, -1.5, 0.0, 15n)'
cckSOA inst=x3m.x0.x0.xsap.x1.mp1 Label="id" model=p num=2 \
constraint = '(id, -500u, 5u, 15n)'

Its violation report looks like the following:
248 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check

----------------- vgs ----------------------
Element: (x3m.x0.x0.xsap.x1.mp1) of model: 'p',
violates constraint: '(vgs, -1.5, 0, 15)'
@ the following time window(s):
{

Time Window #1:(121.8300, 140.3690)--> time span=18.5390 ns
Peak constraint values: low @(-2.4094), high @(0.0000)

}
{

Time Window #2:(172.0070, 190.3690)--> time span=18.3620 ns
Peak constraint values: low @(-2.4094), high @(0.0000)

}

--------------- id --------------------
Element: (x3m.x0.x0.xsap.x1.mp1) of model: 'p',
violates constraint: '(id, -0.0005, 5e-006, 15)'
@ the following time window(s):
{

Time Window #1:(120.8400, 140.5300)--> time span=19.6900 ns
Peak constraint values: low @(0.0000), high @(0.0010)

}
{

Time Window #2:(170.8420, 190.5300)--> time span=19.6880 ns
Peak constraint values: low @(0.0000), high @(0.0010)

}

Subcircuit-Based Voltage Analysis Using the Dynamic
Approach

The cckDynSubV command lets you evaluate the signal degradation or the
correct biasing, such as a signal propagating along parasitic nets or a chain of
diode. It also provides the flexibility to check or monitor the voltage difference
on multiple specified nodes during transient simulation.

cckDynSubV
Syntax
cckDynSubV tag subckt=<subckt_name> inst=<inst_name>

constraint='expression' num=<n> duration=<val>
start=<time> stop=<time> <separate_file=<0|1>
<filterAlert 0|1>
HSIMplus® Reference Manual 249
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
Parameters
tag

Each cckDynSubV command must have a unique tag name as its first
parameter. When several cckDynSubV commands are in one command file,
these unique tags distinguish violations reported from the different
commands. In the output file, each tag name is the leading string of each
line, so you can easily identify which line is output by which command. Also,
the tag name is referenced as part of output filename if separate_file is set
to 1. For example:

cckDynSubV sub1_chk subckt= sub1 constraint= ‘…’ …

cckDynSubV inst1_chk inst= subInst1 constraint= ‘…’ …

subckt

Specifies the subcircuit name in which the node voltages are to be checked.
If a subcircuit containing the nodes to be checked is instantiated more than
once, and if the violations occur, these violations are all reported. This
parameter is optional and does not support a “*” wildcard. If a subckt name
matches the specified subcircuit and the constraint expression of nodes is
applicable, then the expression in constraint is evaluated to determine if a
violation occurs.

inst

Specifies the instance of a subcircuit or the instantiation of specified subckt
in which nodes to be checked dwell. You can specify a hierarchical name of
instances delimited by “.” character. This parameter is optional and does not
support a “*” wildcard. If an instance matches with this inst scope and the
constraint expression of node voltages specified is applicable on it, then the
expression in constraint is evaluated to determine if a violation occurs.

constraint= ‘expression’

An expression is formed by voltages of nodes, logical operators (&&, ||, >,
<, >=, <=, ==, !=) and mathematical operators (+,-,*, /, and abs()). A simple
example is: constraint='((v(nodeA)–v(nodeC)) < v(nodeB) || (v(nodeB) >=
0.5 && v(nodeD)<1.0))'. When this expression is logically true, a violation
is reported. The argument of “V” is a “node name”, where “node name” can
be one of the following:

• An absolute (hierarchical) node name if no “subckt” or “inst” is specified.
For example, “x0.x1.x2.x3.net4”. No wildcard is allowed in such an
absolute node name expression.
250 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
• A (hierarchical) node name “relative” to “subckt” or specified “inst”. For
example, if given “inst=x0.x1.x2.*” and there are lower-level subckt
instances “x3” and “x4”, then “V(nd1)” means check node “nd1” of
subckt instance “x0.x1.x2.x3” and “nd1” of subckt instance
“x0.x1.x2.x4”. For example, if given “subckt=sub0” then “V(nd2)” means
check voltage at “nd2” under subckt “sub0”.

• When inst= “x0.x1.x2.*” is given as the pattern, it matches with subckt
instances like “x0.x1.x2.x3” as well as “x0.x1.x2.x5.x6”. That is, the
wildcard “*” matches “x3” and “x5.x6” as a regular expression would
normally do.

Note:

An expression must be quoted by single quotation marks “ ‘ “.

num=<n>

Limits the number of violations output by the cckDynSubV command. If the
number of violations exceeds <n>, only <n> violation are generated. The
default value is 300. If <n> is set to less than or equal to 0, it means
unlimited.

duration

Specifies the time duration that the constraint expression sustains the
logically true condition to trigger an error report.

start and stop

Specifies the start and stop time span to perform checking.

separate_file

When set to 1, specifies that errors to be reported are directed to separate
file(s) per each tag in cckDynSubV command statement. The default value
is 0. When separate_file=1, output files are named according to the
following rules:

• If t e -o option (output_prefix) is issued in the HSIMplus command line, it
is used as the output file prefix. Otherwise, hsim is used as the default
output file prefix.

• nodev is the first portion of default extension for cckDynSubV output
files. For example:

 output_prefix.nodev or hsim.nodev

• When separate_file=1, an additional <tag> is attached at the end of
output file name :
HSIMplus® Reference Manual 251
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
output_prefix.nodev_<tag>

For the following commands:

cckDynSubV abc subckt= abc constraint= ‘v(nd1)>3.0’
separate_file=1

cckDynSubV ijk subckt= ijk constraint= ‘v(nd2)<0.’
separate_file=0

The following output files, respectively, are created:

output_prefix.nodev_abc

output_prefix.nodev

filterAlert

If set to 0 (the default) issues a warning if there are no matched devices. If
set it to 1, issues an error message and terminates the CircuitCheck
analysis if there are no matched devices.

Examples
cckDynSubV test subckt=inv constraint= ‘((V(nd1)-V(nd2)>3) ||
(V(nd1)-V(nd2)<1)’ duration=1n start=5n stop=10n

Performs a dynamic node voltage check from transient time 5ns to 10ns. The
violations are reported if the voltage difference (V(nd1) – V(nd2)) is greater
than 3v or less than 1v and such conditions remains longer than 1ns. The
target nodes “nd1” and “nd2” are defined inside subckt “inv”.

cckDynSubV test1 inst=hsio* constraint= ‘(V(nd1) >=0 && V(nd2)-
V(nd3) > 0.5)’ duration=2n start=5n stop=10n num=200
separate_file=1

Performs a dynamic node voltage check from transient time 5ns to 10ns. A
violation occurs if the constraint expression : “V(nd)>=0V AND V(nd2)-V(nd3)
< 0.5” is satisfied. Only subckt instances with names starting with “hsio” are
checked and reported. The total number of violations to be reported is limited to
200. The violations are in a separate file with extension nodev_test1.

cckDynSubV test2 subckt=fulladd inst=xful* constraint='(v(o1)> 0
&& v(c1)-v(c2) > 0.2)' duration=3n num=100 separate_file=1

Performs a dynamic voltage check throughout the entire transient simulation
cycle. The expression looks for signal names such as “o1”, “c1”, and “c2”
defined within subckt “fulladd”. The checking targets are on subckt “fulladd”
instantiation with its instance name starting with “xful”.

The following example shows a cckDynSubV report:
252 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
* ---
* Dynamic Node Voltage Check
* tag =test2
* subckt =fulladd
* inst =xful*
* constraint= '(v(o1)> 0 && v(c1)-v(c2) > 0.2)'
* duration =3n
* num = 100
* separate_file = 1
* twindow = (0, max)

* ---
Instance: xful2
Violation Data:
Duration: (41.000, 51.961) --> time span = 10.961 ns

at 41.000 ns: xful2.o1(v=4.95532) xful2.c1(v=2.4666)
xful2.c2(v=2.2018)

at 51.961 ns: xful2.o1(v=0.861179) xful2.c1(v=5.12874)
xful2.c2(v=4.92276)

Instance: xful3
Violation Data:
Duration: (42.395, 52.203) --> time span = 9.808 ns

at 42.395 ns: xful3.o1(v=4.05138) xful3.c1(v=4.61114)
xful3.c2(v=4.37931)
at 52.203 ns: xful3.o1(v=0.801633) xful3.c1(v=5.0937)
xful3.c2(v=4.87613)

Instance: xful2
Violation Data:
Duration: (80.967, 91.961) --> time span = 10.994 ns

at 80.967 ns: xful2.o1(v=4.98497) xful2.c1(v=2.40586)
xful2.c2(v=2.17932)
at 91.961 ns: xful2.o1(v=0.864535) xful2.c1(v=5.12876)
xful2.c2(v=4.9235)

** Total number of violations = 3

Substrate Forward Bias Check

cckSubstrate
Checks whether a MOSFET substrate becomes forward-biased.
HSIMplus® Reference Manual 253
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
Syntax
cckSubstrate <mode=[2|1|0]> <num=n> <vt=v> <ith=iv>

<start=t1> <stop=t2> <model=m> <tag=t>

Description
The cckSubstrate command checks whether a MOSFET substrate becomes
forward-biased. This check is performed before DC initialization and during
transient simulation. In simulation, once a MOSFET’s substrate becomes
forward-biased by more than a threshold, a Warning message is printed.

Parameters
mode

Since checking is performed before DC initialization or during transient
simulation, the mode parameter is used to control when checking is
accomplished.

• Mode Set to 0

When the mode is set to 0, every MOSFET’s substrate connection is
checked before DC analysis is performed. A warning message is issued
if a MOSFET’s bulk is connected as shown in the following:

p-MOSFET: Ground or negative constant voltage source

n-MOSFET: Positive constant voltage source

The warning message is saved in one of the following files:

hsim.cck: default

out_file.cck: If -o out_file is used in HSIM invocation.

• Mode Set to 1

When the mode is set to 1, a MOSFET’s substrate is checked to see if
it becomes forward-biased during simulation.

• Mode Set to 2

When the mode is set to 2, both types of checking are accomplished.

num

Controls the number of warning messages issued.

vt

Set the voltage threshold (applicable to dynamic check only) to avoid
printing out an excessive number of messages. If the forward bias voltage
exceeds vt, a Warning message is printed. Default is 0.5V.
254 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
ith

If ith is specified, the bulk current is computed under the forward bias
condition. If the absolute value of this bulk current is greater than ith, this
element will be reported. Default is 0 Amp.

start

Specifies the start time for vt checks.

stop

Specifies the stop times for vt checks.

model

MOSFET type to be checked model is user-selectable.

tag

t is printed in the report file at the beginning of the readability line.

Examples
cckSubstrate mode=2 num=300 vt=0.8 start=10n stop=50n start=90n
stop=120n

Since mode=2, the entire MOSFET substrate is checked before performing DC
initialization and during transient simulation.

Note:

There is a limit of 300 Warning messages that can be specified as shown in
the example above.

During simulation, if a substrate becomes forward-biased by more than 0.8V, a
Warning message is printed. The following explanation illustrates when a
Warning message is printed.

At 10 ns, a p-MOSFET’s drain is 3V and its substrate is 2.1V. This p-MOSFET
is forward-biased by 3-2.1=0.9V which is larger than vt=0.8V. Hence, a
Warning message is printed. Checking is accomplished between 10 ns and 50
ns and between 90 ns and 120 ns.

The following is the MOSFET Substrate Checking Before DC output sample
resulting from the command example above.

* MOS Substrate Checking Before DC

in subckt (TLC), pmos (xi.pg)'s bulk (gnd) is connected to 0.00 volt
in subckt (TLC), nmos (xi2.mi10)'s bulk (vdd) is connected to
3.00 volt
HSIMplus® Reference Manual 255
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
In the above example, the following definitions apply:
■ xi.pg: p-MOSFET element name
■ gnd: Node name
■ xi2.mi10: Element name
■ vdd: Node name
■ TLC: Top-level circuit

The following is the MOSFET Bulk and Diode Forward-biased In Simulation
output sample resulting from the same command example:

**** ***
* MOS Bulk and Diode forward-biased In Simulation
* bulk forward bias: model=n1a, threshold=0.8 tag=n1

(n1)@20.86n, nmos (xu5.mn) bulk forward-biased
v(b)=0.0000 v(d)=-1.51 v(s)=0.0000

This sample reads: At 20.86ns, n-MOSFET xu5.mn’s bulk becomes forward-
biased with the following parameters.
■ Bulk voltage (v(b)) is 0V
■ Drain voltage n1a(v(d)) is –1.51V.

This element is reported since the difference derived by the following formula is
greater than the default of 0.8V.

(0-(-1.51))=1.51V

Note:

In some case, the substrate forward bias check may produce a huge file.
num is used to limit the amount of output.

Note:

In transient simulation, both the substrate and diode forward bias are
checked at each time interval and shows both results under the same
header.

Unprotected Antenna Node Check

cckAntGate
Checks if an antenna node is protected by diode.
256 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
Syntax
cckAntGate <num=n>

Parameters
num

limit the number of warnings, default is 300

Description
This command checks if an antenna node is protected by diode. If an antenna
node has no connection to any reversed-bias diode, a warning is issued. An
antenna node is defined as primary the input at top level, driven by ideal
voltage sources, and it has direct connection or through resistor/inductor to
transistor's gate.

Static Voltage Propagation Sharing

Multiple commands can share the same static voltage propagation. The
commands that can share static voltage propagation are:
■ cckMosV
■ cckCapV
■ cckResV
■ cckDioV
■ cckPmosG_lt_DS
■ cckNmosG_gt_DS
■ cckPmosB_lt_DS
■ cckNmosG_gt_DS

Propagation Parameters
Propagation parameters are the command parameters that affect the result of
the static voltage propagation. The propagation parameters are:
■ exttrace
■ limitmos
■ risepmosfallnmos
■ vpth
HSIMplus® Reference Manual 257
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
■ vnth
■ off_vpth
■ off_vnth
■ vlth
■ vhth

Propagation Sharing
Among all of the commands in the command file, groups of command that
meet all the following conditions can share the same propagation:

1. Have the same command name

2. Use identical propagation parameters

3. Use exttrace=0

Note:

Command sharing does not depend on the ordering of the commands in the
command file.

Example
Consider the following CircuitCheck command file:
258 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Design and Electrical Rules Check
cckStaticDCPath nmosOn=0 pmosOn=1.2 separate_file=1 subinfo=1
cckPmosG_lt_DS inst=* vhth=0.5 vt=0.01 vnth=0 vpth=0 subinfo=1 num=1000000
rpttrace=1
cckNmosG_gt_DS inst=* vlth=0.5 vt=0.01 vnth=0 vpth=0 subinfo=1 num=1000000
rpttrace=1
cckPmosB_lt_DS inst=* vhth=0.5 vt=0.01 vnth=0 vpth=0 subinfo=1 num=1000000
cckNmosB_gt_DS inst=* vlth=0.5 vt=0.01 vnth=0 vpth=0 subinfo=1 num=1000000
cckDiode mode=0 subinfo=1 num=1000000
cckfloatgateisrc 1 subinfo=1
cckStaticHZNode nmosOn=0 pmosOn=1.2 separate_file=1 subinfo=1 fanout=3
pcap=1
cckStaticHZNode nmosOn=0 pmosOn=1.2 separate_file=1 subinfo=1 fanout=3
pcap=1
cckMosV mn1 model=n7* inst=* vnth=0 vpth=0 uvg=3.3 uvs=3.3 subinfo=1
cckMosV mn2 model=n_* inst=* vnth=0 vpth=0 uvg=1.2 uvs=1.2 subinfo=1
cckMosV mn3 model=na inst=* vnth=0 vpth=0 uvg=1.2 uvs=1.2 subinfo=1
cckMosV mn4 model=n inst=* vnth=0 vpth=0 uvg=1.2 uvs=1.2 subinfo=1
cckNmosG_gt_DS inst=* vlth=0.5 vt=0.02 vnth=0 vpth=0 subinfo=1 num=1000000
rpttrace=1
cckMosV mp1 model=p7* inst=* vnth=0 vpth=0 uvg=3.3 uvs=3.3 subinfo=1
cckMosV mp2 model=p_* inst=* vnth=0 vpth=0 uvg=1.2 uvs=1.2 subinfo=1
cckMosV mp4 model=p inst=* vnth=0 vpth=0 uvg=1.2 uvs=1.2 subinfo=1

There are 17 commands. 10 separate static voltage propagations are
necessary in this case.

Propagations 1 to 5 (commands not supported for voltage propagation
sharing):

cckStaticDCPath nmosOn=0 pmosOn=1.2 separate_file=1 subinfo=1
cckDiode mode=0 subinfo=1 num=1000000
cckfloatgateisrc 1 subinfo=1
cckStaticHZNode nmosOn=0 pmosOn=1.2 separate_file=1 subinfo=1
fanout=3 pcap=1
cckStaticHZNode nmosOn=0 pmosOn=1.2 separate_file=1 subinfo=1
fanout=3 pcap=1

Propagations 6-8 (supported, but different command names are used):

cckPmosG_lt_DS inst=* vhth=0.5 vt=0.01 vnth=0 vpth=0 subinfo=1
num=1000000 rpttrace=1
cckPmosB_lt_DS inst=* vhth=0.5 vt=0.01 vnth=0 vpth=0 subinfo=1
num=1000000
cckNmosB_gt_DS inst=* vlth=0.5 vt=0.01 vnth=0 vpth=0 subinfo=1
num=1000000

Propagation 9:
HSIMplus® Reference Manual 259
C-2009.06

Chapter 8: CircuitCheck
Digital Logic and Memory Diagnostics
cckNmosG_gt_DS inst=* vlth=0.5 vt=0.01 vnth=0 vpth=0 subinfo=1
num=1000000 rpttrace=1
cckNmosG_gt_DS inst=* vlth=0.5 vt=0.02 vnth=0 vpth=0 subinfo=1
num=1000000 rpttrace=1

Propagation 10:

cckMosV mn1 model=n7* inst=* vnth=0 vpth=0 uvg=3.3 uvs=3.3
subinfo=1
cckMosV mn2 model=n_* inst=* vnth=0 vpth=0 uvg=1.2 uvs=1.2
subinfo=1
cckMosV mn3 model=na inst=* vnth=0 vpth=0 uvg=1.2 uvs=1.2
subinfo=1
cckMosV mn4 model=n inst=* vnth=0 vpth=0 uvg=1.2 uvs=1.2 subinfo=1
cckMosV mp1 model=p7* inst=* vnth=0 vpth=0 uvg=3.3 uvs=3.3
subinfo=1
cckMosV mp2 model=p_* inst=* vnth=0 vpth=0 uvg=1.2 uvs=1.2
subinfo=1
cckMosV mp4 model=p inst=* vnth=0 vpth=0 uvg=1.2 uvs=1.2 subinfo=1

Digital Logic and Memory Diagnostics

These CircuitCheck commands are designed to help check stuck-at nodes, un-
initialized latches, series MOSFET stack-up, Flash memory over-erase
conditions, toggle count, and trace event triggers. These commands are
presented in alphabetic order to make it easier to find them.

Flash Memory Check

Over-erasing and involuntary operation condition checking in flash memory
cells.

cckFlashcore
Automatically detects over-erasing condition in flash memory cell and helps
prevent involuntary operations during read cycle

Syntax
cckFlashcore <vtlow=vtlow_value> <vdsrdmax=vdsrdmax_value>
260 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Digital Logic and Memory Diagnostics
Parameters
vtlow

CircuitCheck will check if Vth < vtlow during the phase of erasing; the check
will be disabled otherwise. If Vth < vtlow, then Warning messages will be
reported.

vdsrdmax

CircuitCheck will check if Vds > vdsrdmax during the phase of reading; the
check will be disabled otherwise. If Vds < vdsrdmax, then Warning
messages will be reported.

Note:

If vtlow and vdsrdmax are used together, both checks will launch
simultaneously.

Note:

If the vtlow or vdsrdmax is not specified, the corresponding check will
be disabled.

Description
This command is especially helpful in flash memory cell design. It provides an
automatic detection of over-erasing condition in flash memory cell and ensures
that there is no risk of involuntary operation during the read cycle. With this
CircuitCheck command, CCK generates Warning messages and reports the
flash core cell instance if Vth becomes less than a specified threshold during
the erasing cycle or if Vds is greater than a threshold during read cycle.

Note:

The Warning messages are stored in the hsim.cck or file_name.cck, where
file_name is the output file name specified.

Examples
Adding cckFlashCore to the CircuitCheck command file: When the following
command is added in the CircuitCheck command file after simulation is
completed, a Warning messages is issued and stored in the .cck file if Vds >
4.5 V.

cckFlashcore vdsrdmax=4.5

The following is a typical warning message:
HSIMplus® Reference Manual 261
C-2009.06

Chapter 8: CircuitCheck
Digital Logic and Memory Diagnostics
*
*
High Vds during reading.

model mos1, vds=4.911000, time=1.500004e-005.
High Vds during reading.

model mos1, vds=5.060000, time=1.500005e-005.
High Vds during reading.

model mos1, vds=5.805000, time=1.500005e-005.
High Vds during reading.

model mos1, vds=6.550000, time=1.500005e-005.
High Vds during reading.

model mos1, vds=6.848000, time=1.500006e-005.

Note:

In the Warning message shown above, Vt check is disabled because the
parameter, vtlow, is not specified.

Find Un-initialized Latch

cckLatchUnInit
Syntax
cckLatchUnInit 0|1

Parameters
1

Detects uninitialized latches (default)

0

Turns off cckLatchUnInit

Examples
cckLatchUnInit 1

Sample output from cckLatchUnInit:

* Un-initialized Latch

isolated latch node (xicg.xeset.n2)
isolated latch node (xicg.xeset.n1)
262 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Digital Logic and Memory Diagnostics
Description
A latch usually has a circuit loop. Figure 18 shows two circuits. The first circuit
has a pass gate in the loop and the second circuit does not. C and C are
signals connecting to GATE nodes of pass gate transistors. The initial
conditions of the A and B nodes in the loop will affect the simulation result. If no
node is driven at the initial stage, CircuitCheck reports it.

Figure 20 cckLatchUnlnit: Signals connecting the Pass Gate through Nodes
A & B

cckLatchUnInit checking is performed after DC initialization. In the first circuit
shown in Figure 18 on page 237, if m1 is OFF and the pass gate is ON due to
C/C. A and B have no other elements driving them. Therefore, they are
considered to be floating.

cckLatchUnInit has a group of sub-commands which are described in the
following sections:
■ cckLatchInElem on page 238
■ cckLatchSkipElem on page 238

cckLatchInElem
This is a sub-command for cckLatchUnInit and directs it to only check latches in
a portion of the design

A

B

C

C m1

A

B

m1 if off -> nodes A, B are considered floating A, B have no other source driving the

m2

B

d floatingno other source driving them
HSIMplus® Reference Manual 263
C-2009.06

Chapter 8: CircuitCheck
Digital Logic and Memory Diagnostics
Syntax
cckLatchInElem <subckt=s> <inst=e>

Examples
The following command directs cckLatchUnInit to check latches in only a
portion of the design, instances xm and xcpu:

cckLatchInElem <inst=xm*> <inst=xcpu*>

In the following command, CircuitCheck checks latches in all the instances of
subckt xlatch1 and xlatch2:

cckLatchUnInit 1
cckLatchInElem subckt=xlatch1 subckt=xlatch2

In the following command, the options subckt and inst specify instance and/or
instance(s) instantiated from a specific subckt for cckLatchUnInit to check the
latches.

cckLatchUnInit 1
cckLatchInElem <subckt=s> <inst=e>

cckLatchSkipElem
Directs CircuitCheck to check all the latches except the specified portion.

Syntax
cckLatchSkipElem <subckt=subckt_name> <inst=inst_name>

Description
This is a subcommand for cckLatchUnInit and when cckLatchUnInit 1, this
subcommand directs CircuitCheck to check all the latches except the specific
portion defined in the cckLatchSkipElem command. The options subckt and
inst specify specific instance and/or instance(s) instantiated from a specific
subcircuit for cckLatchUnInit to skip during its checking operation:

Example
In the following example, CircuitCheck checks all the other specified latches
except those in instance xram:

cckLatchSkipElem inst=xram.*
cckLatchUnInit 1
264 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Digital Logic and Memory Diagnostics
Check Stack-up Transistors

CircuitCheck can verify the number of MOSFETs in series. If it exceeds the
stack-up length, CircuitCheck reports the MOSFET stack path.

cckMaxStackUpNmos
Reports any path of more than predetermined n-MOSFET transistors in series.

Syntax
cckMaxStackUpNmos <length=len> <num=n>

Example
The following CircuitCheck command reports any path of more than three n-
MOSFET transistors in series.

cckMaxStackUpNmos length=3

The following is the NMOS stack-up limit output sample resulting from the
command example above.

* NMOS stack up limit: 3

Largest nmos stack: 4
 (1) stack length: 4
 xam.xd.xu_0.mn1
 xam.xd.xu_0.mn2
 xam.xd.xu_0.mn3
 xam.xd.xu_0.mn4

Note:

These four nmos transistors are in series.

cckMaxStackUpPmos
Syntax
cckMaxStackUpPmos length=n

Example
cckMaxStackUpPmos length=2

The following is the PMOS stack up limit output sample resulting from the
command example above.
HSIMplus® Reference Manual 265
C-2009.06

Chapter 8: CircuitCheck
Digital Logic and Memory Diagnostics

* PMOS stack up limit: 2

Largest pmos stack: 3

(1) stack length: 3
xm.xu_6.xu51.mp
xm.xwr_6.xu.mnoen
xm.xwr_6.xu.mpi

Check and Classify the Stuck Nodes

CircuitCheck reports any node stuck at a certain voltage. If the stuck value is
positive, CircuitCheck treats it as stuck-at-1. Otherwise, it is stuck-at-0. This
type of Warning will be reported in .cckstuck0 and .cckstuck1 files.

cckMaxStuckAt
Syntax
cckMaxStuckAt0 <num=n> <node=nd> <skipSub=skip_sub_name>

<skipnode=skip_node_name>
cckMaxStuckAt1 <num=n> <node=nd> <skipSub=skip_sub_name>

<skipnode=skip_node_name>

Parameters
num=n

Limits the number of Warnings in each category to n.

node=nd

Defines the portion of the design to be checked for stuck-at nodes.

skipSub

Skips the specified sub-circuit.

skipnode

Skips the specified node.

Description
The number of warnings can be limited using num. CircuitCheck also permits
selection of which portion of a design is checked using node. Refer to the
example below.

Example
cckMaxStuckAt0 <num=300> <node=xm.*>
266 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Digital Logic and Memory Diagnostics
CircuitCheck checks the stuck-at nodes in instance xm.

cckToggleCount
Checks every node in the design.

Syntax
cckToggleCount <vref=v> <skipSub=skip_sub_name>

<skipnode=skip_node_name> <start=start+tim1
<stop=stop_tim1 <start=start_tim2 <stop=stop_tim2...
<tc0=0|1>>>>

Parameters
vref=v

Specifies the reference voltage to be used.

skipSub

Skips the specified sub-circuit.

skipnode

Skips the specified node.

start, stop

start and stop specify the time window(s) in which cckToggleCount is
checked. Multiple start and stop parameters can be specified.

tc0=0|1

 A value of 0 (the default) disables the additional zero-toggling report, so
only the active signals are reported. A value 1 enables the additional zero-
toggling report.

Examples
cckToggleCount vref=5.0 skipsub=cnand start=20n stop=40n
start=60n stop=80n

If any node crosses the vref=v reference voltage, the toggle count at this node
is increased by 1. At the end of the simulation, the toggle count is reported for
every node. This report is used to compute the toggle frequency at each node
and then multiply with the node capacitance to estimate the power
consumption. The output is located in either the hsim.ccktoggle or
output.ccktoggle file.
HSIMplus® Reference Manual 267
C-2009.06

Chapter 8: CircuitCheck
Digital Logic and Memory Diagnostics
Example 35 Sample hsim.ccktoggle File Output.
*Synopsys Corporation.
*HSIM Win32 Debug Version 5.0 - 175607242004
*Tracking No - HSIM 2004.30.3
*Copyright (C) 1998 - 2004. All rights reserved.
*
*
* cckToggleCount vref=0.7
* format: node_name toggle_count
aa<0> 1
aa<12> 4
aa<16> 1
dd<0> 1
xic5m29f016b_verilog.xibaaps.i25_d 1
xic5m29f016b_verilog.xibaaps.i26_d 2

cckConnReport
Performs a high connectivity node check.

Syntax
cckConnReport <vconnth=<value> <subinfo=[0|1]>

Parameters
vconnth=value

Specifies the device count threshold value. CCK reports node names with
connected devices greater than the specified threshold value. The default is
500.

subinfo=[0|1]

If set to 1 specifies that the additional subcircuit information is printed along
with the device full hierarchy name. The default is 0.

Note:

The reported node names are in the full hierarchy naming convention with
the corresponding subcircuit name information (if subinfo=1 is set), and the
node names are sorted in descending order by the associated connected
device count value.

Examples
cckConnReport connth=1000

CCK reports the node name with a connected device count greater than 1000
and generates the following report:
268 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Digital Logic and Memory Diagnostics
*
* CCK Command : cckConnReport
* connth=1000 subinf
o=1
*
*
Node #1: vss
Subinfo : TLC
Data :
 Connections: 50064
Node #2: vdd
Subinfo : TLC
Data :
 Connections: 31965
Node #3: vcci
Subinfo : TLC
Data :
 Connections: 4780
Node #4: xids3234a1.vdd_tempcore
Subinfo : d32a34a1_g171
Data :
 Connections: 4210
Node #5: xids3234a1.xcontrol.net138
Subinfo : d32a34a1_g171 control_g167
Data :
 Connections: 3320

Interactive Circuit Debugging Command for Tracking Circuit

CircuitCheck traces the cause of a digital state change at a given node. Refer
to the HSIM Simulation Reference Manual: Chapter 12, Interactive Debugging,
List of Interactive Mode Commands for information on obtaining the interactive
debugging environments.

Note:

It is strongly recommended that all the logic signals are printed out before
using this feature. This is accomplished by using the lprint v(*) command.
The hsimvdd value must also be set to specify the low and high voltage logic
thresholds. The commands used to track circuits are based on FSDB files
and must be specified as FSDB format to use the commands.
HSIMplus® Reference Manual 269
C-2009.06

Chapter 8: CircuitCheck
Digital Logic and Memory Diagnostics
Note:

In a large design, the FSDB file can be created by first running the HSIM
simulation. At a later time in the process, enter the Interactive Mode and use
the previously created FSDB files for the ntrig commands. This reduces the
number of times that simulations for ntrig commands must be rerun.

Finding a Node’s First State Change After a Specified Time

ntrig
Syntax
ntrig node_name <-t time> <-f file1> <-mt time_interval>

Description
file1 is used to find the first state change for the node after the specified time
in nanoseconds. This command only finds the last signal to trigger a change in
a given node, unless -mt is specified. If -f is not specified, the current FSDB file
will be used. If -t is not used, the default time is 0.

Very often a state change is caused by a combination of several other signals.
For example, the output of a NAND gate is changed due to the changes of
input signals. When –mt is given, this command expands the search to find
more signals causing this given node to change. The time_interval in
nanoseconds is the period of backward time travel specified to find multiple
inputs.
270 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Digital Logic and Memory Diagnostics
Examples

Example 36
HSIM> ntrig -t 9 m188:gate
time=9.000000 ns
 fsdb file #1=hsim.fsdb.
 signal=m188(10)
 Only 1 possibility.
 possibility: #1
 m188:gate from 0 to 1 in [9.3260n, 9.3550n]
<- m177(1) from 1 to 0 in [9.2870n, 9.3090n]
<- m189(2) from 0 to 1 in [9.2470n, 9.2760n]
<- m429(3) from 1 to 0 in [9.2070n, 9.2290n]
<- m432(4) from 0 to 1 in [9.1680n, 9.1970n]
<- n_276(5) from 1 to 0 in [9.1280n, 9.1500n]
<- m173(6) from 0 to 1 in [9.0870n, 9.1180n]
<- i_22221.m31(7) from 1 to 0 in [9.0380n, 9.0750n]
<- i_22221.m28:gate from 0 to 1 in [8.9790n, 9.0200n]
 i_22221.m28:gate is a voltage source!

Example 37
HSIM > ntrig out -t 50 -mt 12
Node out (4):

Total number of possibilities: 2

possibility: #1
 out (4) from 1 to 0 in [52.06n, 52.57n]
<- s1 (6) from 0 to 1 in [51.03n, 51.62n]
<- in2 (2) from 1 to 0 in [50.29n, 50.70n]
in2 is a voltage source!

possibility: #2
 out (4) from 1 to 0 in [52.06n, 52.57n]
<- s3 (8) from 0 to 1 in [43.37n, 44.22n]
<- s2 (7) from 1 to 0 in [41.60n, 43.08n]
<- in3 (3) from 0 to 1 in [40.29n, 40.70n]
in3 is a voltage source!

The out node changed its state from 52.06 ns to 52.57 ns. Since -mt is
specified, the search will travel backward to 40.67 ns (=52.57 – 12). It finds
nodes s1 and s3 changed their states at 51.03 ns and 43.37 ns, respectively.
These two nodes will be reported. Also node s1 was triggered to change by
node in2 at 50.29 ns. Since in2 is a voltage source, the tracing from s1 is
stopped. The other possibility is from s3 to trace to s2 and finally to in3.
HSIMplus® Reference Manual 271
C-2009.06

Chapter 8: CircuitCheck
Digital Logic and Memory Diagnostics
Using ntrig to Trace a Circuit for State Change Causes In addition, the
ntrig command traces the circuit for the cause of a state change according to
one FSDB file and retrieve the corresponding signals of another user- specified
FSDB file for comparison.

Syntax
ntrig <-t time> <-f file1> <-cf file2> node_name

Note:

file1 and file2 are fsdb files.

Description
file1 is used to find the first state change for the node after the specified time. If
-f is not set, the FSDB file of the current run is the default. If -t is not set, the
default time is 0. file2, needs to be specified in order to compare values from
two FSDB files.

Examples

Example 38
HSIM> ntrig -t 3000 -cf try.fsdb d0

time=3000.000000 ns
fsdb file #1=hsim.fsdb.
fsdb file #2=try.fsdb.
signal=d0
possibility: #1

d0
file 1: 1 to 0 in [3053.8080n, 3053.8410n]
file 2: 1 to 0 in [3053.8060n, 3053.8390n]

<- xi259.net86
file 1: 0 to 1 in [3053.7510n, 3053.7900n]
file 2: 0 to 1 in [3053.7490n, 3053.7880n]

<- xi259.net71
file 1: 1 to 0 in [3053.7020n, 3053.7250n]
file 2: 1 to 0 in [3053.7000n, 3053.7230n]

<- xi259.net75
file 1: 0 to 1 in [3053.6560n, 3053.6760n]
file 2: 0 to 1 in [3053.6540n, 3053.6740n]

<- d0i
file 1: 1 to 0 in [3053.6370n, 3053.6550n]
file 2: 1 to 0 in [3053.6350n, 3053.6530n]

d0i is a voltage source.

A compare.rc file will be created each time the ntrig command is used to assist
in bring up all the identified digital signals in the nWave environment. The
compare.rc file is used as follows:
272 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Digital Logic and Memory Diagnostics
■ Select File->Restore Signals in nWave
■ Choose compare.rc

Using ntrig to Find the Difference in Two Initial Conditions Sometimes it
is useful to find out why at a certain time specified by t1, a node is at a specific
digital state while in another simulation run, the same node is at a different
state. It is valuable to know what other signals caused this node to be at
different states at a given time. This is achieved using ntrig -ic, as follows:

Syntax
ntrig -ic <-t t1> <-f file1> <-cf file2> node_name

Description
This feature compares two files (file1 and file2) to find out at time t1 what other
signals may cause this node to have different states. Time is measured in
nanoseconds. If -t is not set, the default time is 0. If -f is not set, the current
FSDB is a default file. The second FSDB file (file2), needs to be specified for
comparison. In this case, the program only examines at time t1 to determine
what made the given node to be at different states.

Example
HSIM > ntrig c –ic –t 10 -cf w.fsdb
Only 1 possibility.
possibility: #1
c (6) voltage: 0 vs 1.
<- a (9) voltage: 0 vs 1.
<- d (11) voltage: 1 vs 0.

Node c at time 10 ns has two different states: 0 in current fsdb; 1 in w.fsdb. It is
because two input signals a and d affecting node c are in different states. Node
a is 0 in current fsdb; but it is 1 in w.fsdb. Node d is 1 in current fsdb; but it is at
0 in w.fsdb.

Using ntrig to Find the Difference in Digital Value at a Given Time
Sometimes it is beneficial to trace down what causes a signal to have different
digital values in two runs. The ntrig command is able to accomplish this. The
ntrig -diff command finds the difference in a signal’s digital value at a given
time:

Syntax
ntrig node_name -diff <-t time> <-f file1> <-cf file2>
HSIMplus® Reference Manual 273
C-2009.06

Chapter 8: CircuitCheck
Digital Logic and Memory Diagnostics
Description
The second fsdb file (file2), needs to be specified for comparison. If this given
node, at the given time, has different values from these files, it is traced
backward in time domain to report the cause of the difference.

Example
HSIM > ntrig out -t 70 -diff -cf w.fsdb

time=70.000000 ns
fsdb file #1=hsim.fsdb.
fsdb file #2=w.fsdb.
Node out (6):

Only 1 possibility.
possibility: #1

out (6)
file 1: 0 to 1 in [66.3940n, 66.7470n]
file 2: 0 to 0 in [66.3940n, 66.7470n]

<- s2 (9)
file 1: 0 to 1 in [64.8010n, 66.7470n]
file 2: 0 to 0 in [45.8420n, 66.7470n]

<- in3 (5)
file 1: 1 to 0 in [45.0300n, 45.0350n]
file 2: 1 to 1 in [45.0300n, 45.0350n]

in3 is a voltage source!

Node out changed from 0 to 1 in current fsdb from 66.3940 ns. But in the other
simulation run (w.fsdb) it stayed at 0. The program traced and found at 64.8010
ns, node s2 changed to 1 in current fsdb. It was due to node in3 which changed
from 1 to 0 at 45.0300 ns. From the w.fsdb file, nodes s2 and in3 had different
states. This helps to find out what triggered a node to change its state.

intrig
Another way to probe a node is to provide the node ID. The usage and
functionalities are same as ntrig, except that the node hierarchical ID is used,
instead of node names.

intrig node_id <-t time> <-f file1> <-mt time1>
intrig node_id <-t time> <-f file1> <-cf file2>
intrig node_id -ic <-t time> <-f file1> <-cf file2>
intrig node_id -diff <-t time> <-f file1> <-cf file2>

intrig Tutorial The following is an example of an interactive circuit debugging
commands for tracking a circuit. Figure 19 on page 248 illustrates this
example.
274 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Digital Logic and Memory Diagnostics
Figure 21 intrig Circuit

This example is stored in directory /$HSIM_HOME/tutorial/logic. The three
primary inputs are in1, in2 and in3. Different choice of input pattern may lead to
different output voltage, v(out). For this circuit, there are two different input
vectors.

In the first run of testb.sp, the following syntax is used:

Vvdd vdd 0 5
r1 vdd in1 1
Va2 in2 0 pwl (0 5 5e-08 5 5.1e-08 0 10e-08 0)
Va3 in3 0 pwl (0 0 4e-08 0 4.1e-08 5 10e-08 5)

In the second run of testw.sp, the following syntax is used:

Vvdd vdd 0 5
r1 vdd in1 1
Va2 in2 0 pwl (0 5 5e-08 5 5.1e-08 0 10e-08 0)
Va3 in3 0 pwl (0 0 4e-08 0 4.1e-08 0 10e-08 0)

The only difference in the two cases is the in3 signal. The following 2 cases to
demonstrate how to specify different options in ntrig command.

The steps for running this demonstration follow.

1. Run the runw script.

Run script runw (top netlist is testw.sp). An FSDB file called w.fsdb will be
generated. This file is required for later usage.

2. Enter the interactive mode.

At the command line, type the following:

hsim testb.sp

HSIM will stop at 80 ns and enter the interactive mode.

3. Find the latest path.

in1

in2

in3 s2 s3

s1
Out
HSIMplus® Reference Manual 275
C-2009.06

Chapter 8: CircuitCheck
Digital Logic and Memory Diagnostics
When bringing up the waveform for the out node in the hsim.fsdb file, it
shows that v(out) goes from 1 to 0 at around 52 ns. To find out the cause,
type the following command at the interactive simulation mode.

HSIM> ntrig -t 50 out

The following signal list will be displayed:

out (4) has only one possibility:
possibility: #1
out (4) from 1 to 0 in [52.0600n, 52.5760n]
<- s1 (6) from 0 to 1 in [51.0370n, 51.6290n]
<- in2 (2) from 1 to 0 in [50.2990n, 50.7000n]
in2 is a voltage source!

4. Find multiple paths.

Based on the schematics Figure 19 on page 248, the state change of the
out may be influenced by both s1 and s3. The previous ntrig command only
shows one path. In order to find out both paths triggering v(out) to digital low
stage after 50 ns, the -mt option is required. Type the following command at
the interactive mode:

HSIM> ntrig -t 50 -mt 10 out

The following will be displayed:

out (4) has two possibilities:
possibility: #1
out (4) <2> from 1 to 0 in [52.0600n, 52.5760n]
<- s1 (6) from 0 to 1 in [51.0370n, 51.6290n]
<- in2 (2) from 1 to 0 in [50.2990n, 50.7000n]
in2 is a voltage source!
possibility: #2
out (4) <2> from 1 to 0 in [52.0600n, 52.5760n]
<- s3 (8) from 0 to 1 in [43.3740n, 44.2230n]
<- s2 (7) from 1 to 0 in [41.6020n, 43.0830n]
<- in3 (3) from 0 to 1 in [40.2990n, 40.7000n]
in3 is a voltage source.

Both paths are displayed. s3 changes its state at about 9 ns earlier than out.
If the following command is issued and only one path is listed:

HSIM> ntrig -t 50 -mt 8

5. Trace the difference in a node.
276 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Timing Checks
V(out) is at different states at time 60 ns in the first run testw.sp and current
run testb.sp. To find out why they are different, type the following command
at the interactive simulation mode:

HSIM> ntrig -t 60 out -diff -cf w.fsdb

The following will be displayed:

out (4) has only one possibility:
possibility: #1
out (4)

file 1: 1 to 0 in [52.0600n, 52.5760n]
file 2: 1 to 1 in [0.0000n, 52.5760n]

<- s3 (8)
file 1: 0 to 1 in [43.3740n, 44.2230n]
file 2: 0 to 0 in [0.0000n, 44.2230n]

<- s2 (7)
file 1: 1 to 0 in [41.6020n, 43.0830n]
file 2: 1 to 1 in [0.0000n, 43.0830n]

<- in3 (3)
file 1: 0 to 1 in [40.2990n, 40.7000n]
file 2: 0 to 0 in [0.0000n, 40.7000n]

in3 is a voltage source.

CCK outputs a comparison list of signals back-to-back.

6. Find the difference in two initial conditions.

Type the following command at the interactive simulation mode:

HSIM> ntrig -t 60 -ic -cf w.fsdb out

The following will be displayed:

out (4)has only one possibility:
possibility: #1
out (4) voltage: 0 vs
<- s3 (8) voltage: 1 vs 0.
<- s2 (7) voltage: 0 vs 1.
<- in3 (3) voltage: 1 vs 0.
in3 is a voltage source.

Timing Checks

These CircuitCheck commands are designed to help check RC parasitic delay
estimation, charge/discharge path delays, input slew rate, inter-nodal delays,
and event times.
HSIMplus® Reference Manual 277
C-2009.06

Chapter 8: CircuitCheck
Timing Checks
Check Number of n-MOSFET in Charging Path to VDD

Check the number of n-MOSFETs on every rising path to VDD. If it is larger
than the specified length leng, CircuitCheck will issue a Warning until the
number of Warnings exceeds num=n. This command is to make sure the
charging-up paths will not have too many n-MOSFETs.

cckMaxNmosToVdd
Checks NMOS limit on charging-up path to VDD.

Syntax
cckMaxNmosToVdd <length=leng> <num=n>

Description
This command checks NMOS limit on charging-up path to VDD. The default
value for the length parameter is 0.

In Figure 20 on page 251, if length=1, a Warning will be issued for Circuit A.
Circuit B has a p-MOSFET accompanying a n-MOSFET, CircuitCheck will not
count that particular n-MOSFET. Hence, no Warning is reported for Circuit B.

Figure 22 Example p-MOSFET and n-MOSFET Circuits

Example
cckMaxNmosToVdd length=2 num=30

The following is the NMOS limit on charging-up path output sample resulting
from the command example above:

A

VDD

Node A has two nmos on the charging-
up path to VDD

C

VDD

Node C has two nmos on the charging-up path.
but one nmos is paired with a pmos. CCK does
not count that nmos. Hence, it counts only one
nmos on the rising path to VDD.

CIRCUIT A CIRCUIT B
278 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Timing Checks
**
* NMOS limit on charging up path: 2, num=30
**
Largest number of nmos on rising path: 4
(1) number of nmos on path: 4

end node (xam.xrd.nout)
xam.xrd.xu8.mn
xam.xrd.xu6.mn
xam.xrd.xu7.mn
xam.xrd.xu9.mn
xam.xrd.xu24.mp

from node (vdd) with 1.65 volt

Check Number of p-MOSFET in Discharging Path to GND

Check number of p-MOSFETs on discharging path to ground. If it exceeds the
specified limit length=leng, a Warning will be reported, until the number of
Warnings reaches num=n. Similarly to the previous command, if a p-MOSFET
is paired with another n-MOSFET, this p-MOSFET will not be counted. See
Figure 21 on page 252.

cckMaxPmosToGnd
Checks PMOS limit on discharging path to GND.

Syntax
cckMaxPmosToGnd <length=leng> <num=n>

The default value of length is 0.

Figure 23 Example p-MOSFET Circuit

B

GND this fal ling path from B to GND is counted
to have 2 pmos transistors. If ”length=1”,
a warinig will be issued.
HSIMplus® Reference Manual 279
C-2009.06

Chapter 8: CircuitCheck
Timing Checks
cckMaxStackUpNmos
cckMaxStackUpNmos checks the number of n-MOSFET transistors in series. If
it exceeds the stack-up length, CircuitCheck reports the MOSFET stack path.
See cckMaxStackUpNmos on page 239 for detailed description.

cckMaxStackUpPmos
cckMaxStackUpPmos checks the number of p-MOSFET transistors in series. If
it exceeds the stack-up length, CircuitCheck reports the MOSFET stack path.
See cckMaxStackUpPmos on page 239 for detailed description.

Checking Path Delay Between Two Nodes

cckMeasPathDelay
Description
This command traces the path delay between the source node and target
node. Differing from the .measure command that only measures the delay
between source node and target node, cckMeasPathDelay has the path
tracking capability that reports all delay paths between the source node and
target nodes.

When it is necessary to measure the path between node A and node D, the
source measures incremental paths between node A to node B, then node B to
node C and finally node C to node D. This segmented path A to B, B to C, and
C to D from the source to the target is reported using cckMeasPathDelay as
shown in the following syntax:

Syntax
cckMeasPathDelay <source=source_node_name>

<target=target_node_name> <outFile=output_file_name>
<srcEdge=[1|-1|0]> <targEdge=[1|-1|0]>
<start=start_time> <stop=stop_time>
<post=fsdb_file_name>

Parameters
source

Specifies the source node name, permits wild cards in the expression, and
searches all trigger nodes satisfying the parameter setting. For *, it will
report all path triggering the target nodes.
280 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Timing Checks
target

Specifies the target node name. Wild cards are permitted in the expression
however, they can not be as simple as a single asterisk (*). Wild cards must
be specified similarly to the following example: target=data*.

outFile

Specifies the output file name for storing check results. If it is not provided,
hsim.cck is the default and will be used.

srcEdge 1|-1|0

1: Looks for rising trigger nodes only.

-1: Looks for falling trigger nodes only.

0: (default) Looks for both rising and falling trigger nodes.

targEdge

Same as srcEdge.

start

Specifies the time span allowed for cckMeasPathDelay to perform its
checks. If start and stop are not specified, it checks the entire transient time.
If a value for start is specified, cckMeasPathDelay checks from specified
start_time time to the end of transient simulation.

stop

Specifies the time span allowed for cckMeasPathDelay to perform its
checks. If start and stop are not specified, it checks the entire transient time.
If a value for start is specified, cckMeasPathDelay checks from 0 to the
specified stop_time.

post

The analysis is conducted in the post-process mode. This means that the
program directly analyzes the path measurement through the specified
existing HSIM FSDB output file instead of looking into the current simulation
data.

Note:

When using cckMeasPathDelay, lprint must be specified in the netlist file
because cckMeasPathDelay uses the FSDB file to generate the report.

Examples
Adding cckMeasPathDelay to the CircuitCheck command file:
HSIMplus® Reference Manual 281
C-2009.06

Chapter 8: CircuitCheck
Timing Checks
If the cckMeasPathDelay is added to the CircuitCheck command file as shown
in the following syntax,

cckMeasPathDelay source=a_* target=out_* outFile=result.out

This command reports the delay paths with the node name beginning with a_
to the target node name with the prefix, out_. Because the srcEdge is not
specified, it traces both the rising edge and falling edge.The result is written
into the file called result.out. The example below shows a typical report.

* Measurement of Path Delay.
* source nodes: “a_*”.
* target nodes: “out_*”.
* source edge: don't care.
* target edge: don't care.
* Path delay measurement for target node: (out_a)
Path: #1

out_a (525) rising in [1721.0000n, 1721.0200n]
<- zz_i1/1 (4995) falling in [1720.9700n, 1721.0100n]
<- 146 (12) rising in [1720.9200n, 1720.9800n]
<- m2_i1/7 (3516) <2> falling in [1720.8400n,

1720.8800n]
<- 147 (13) rising in [1720.7900n, 1720.8300n]
<- div_i0/4 (1903) falling in [1720.1500n, 1720.1800n]
<- 144 (10) rising in [1720.0800n, 1720.1500n]
<- cp_i1/1 (1406) falling in [1720.0100n, 1720.0500n]
<- a_a (4023) rising in [1719.9900n, 1720.0000n]

a_a is a voltage source!
* total number of path found=1.

Estimating the Rise and Fall Delay at a Node

cckNodeMaxRF
Performs a quick estimate of the rising and falling delay at a given node.

Syntax
cckNodeMaxRF <node=fullPathNodeName> <tth=t1>
cckNodeMaxRF <subckt=subcktName> <node=nodeNameInSub>

<tth=t1>
cckNodeMaxRF <skipNode=fullNodeName1>

<skipNode=fullNodeName2> <tth=t1>
282 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Timing Checks
Parameters
tth=t1

tth is the time threshold. If a node has a Rise/Fall delay longer than the
specified using tth, it will be reported.

Description
cckNodeMaxRF performs a quick estimate of the rising and falling delay at a
given node. cckNodeMaxRF examines all the adjacent elements of this node to
find the most resistive elements and calculate its effective resistance (Rmax).
Then find its node capacitance (Cnode) which is multiplied by Rmax. The
resulting product is an estimate of rising and falling delay to this node, since
very likely, both the rising and falling paths will go through the most resistive
element. This function does not trace from this node to VDD or ground.

When the estimated delay is larger than the time threshold (t1), it reports this
node and its capacitance, its most resistive adjacent element, and the
estimated delay. The output file is in either the hsim.cck or output.cck files. The
nodes are selected by their full path names or by subckt with its nodes. Also,
the command is used to check all the nodes except the skipped nodes.

The following command examines the nodes in the xam module and all
wordline* nodes in all the instantiations of subcircuit atc. Estimated delays
larger than 4ns are reported.

cckNodeMaxRF node=xam.* subckt=atc node=wordline* tth=4n

Sample cckNodeMaxRF output contents generated using the syntax in the
example above.

 **
* estimate node max rise/fall delay
* tth=4e-009
* subckt=atc node=wordline*
* node=xam.*
* format: node_name est_delay(ns) (elem_with_max_R ohm)
* (note: if an elem is always off, its ohm is 1e15)
**
xam.xctl.nlined2<5> 30.2 ns (max_R xcam.xctl.xi6_5.mu2 1e+5 ohm)
xam.xctl.nonseqc2 40.5 ns (max_R xcam.xctl.xi10.mu1 3e+5 ohm)

cckParasiticRC
cckParasiticRC performs statistical analysis of the parasitic RC during netlist
loading to aid in post layout circuit debugging. See cckParasiticRC on
page 170 for detailed description.
HSIMplus® Reference Manual 283
C-2009.06

Chapter 8: CircuitCheck
Timing Checks
Static RC Delay Analysis – Estimate Slew Rate

Static RC Delay Analysis finds the RC delay to the GATE nodes of MOSFETs.
The charging paths from VDD and the discharging paths from GND to each
GATE node is found, and their RC delays are then computed. This analysis
provides the following information for each signal:
■ Circuit loading
■ Slew rate

cckRCDlyPath
This command and its Delay Path Sub-Commands are used together to
provide Static RC Delay Analysis.

Syntax
cckRCDlyPath [0|1] fanoutonly=[0|1]

When cckRCDlyPath is set to 1, CircuitCheck performs RC delay analysis after
DC operating point analysis. Two files are created:

hsim.cckriseFor rise RC delay
hsim.cckfallFor fall RC delay

When the default fanoutonly=0 is set, the RC delay path can reach to either
gate or output node. fanoutonly=1 only reports the RC delay path to the gate
node.

cckRCDelayPath 1 fanoutOnly=1

If the HSIM –o out_file is issued, the delay files will be:

out_file.cckrise
out_file.cckfall

Note:

When cckRCDlyPath is issued, CircuitChck automatically disables HSIM
transient simulation.

Delay Path Sub-Commands
The following sub-commands are needed to report delay paths:
■ cckDlyAtNode
■ cckDlySkipElem
284 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Timing Checks
■ cckDlySkipNode
■ cckLimitRisePmosFallNmos
■ cckRCFallDelay
■ cckRCRiseDelay
■ cckSetMosDir

cckDlyAtNode
Syntax
cckDlyAtNode <subckt=s> <node=nd>

Description
With this command, CircuitCheck analyzes the nodes specified in subckt and
node.

Examples
cckDlyAtNode node=xcpu.*

CircuitCheck analyzes only the nodes in instance xcpu.

cckDlyAtNode subckt=xdp node=*

CircuitCheck analyzes the nodes in all the instantiations of subckt xdp.

cckDlySkipElem
Syntax
cckDlySkipElem <subckt=s> <inst=e> <pattern=p>

Description
This command directs cckRCDlypath to skip the elements specified in subckt,
inst and pattern.

Example
CckDlySkipElem inst=xram.*

CircuitCheck analyses all the nodes except those in instance xram.

cckDlySkipNode
Syntax
cckDlySkipNode <subckt=s> <node=nd>
HSIMplus® Reference Manual 285
C-2009.06

Chapter 8: CircuitCheck
Timing Checks
Description
With this command, CircuitCheck skips the nodes specified in subckt and
node.

cckLimitRisePmosFallNmos
Syntax
cckLimitRisePmosFallNmos [1|0]

Description
Tracing paths: When the rising paths to VDD are traced, the default is to go
through p-MOSFET only. Therefore, CircuitCheck ignores n-MOSFET
elements, except for the transmission gates consisting of both p-MOSFET and
n-MOSFET. When the falling path to GND is traced, the default is to limit the
search within n-MOSFET elements only. Set cckLimitRisePmosFallNmos to 0
to change the default and expand the search through both p-MOSFET and n-
MOSFET.

cckRCFallDelay
Syntax
cckRCFallDelay <min=dd3> <max=dd4> <inside=[0|1]>

Description
This command directs cckRCDlypath to check the rising delay.

For falling paths, the following are reported to the .cckfall file:
■ Paths to GND
■ Falling paths with a delay greater than max or less than min

A report on paths with delays within the <min, max> (=<dd3, dd4>) range is
obtained by setting inside=1.

cckRCRiseDelay
Syntax
cckRCRiseDelay <min=dd1> <max=dd2> <inside=[0|1]>

Description
This command directs cckRCDlypath to check the rising delay.

For rising delay, the RC delays are computed along the transistor paths to
VDD. The default is to report a rising path with a delay greater than max or
286 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Timing Checks
smaller than min. If a report on rising paths with delays within a range such as
<min, max> (=<dd1, dd2>) is required, set inside=1.

cckSetMosDir
Syntax
cckSetMosDir [1|0]

Description
Since RC delay analysis is a static circuit analysis, the methods used to
eliminate false paths are:
■ Transistor direction
■ Inverter relationship to trim the paths

The default direction of MOSFETs must be determined before tracing the paths
to compute the delay such as cckSetMosDir 1. Figure 22 on page 260 shows
the direction. Transistors with hard-to-find directions are set as undefined.

Figure 24 MOSFET Direction

In Figure 22 on page 260 in the transistor paths are:
■ p-MOSFET (p1): Leaving VDD
■ n-MOSFET (n1): Leaving GND
■ Pass gate (n2): Entering the p2 gate

vdd

p1

n2

p2

n1
HSIMplus® Reference Manual 287
C-2009.06

Chapter 8: CircuitCheck
Timing Checks
The paths may become invalid and ignored if they fall into one of the following
criteria:

1. If two pass transistors are in the same subcircuit with an inverted
relationship on the same path. Figure 23 on page 260 illustrates this
condition.

Figure 25 Transistors with an Inverted Relationship

If both pass transistors reside in the same subcircuit structure, and B is the
reverse of A, then both transistors have an inverted relationship causing the
path to be ignored

2. One or more pass transistors on the path is considered statically off.

For statically off pmos: if the pmos gate is connected to a constant voltage
and its Vg >= Max(constant voltage source in the circuit). If not applicable
then the value of HSIMVDD is used as the threshold.

For statically off nmos: if the nmos gate is connected to a constant voltage
and its Vg <= 0.

Computing the Resistance of MOSFET
When CircuitCheck computes the resistance of a MOSFET it considers the
parallel transistors and treats them as parallel resistors. This makes their
effective resistance smaller in computing the delay. Figure 24 on page 261
illustrates a parallel transistor circuit.

A

B

C

288 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Timing Checks
Figure 26 MOSFET Resistance

In Figure 24 on page 261 m1 and m2 are in parallel since they share the same
input gate and drain node. m3 and m4 are also parallel. In addition,
CircuitCheck also computes the effective capacitance at C. The capacitance
value of C is the sum of the capacitance of nodes A and B.

Rising and Falling Path Delays

Elmore Delay Model Based on the Elmore Delay Model, the rising and
falling delays are computed as illustrated in Figure 25 on page 262 and
Figure 26 on page 262.

Figure 27 Rising Delay

m2
m1

m4
m3

m1 || m2

m3 || m4

A B
C

m1 || m2, m3 || m4, Cap (A+B) = Cap (C).

vdd

gnd

p1 (rp1)

n2 (rn2)

p2

n1
c1 c2
HSIMplus® Reference Manual 289
C-2009.06

Chapter 8: CircuitCheck
Timing Checks
Figure 28 Falling Delay

cckRCDlyPath 1
cckRCRiseDelay min=0.8n max=3.e-9
cckRCFallDelay min=0.4n max=3.2e-9
cckLimitRisePmosFallNmos1
cckSetMosDir 1

This check finds rising/falling paths with the following delays:
■ Rising: Delays > 3 ns or < 0.8 ns
■ Falling: Delays > 3.2 ns or < 0.4 ns.

; Path format
; Serial_num Node_name Node_capacitance(pf) Rise_time(ns)
; Elem_name Elem_type L/W or Resistance

Total number of paths=2

User defined value:
rise_time: Ton-Time < 0.8ns || 3ns < Ton-Time

S.N. Node_name C(pf)Rise_time(ns)
1 Node:xic.xib.fr880.1164.37

xi10.mp1pmos2.6/8.2
xi32.mp1pmos2.2/8.2
* xi32.mn1nmos1.55/3.1
x88inst.mi22pmos1.6/8.2

2 Node:xiaba.xi27.w160b0.1750.68
xic.xiba.xib.mi49pmos1.8/8
xic5m.ri50res38.4

vdd

gnd

n2 (rn2)

p2

n1) c1 c2
290 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Timing Checks
Explanation of this Rising Path Report
Rising delay paths are sorted with descending delay values. Each rising path
indicates the following:
■ Ending node
■ Node capacitance
■ Rising delay to ending node

CircuitCheck lists the elements on a path from VDD to the ending node and the
following element characteristics are printed:
■ Element name
■ Element type
■ Transistor length
■ Transistor width

If there is a parallel element, an asterisk (*) is printed before the element name.

Path 1 Referring to line item 1 in the example provided for Rising and Falling
Path Delays on page 261:

Rising paths are sorted with the descending delay values.

Node: xic.xib.fr88 0.116 4.37

This means that node xic.xib.fr88 has 0.116 pF capacitance. The rising delay
from VDD to this node is 4.37 ns. The path is as follows:

xi10.mp1 pmos 2.6/8.2
xi32.mp1 pmos 2.2/8.2
* xi32.mn1nmos 1.55/3.1
x88inst.mi22pmos1.6/8.2

Note:

When an asterisk (*) is the first character in the line, it indicates it is a parallel
transistor.

1st MOSFET From VDD, the path goes through a p-MOSFET xi10.mp1 with
the following dimensions:
■ Length: 2.6 um
■ Width: 8.2 um
HSIMplus® Reference Manual 291
C-2009.06

Chapter 8: CircuitCheck
Timing Checks
2nd MOSFET p-MOSFET xi10.mp1 goes through p-MOSFET xi32.mp1 and
n-MOSFET parallel transistor xi32.mn1 with the following dimensions:
■ Length: 2.2 um
■ Width: 8.2 um

3rd MOSFET From p-MOSFET xi10.mp1, the path goes through n-MOSFET
xi32.mn1 with the following dimensions:
■ Length: 1.55 um
■ Width: 3.1 um

Note:

These two transistors usually form a transmission gate.

4th MOSFET From n-MOSFET xi32.mn1, the path goes through p-MOSFET
x88inst.mi22 with the following dimensions:
■ Length: 1.6 um
■ Width: 8.2 um

The signal then reaches the ending node.

Path 2 Referring to line item 2 in the example provided for Rising and Falling
Path Delays on page 261:

1st MOSFET The second path goes through a p-MOSFET xic.xiba.xib.mi49
whose dimensions are:
■ Length: 1.8 um
■ Width: 8.0 um

2nd Resistor After passing through p-MOSFET xic.xiba.xib.mi49, the path
goes through a 38.4 ohm resistor to reach this ending node. The ending node’s
capacitance is 0.175 pF and the rising delay is 0.68ns.
292 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Timing Checks
Example 39 Falling Delay Output Sample hsim.cckfall or out_file.cckfall.
; Path format
; Serial_num Node_name Node_capacitance(pf) Fall_time(ns)
; Elem_name Elem_type L/W or Resistance
Total number of paths=2
User defined value:
fall_time: Toff-Time < 0.4ns || 3.2ns < Toff-Time

 S.N. Node_name C(pf) Fall_time(ns)
1 Node: xiba_out 0.150 4.15
 xi3.mn1 nmos 0.55/6.3
 xi25.mn1 nmos 0.55/11.58
2 Node: xic5m2.i12_out 0.150 3.65
 xc.xi99.xi11.mn1 nmos 0.55/6.3
 xc.xim4.xi10.mn1 nmos 0.55/11.58

Explanation of this Falling Path Report:
Falling delay paths are sorted with descending delay values similar to the rising
delay report. Each falling path indicates the following:
■ Ending node
■ Node capacitance
■ Falling delay to ending node

CircuitCheck lists the elements on a path from GND to the ending node and the
following element characteristics are printed:
■ Element name
■ Element type
■ Transistor length
■ Transistor width

If there is a parallel element, an asterisk (*) is printed before element name.

1st Element The first path’s ending node is xiba_out) and has a capacitance
of 0.15 pF. Starting from the GND node, the element is traced through n-
MOSFET xi3.mn1) with the following dimensions:
■ Length: 0.55 um
■ Width: 6.3 um
HSIMplus® Reference Manual 293
C-2009.06

Chapter 8: CircuitCheck
Dynamic Device Voltage Check
2nd ELEMENT From n-MOSFET xi3.mn1), the path goes through n-
MOSFET xi25.mn1) with the following dimensions:
■ Length: 0.55 um
■ Width: 11.58 um

Dynamic Device Voltage Check

A single command tcheck followed by numerous parameters are used to check
device voltages during the simulation. When a condition is met, the device
voltage is recorded and reported later. These commands are stored in a
command file, which is invoked by adding the following to an input file of HSIM:

.param hsimDeviceV=dev_v_file

There are four types of devices allowed: MOSFET, BJT, diode, and capacitor.

tcheck mosv

Checks MOSFET device voltage.

Syntax
.tcheck tag_name mosv <model=name> <subckt=subckt_name>

<mos=inst_name> <lvgd=val> <uvgd=val> <lvds=val>
<uvds=val> <lvdb=val> <uvdb=val> <lvgs=val> <uvgs=val>
<lvgb=val> <uvgb=val> <lvsb=val> <uvsb=val> <minL=val>
<maxL=val> <cond='expression'> <report=#> <time=val>
<parallel=0|1> <separate_file=1>
<sort=tag|t1|el_name|node1|node2|err_v> <start=time>
<stop=time> <step=time>

Parameters
tcheck

Keyword for transient analysis voltage check.

tag_name

A tag in the checking result file used to distinguish it from other information.

mosv

A key word for MOSFET node voltages checking.
294 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Dynamic Device Voltage Check
subckt

Specify sub-circuit to be checked.

mos

Specify the instance to be checked.

model

Specify the model to be checked.

report

Specify how many times elements with errors will be reported for the
associated tag. If not limited, CCK reports all violations by default.

time

Specify the time duration that the checking condition sustains before
triggering an error report.

parallel

Used to reduce the number of errors reported for the parallel devices.

separate_file

Causes errors to be reported with a tag to a separate file.

start and stop

The time span allowed for HSIM to perform checking is specified.

step

Controls which time step to check.

Note:

mos, model, subckt, or any combination of these commands may be
used to specify elements to be checked.

Note:

The output of a device voltage check is reported in either of the following
files:

• hsim.mosv

• out_file.mosv (if hsim -0 out_file is used)
HSIMplus® Reference Manual 295
C-2009.06

Chapter 8: CircuitCheck
Dynamic Device Voltage Check
tag_name

Identifies a specific range of values that are specified in the hsim.mosv file.

Example
.tcheck tag1 mosv lvgs=1

Device voltages with a gate-to-source voltage difference < 1V will contain a
tag1 prefix in the hsim.mosv file. For example, the hsim.mosv file will have a
similar entry to those shown below:

tag1: 1 40.00n 40.91n n lvgs x4.x3.mn2 b[0] x4.bn 0.50 1.00
tag1: 2 53.00n 60.91n n lvgs x4.x3.mn2 b[0] x4.bn 0.70 1.00

mosv

A key word for MOSFET node voltages checking.

Examples

Example 40
.tcheck tag1 mosv model=nch lvgs=1 uvgs=5 lvgb=3 uvds=10

Checks all of the MOSFETs using the nch model. An error message is reported
to one of the following files:
■ hsim.mosv
■ out_file.mosv

when any of the following conditions is met:
■ vgs <1 V
■ vgs > 5 V
■ vgb < 3 V
■ vds > 10 V

Example 41
.tcheck t1 mosv model=nch cond='(vgs < -3 || vgs > 7) || (vdb <
1 && vdb > -1)'

Checks all MOSFETs using the nch model. If vgs and vdb meet the user-
defined conditional expression, then an error is reported to the hsim.t1 or
out_file.t1.
296 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Dynamic Device Voltage Check
Example 42
.tcheck tag mosv model=n minL=1.1e-6 maxL=5.e-6 lvgs=-1 uvgs=1
lvgd=-1 uvgd=2

This syntax checks every n-MOSFET to see if its length is within [1.1 microns,
and 5.0 microns]. If the length is within these constraints, HSIM continues to
check vgs and vgd to see if vgs <-1 or vgs > 1 or vgd <-1 or vgd > 2.

Example 43
.tcheck 7 mosv model=p cond='(l <=2e-6 && vds > 7) || (l > 2e-6
&& vds > 10)'

This syntax checks whether vds is greater than 7 V when MOSFET length is
less than or equal to 2 microns, or if vds is greater than 10 V when MOSFET
length is greater than 2 microns.

Example 44
.tcheck tag mosv model=p minL=0 maxL=2e-6 uvds=7
.tcheck tag mosv model=p minL=2e-6 maxL=3e-6 uvds=8
.tcheck tag mosv model=p minL=3e-6 uvds=10

The voltage difference depends on the transistor length. For example, if a
transistor length is smaller than or equal to 2um, the voltage difference
between drain and source can not be larger than 7V. Otherwise, a Warning is
issued. If the length is between 2um and 3um, the max Vds is 8V. If the length
is larger than 3um, the max Vds is 10V. minL and maxL specify the range of
transistor length.

Voltage and transistor length constraints are specified in one conditional
expression, as shown in the example below.

Example 45
.tcheck 7 mosv model=p cond='(l <=2e-6 && vds > 7) ||
(l > 2e-6 && l <=3e-6 && vds > 8) ||
(l > 3e-6 && vds > 10)'

The above expression requires that when the length is no larger than 2um, and
VDS is greater than 7V, a Warning is issued. If the length is greater than 3um
and VDS is larger than 10V, report a Warning.

subckt

Specifies the sub-circuit to be checked.
HSIMplus® Reference Manual 297
C-2009.06

Chapter 8: CircuitCheck
Dynamic Device Voltage Check
Example
.tcheck tag1 mosv subckt=inv lvgs=1

This command checks all the MOSFETs inside subckt inv. If there are two inv
instances in the design, this check will examine every MOSFET inside those
two inv instances. lvgs is defined as the lower bound of the voltage difference
between a gate and a source.

mos

Specifies the instance to be checked.

Example
.tcheck tag1 mosv mos=x1.* lvgs=1

Checks all the MOSFETs inside instance x1.

model

Specifies the model to be checked.

Example
.tcheck tag1 mosv model=nch lvgs=1

Check all the MOSFETs using nch as a model.

.tcheck tag1 mosv mos=x1.* model=nch lvgs=1

Checks all the MOSFETs inside instance x1 using nch as a model.

.tcheck tag1 mosv subckt=inv model=nch lvgs=1

 Checks all the MOSFETs inside subckt inv using nch as a model. Table 2
describes the checking conditions.

Table 4 Checking Condition Primitive Definitions

Primitive Description

lvgd When MOSFET vgd is less than the value specified in lvgd, report an
error to the output file. vgd is the voltage value between gate and drain.

uvgd When MOSFET vgd is greater than the value specified in uvgd, report
an error to the output file. vgd is the voltage value between gate and
drain.
298 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Dynamic Device Voltage Check
lvds When MOSFET vds is less than the value specified in lvds, report an
error to the output file. vds is the voltage value between drain and
source.

uvds When MOSFET vds is greater than the value specified in uvds, report an
error to the output file. vds is the voltage value between drain and
source.

lvdb When MOSFET vdb is less than the value specified in lvdb, report an
error to the output file. vdb is the voltage value between drain and bulk.

uvdb When MOSFET vdb is greater than the value specified in uvdb, report
an error to the output file. vdb is the voltage value between drain and
bulk.

lvgs When MOSFET vgs is less than the value specified in lvgs, report an
error to the output file. vgs is the voltage value between gate and source.

uvgs When MOSFET vgs is greater than the value specified in uvgs, report an
error to the output file. vgs is the voltage value between gate and source.

lvgb When MOSFET vgb is less than the value specified in lvgb, report an
error to the output file. vgb is the voltage value between gate and bulk.

uvgb When MOSFET is greater than the value specified in uvgb, report an
error to the output file. vgb is the voltage value between gate and bulk.

lvsb When MOSFET vsb is less than the value specified in lvsb, report an
error to the output file. vsb is the voltage value between source and bulk.

uvsb When MOSFET vsb is greater than the value specified in uvsb, report an
error to the output file. vsb is the voltage value between source and bulk.

minL Define the minimum MOSFET length that mosv will check. default value
is 0.

maxL Define the maximum MOSFET length that mosv will check. default value
is infinite.

Table 4 Checking Condition Primitive Definitions (Continued)

Primitive Description
HSIMplus® Reference Manual 299
C-2009.06

Chapter 8: CircuitCheck
Dynamic Device Voltage Check
report

Specify how many times elements with errors will be reported for the
associated tag. If not limited, CCK reports all violations by default.

Example 46
.tcheck tag1 mosv mos=x1.* lvgs=1 report=2

Checks all the MOSFETs inside x1. If vgs is < 1V an error is reported to either
the hsim.mosv or out_file.mosv file. Only the first two errors are reported for
tag1, even if there are additional errors.

time

Specify the time duration that the checking sustains before triggering an error
report.

Example 47
.tcheck tag1 mosv mos=x1.* lvgs=1 time=5n

Checks all the MOSFETs inside x1. If vgs is < 1V for more than 5ns, an error is
reported to either the hsim.mosv or out_file.mosv files.

parallel

Used to reduce the number of errors reported for the parallel devices.

cond A conditional expression may be specified as the checking criterion, and
this user-defined condition can not be used with all the lower and upper
bounds described above. This means that if the cond option is used,
then the lvgd, ... parameters can not appear in the same command.
Another restriction is when cond is used, the error report will go to a
separate file whose name is hsim.tag_name or out_file.tag_name --->
hsim.mosv_tag.chk or out_file.mosv_tag.chk. Conditional expressions
accept numbers and the following operators: <, >, <=, >=, ==, ||, and &&.
Conditional expressions also accept the following predefined variables
vgs, vgd, vbs, vbd, vds, vgb, and l.

Table 4 Checking Condition Primitive Definitions (Continued)

Primitive Description
300 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Dynamic Device Voltage Check
Example 48
.tcheck tag1 mosv mos=x1.* lvgs=1 parallel=1

Checks all the MOSFETs inside x1. If vgs is < 1V, an error is reported to either
the hsim.mosv or out_file.mosv file. Only one error is reported if there are
parallel devices having the same error. An asterisk (*) is added after the
element name to indicate there are parallel MOSFETs.

separate_file

When separate_file=1, errors are reported with a tag to a separate file.

Example 49
.tcheck tag2 mosv mos=x1.* lvgs=1 separate_file=1

Error of this check goes to hsim.tag2 or out_file.tag2.

Output Sorting

It may be determined whether and by what methodology to sort the output.
Table on page 273, lists the sorting keys and their tag names:

Output Sorting Keys

Example 50
.tcheck tag2 mosv mos=x1.* lvgs=1 sort=node1|tag|err_v

Table 5

Parameter Description

tag Tag Name

t1 The time an error occurs

el_name Element name

node1 First node name

node2 Second node name

err_v Error voltage value
HSIMplus® Reference Manual 301
C-2009.06

Chapter 8: CircuitCheck
Dynamic Device Voltage Check
The error output will be sorted in the following order:

1. Node name

2. Tag name

3. Error voltage

start/stop

The time span allowed for HSIM to perform checking is specified.

.tcheck tag2 mosv mos=x1.* lvgs=1 start=10n stop=20n start=100n

In the above example, checking is accomplished between 10 ns and 20 ns. It is
also repeated after 100 ns.

step

Controls which time step to check.

Note:

This command must be used with either Start or Stop

.tcheck tag2 mosv mos=x1.* lvgs=1 start=10n stop=120n step=30n

Checking starts at 10 ns and is repeated every 30 ns thereafter until 120 ns.

Note:

Time duration is not tracked when using Step if the condition is true. Only a
particular time point is reported. Therefore, time parameter will be ignored.

Similar checking is applied to bipolar junction bjtv) devices as shown in the
following example.

tcheck bjtv

BJT device voltage check.

Syntax
.tcheck tag_name bjtv <model=name> <subckt=subckt_name>

<bjt=inst_name> <lvbe=val> <uvbe=val> <lvbc=val>
<uvbc=val> <lvbs=val> <uvbs=val> <lvce=val>
<uvce=val> <lvcs=val> <uvcs=val> <lves=val>
<uves=val> <cond='expression'> <report=#>
302 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Dynamic Device Voltage Check
<time=val> <parallel=0|1> <separate_file=1>
<sort=tag|t1|el_name|node1|node2|err_v>
<start=time> <stop=time> <step=time>

Parameters
The parameters for bjtv are similar to mosv except for the following:
■ bjtv: The command keyword is bjtv, instead of mosv.
■ bjt: The instance keyword is bjt, instead of mos.

Keywords for voltage-pair conditions are shown in Table on page 275.

Voltage-Pair Condition Keywords - Primitive Definitions

Table 6

Parameter Description

lvbc When bjt vbc is less than the value specified in lvbc, report an error to
the output file. vbc is the voltage value between base and collector.

uvbc When bjt vbc is greater than the value specified in uvbc, report an error
to the output file. vbc is the voltage value between base and collector.

lvce When bjt vce is less than the value specified in lvce, report an error to
the output file. vce is the voltage value between collector and emitter.

uvce When bjt vce is greater than the value specified in uvce, report an error
to the output file. vce is the voltage value between collector and
emitter.

lvcs When bjt vcs is less than the value specified in lvcs, report an error to
the output file. vcs is the voltage value between collector and
substrate.

uvcs When bjt vcs is greater than the value specified in uvcs, report an error
to the output file. vcs is the voltage value between collector and
substrate.

lvbe When bjt vbe is less than the value specified in lvbe, report an error to
the output file. vbe is the voltage value between base and emitter.

uvbe When bjt vbe is greater than the value specified in uvbe, report an error
to the output file. vbe is the voltage value between base and emitter.
HSIMplus® Reference Manual 303
C-2009.06

Chapter 8: CircuitCheck
Dynamic Device Voltage Check
Similar checking is applied to diodev and capv as shown below:

tcheck diodev

Syntax
.tcheck tag_name diodev <model=name> <subckt=subckt_name>

<diode=inst_name> <lvac=val> <uvac=val> <report=#>
<time=val> <parallel=0|1> <separate_file=1>
<sort=tag|t1|el_name|node1|node2|err_v> <start=time>
<stop=time> <step=time>

Parameters
Diode device voltage check is very similar to mosv except for the following:
■ diodev: The command keyword is diodev, instead of mosv.
■ diode: The keyword for instance is diode, instead of mos.

Keyword for voltage-pair conditions are as follows:

lvac

When diode vac (voltage value between anode and cathode) is less than the
value specified in lvac, report an error to the output file.

uvac

When diode vac (voltage value between anode and cathode) is greater than
the value specified in uvac, report an error to the output file.

lvbs When bjt vbs is less than the value specified in lvbs, report an error to
the output file. vbs is the voltage value between base and substrate.

uvbs When bjt vbs is greater than the value specified in uvbs, report an error
to the output file. vbs is the voltage value between base and substrate.

lves When bjt ves is less than the value specified in lves, report an error to
the output file. ves is the voltage value between emitter and substrate.

uves When bjt ves is greater than the value specified in uves, report an error
to the output file. ves is the voltage value between emitter and
substrate.

Table 6

Parameter Description
304 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Dynamic Device Voltage Check
Note:

Conditional expressions are not supported in diodev.

tcheck capv

Capacitor device voltage check.

Syntax
.tcheck tag_name capv <subckt=subckt_name>

<cap=inst_name> <lvpn=val> <uvpn=val>
<report=#> <time=val> <separate_file=1>
<sort=tag|t1|el_name|node1|node2|err_v>
<start=time> <stop=time> <step=time>

Parameters
Capacitor device voltage check is very similar to mosv except for the following:

The following voltage-pair key words apply:
■ capv: The command keyword is capv, instead of mosv.
■ cap: The keyword for instance is cap, instead of mos.

lvpn

When cap, the absolute voltage value between positive and negative nodes
is less than the value specified in lvpn, reports an error to the output file.

uvpn

When cap, the absolute voltage value between positive and negative nodes
is greater than the value specified in uvpn, reports an error to the output file.

Note:

Conditional expressions are not supported in capv.

Post-Process Device Voltage Check

The post-process device voltage check is accomplished with two methods.
HSIMplus® Reference Manual 305
C-2009.06

Chapter 8: CircuitCheck
Dynamic Device Voltage Check
Method 1
The first method for post-process device voltage check uses the following
steps:

1. Add a device voltage check command in any of input file using the following
syntax:

.param hsimDeviceV=cmdFile

2. Add the following syntax to the cmdFile:

.tcheck post=1

The following is a command file example for post-process voltage check:

.tcheck post=1

.tcheck jtl1 mosv model=pch mos=xram* lvdb=-1.6 uvdb=-1

.tcheck jtl2 mosv model=pch mos=xram* lvgs=-0.6 uvds=1

.tcheck jtl3 mosv model=nch mos=* cond='(vds < -1.0 || vgs <
-0.75)'

3. Run HSIM. An FSDB file will be created such as hsim.fsdb. The file contains
all the print nodes and all the nodes required in comparing device voltage.

4. Run HSIM with a new option:

-post_devv fsdbFile

HSIM will read in netlist and device voltage commands. It then reads the
nodes needed for device voltage comparison from the FSDB and outputs
the results.

Note:

Partial results are written throughout the process.

Method 1 Example:

Run hsim -o pp. A pp.fsdb file is created.

Run hsim -o pp1 -post_devv pp.fsdb. Signals are read from the fadb file and
compared.

Method 2
The second method for post-process device voltage check uses the following
steps:

1. Add a device voltage check command in any of input file using the following
syntax:
306 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Signal Integrity Checks
.param hsimDeviceV=cmdFile

2. Add the following syntax to the cmdFile:

.tcheck post=2

When post=2 appears, the voltage will continue to be read in the fsb file
using the same process. The following is a command file example for post-
process voltage check:

.tcheck post=2

.tcheck jtl1 mosv model=pch mos=xram* lvdb=-1.6 uvdb=-1

.tcheck jtl2 mosv model=pch mos=xram* lvgs=-0.6 uvds=1

3. Run HSIM – an FSBD or WDF waveform file like hsim.fsdb is created. When
simulation is finished, it automatically uses the created waveform file to
perform the post-process voltage check.

Note:

When running post=2, HSIM automatically performs the post-process
device voltage check after the waveform file is created.

Signal Integrity Checks

These CircuitCheck commands are designed to help check for static and
dynamic crosstalk and noise-sensitivity estimation. These commands are
presented in alphabetic order to make it easier to find them.

Dynamic Crosstalk Analysis

Dynamic crosstalk refers to the parasitic effects which lead to distortion of
digital signals in the post-layout netlist. The effect is measured according to
user-specified thresholds for change of characteristics of the signals. Violations
are reported in the CircuitCheck result file.

To illustrate the usage concept, consider a digital signal at a node of interest in
Figure 27. There are two overlapped waveforms of the signal. The leading one
is the waveform in the pre-layout netlist. The second is the waveform found in
the post-layout netlist. It somewhat differs from the first due to parasitic effect.
Refer to Figure 27 on page 280.
HSIMplus® Reference Manual 307
C-2009.06

Chapter 8: CircuitCheck
Signal Integrity Checks

H

Figure 29 Pre-/Post-layout Waveform Node Differences

cckDXtalk
Syntax

Note:

The values or numbers specified in the usage syntax are the default values,
if corresponding parameters are not specified.

cckDXtalk ccFile=<ccfile_name> noccFile=<noccfile_name>
[nodeListFile=<nodelist_name>] [node=<node_name>]*
[skipnode=<nodeName>]* [slope_rel=10] [slope_abs=1e-9]
[slope_vhth=80] [slope_vlth=20] [delay_rise_th=50]
[delay_rise_abs=1e-9] [delay_fall_th=50]
[delay_fall_abs=1e-9] [separate_file=[0|1]]
[extract_signals=[0|1]] [bc_wc=[0|1]]

Parameters
ccFile

Optional. ccFile specifies the post-layout fsdb file name. Refer to Usage
Flow Methods on page 283.

noccFile

Optional. noccFile specifies the pre-layout fsdb file name. Refer to Usage
Flow Methods on page 283.

Voltage

Time
t‘rtr t‘ƒtƒ

delay_rise_th

s‘rsr s‘ƒsƒ

slope_vhth

delay_fall_th

slope_vlth

SIMVDD

tr_delay tƒ_delay
308 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Signal Integrity Checks
nodeListFile

Optional.

spfFile

Optional. spfFile specifies the \SPF file name. Refer to Usage Flow Methods
on page 283

node

Optional.

skipnode

Optional.

slope_rel

Relative slope in percentage. Unit is %. The default is 10.

slope_abs

Absolute slope. Unit is V/ns. The default is 1.

slope_vhth or slope_high

High threshold voltage of output. Unit is %.The default is 80, meaning that
80% of HSIMVDD.

slope_vlth or slope_low

Low threshold voltage of output. Unit is %. The default is 20, meaning that
20% of HSIMVDD.

delay_rise_th or delay_rise_thr

Rising threshold in percentage. Unit is %. The default is 50, which means
50% of HSIMVDD.

delay_rise_abs

Absolute value of rise time. Unit is second(s). The default is 1ps.

delay_fall_th or delay_fall_thr

Falling threshold in percentage. Unit is %. The default is 50, which means
50% of HSIMVDD.

delay_fall_abs

Absolute value of fall time. Unit is second(s). The default is 1ps.

separate_file

If set to 1, output to a separate file. The default is 0.
HSIMplus® Reference Manual 309
C-2009.06

Chapter 8: CircuitCheck
Signal Integrity Checks
extract_signals

If set to 1, extract signals which violate cckDXtalk rules from ccFile and
noccFile into a separate fsdb file. The default is 0.

bc_wc or wc_bc

If set to 1 best/worst violations of a signal in the simulations are reported.
The default is 0.

Signal Edge Characteristics

The signal edge characteristics for the waveform shown in Figure 27 on
page 280 are described below.

Thresholds
delay_rise_th and delay_fall_th

Thresholds for the rising and falling edges. Normally these two values are
50% of VDD. Their simulation time at the point where the signal crosses the
thresholds are tr and tf.

slope_vhth and slope_vlth

Defines the signal edges. The default value of slope_vhth is 80% of VDD
and 20% of VDD for slope_vlth.

Rising Slope

srising

The positive average slope of a signal crossing from slope_vlth to
slope_vhth as shown by the following syntax: srising=(slope_ vhth-slope_
vlth)/(tr_ end-tr_ start).

Falling Slope

sfalling

the negative average slope of a signal crossing from slope_vhth to
slope_vlth as shown by the following syntax:

sfalling=(slope_ vlth-slope_ vhth) (tf_ end-tf_ start)

Validation Validation is measured based on four criteria:
310 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Signal Integrity Checks
Rising Edge Delay

Rising edge delay measures the time delay of a rising edge. It measures the
difference of tr, i.e., tr_delay between pre-layout and post-layout
waveforms. If the difference, in second, is greater than the value specified
by delay_rise_abs, a Warning is issued into the result file.

Falling Edge Delay

Falling edge delay measures the time delay of a falling edge. It measures
the difference of tf, i.e., tf_delay between pre-layout and post-layout
waveforms. If the difference, in second, is greater than the value specified
by delay_fall_abs, a Warning is issued into the result file.

Slope Relative Error

Slope relative error measures the relative error of rising/falling slopes
between pre-layout and post-layout waveforms. The error is calculated
using the formula (slopepost_ layout-slopepre_ layout)*100%. If the
absolute value of the error is greater than the value specified by slope_rel,
a Warning is issued into the result file.

Slope Absolute Error

Slope absolute error measures the difference of rising/falling slopes
between pre-layout and post-layout waveforms. If the difference, in V/ns, is
greater than the value specified by slope_abs, a Warning is issued into the
result file.

Usage Flow Methods

Various methods of executing dynamic crosstalk checking:

Method 1
The first method of executing dynamic crosstalk checking is to execute HSIM
separately. Using this approach, simulation results must be prepared for both
pre-layout and post-layout netlists in advance. The result files are denoted as
noccFile.fsdb and ccFile.fsdb respectively. The nodes of interest have to be
output using .print command for both cases.

The analysis needs an optional node list file such as nodelist.txt. The node list
file is a text file containing a list of analysis nodes itemized one node name per
line. If the file is not given, the node specifier in cckDXtalk will specify which
nodes are to be analyzed.
HSIMplus® Reference Manual 311
C-2009.06

Chapter 8: CircuitCheck
Signal Integrity Checks
Dynamic crosstalk analysis is eventually driven by adding cckDXtalk into the
CircuitCheck command file of the netlist. This is either a pre- or post-layout
netlist file and run HSIM with this revised netlist. Figure 28, shows the detailed
analysis flow.

Figure 30 Dynamic Cross Talk Detailed Analysis Flow

Method 2
The second method of executing dynamic crosstalk checking is to run
cckDXtalk in batch mode. Using this flow, only spfFile must be specified while
not specifying ccFile and noccFile. The command will automatically execute
HSIM twice.
■ The first run simulates the pre-layout netlist.
■ The second run simulates the post-layout netlist with the specified SPF file

and carries out the analysis.

Nodes found that are to be analyzed are automatically added to output files as
shown in the following examples:

Examples
When ccFile and noccFile are both given, add cckDXtalk to the CircuitCheck
command file using the following syntax:

cckDXtalk ccFile=post.fsdb noccFile=pre.fsdb
nodeListFile=nodelist.txt\
delay_rise_th=45 delay_rise_abs=1.12n \
slope_vlth=14 slope_vhth=80 slope_abs=1 slope_rel=10 \
delay_fall_th=60 delay_fall_abs =0.001n \
separate_file=1

Following is typical report sample from cckDXtalk:

nodeListFile

hsim.cck

nocFile.fsdb

ccRile.fsdb

hsim with cckDXtalk
(Command)

Pre-layout
Simulation

Post-layout
Simulation
312 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Signal Integrity Checks
* --
* Dynamic Cross Talk Check
* noccFile = pre.fsdb
* ccFile = post.fsdb
* nodeListFile = nodelist.txt
* referenced vdd = 1.5 V
* slope_rel = 10%
* slope_abs = 1 V/ns
* slope_vlth = 14%
* slope_vhth = 80%
* delay_rise_th = 55%
* delay_rise_abs = 1 ns
* delay_fall_th = 60%
* delay_fall_abs = 0.001 ns
* separate_file = 1
* --
Signalsim time(ns) delay time(ns) slope rel(%) slope \
abs(v/ns)
v(oup) 0.375- -28.3 3.69
v(oup) 3.96 0.232(F) -47.7 8.73
v(oup) 7.36 --34 4.49
v(oup) 11 0.232(F)-47.7 8.72
v(out_b) 0.28 - -34 4.49
v(out_b) 2.71 0.232(R) -47.7 8.72
.......
.......

find 24 rise delay violation(s).
find 89 fall delay violation(s).
find 174 absolute slope violation(s).
find 174 relative slope violation(s).

Total of 437 dynamic cross talk violation(s).
Total of 6 node checked.

Using cckDXtalk when the spfFile is given using the batch mode method. When
spfFile is given, add cckDXtalk into the CircuitCheck command file using the
following syntax:

cckDXtalk spfFile=cc.spf nodeListFile=nodelist.txt\
delay_rise_th=45 delay_rise_abs=1.12n \
slope_vlth=15 slope_vhth=75 slope_abs=4 slope_rel=19 \
delay_fall_th=35 delay_fall_abs =3.12n \
separate_file=1
HSIMplus® Reference Manual 313
C-2009.06

Chapter 8: CircuitCheck
Signal Integrity Checks
cckParasiticRC

cckParasiticRC performs statistical analysis of the parasitic RC during netlist
loading to aid in post layout circuit debugging. See cckParasiticRC on
page 170 for detailed description.

Static Crosstalk Noise Analysis: Estimating Noise Glitches

Due to the ever increasing density in a chip design, the coupling capacitors
between signal nets is an important topic to study. Aggressor nets can induce
noise on victim nets. If the noise glitch is too large, it will trigger the circuit to
change state unexpectedly. Furthermore, with the decrease of power supply
voltage (VDD) such as from 3V to 2.5V to 1.8V, the noise glitch requires more
attention and needs to be addressed.

Figure 31 Fast Rising vs. Slow Falling Path]

If FC is a floating capacitor with a value exceeding a specific threshold; and
from node A, the fast rising paths are located; from node B, slow falling paths
are located. The fast rising at A will create a rising noise glitch at node B. The
noise bump is approximated as (FC / Total_Cf) * VDD, where FC is the
coupling capacitance; Total_Cf is the total capacitance on the slow falling path.

FC

fast rising path

A

B

falling path. total capacitance
g the path is Total_Cf

rise noise glitch is
Vr= (FC / Total_Cf) * Vdd

vr
Total_Cf
314 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Signal Integrity Checks
Similarly, fast falling paths and slow rising paths may exist at the two ends of a
floating capacitor. The noise glitch on the slow path needs to be computed.

Note:

When cckStaticXtalk is issued, CircuitCheck automatically disables HSIM
transition simulation. This means that there is no transition simulation even
if users have .tarn in the HSIM control file or netlist file.

Figure 32 Fast Falling vs. Slow Rising Path

The following specifications are needed to analyze crosstalk.

Running Crosstalk Glitch Analysis
The cckStaticXtalk command runs crosstalk glitch analysis. It locates the
significant floating capacitors and identifies the victim and potential aggressor
signals, then estimates the static glitch noise caused by the aggressor signals
through the coupling capacitors. Glitches over the user-specified threshold
values are reported.

Syntax
cckStaticXtalk fCapTh=fcap_threshold

vrth=rise_noise_glitch_threshold
vfth=fall_noise_glitch_threshold
[method=1|2] [modelWLRatio=model_name min
max>][RCTime=riseMin riseMax fallMin
fallMax][fCapRptRatio value] [rptAggrNode node_name]

FC

A

B

fast fal ling path

slow rising path. total
capacitance on the path
is Total_Cr.

falling noise glitch
Vf = (FC / Total_Cr) *Vdd

Total_Cr

0
HSIMplus® Reference Manual 315
C-2009.06

Chapter 8: CircuitCheck
Signal Integrity Checks
[subckt=subcircuit_name][node=node_name]
[skipSub=subcircuit_name] [skipNode=node=name]
[skpElem=element_name] [debug 0|1]

Parameters
fCapTh

Floating capacitors with values larger than the specified threshold value are
considered for crosstalk analysis. The value is in farads.

vrth

Reports nodes if they have rise glitch larger than the specified threshold
value. The value is in volts.

vfth

Reports nodes if they have fall glitch larger than the specified threshold
value. The value is in volts.

method

A value of 1 (default) identifies the fast/slow path by the transistor W/L ratio.
Specify a value of 2 to identify the fast/slow path by the path RC delay. The
method values are mutually exclusive in the same static crosstalk command
set.

modelWLRatio

This argument applies only to method 1. For the specified model name, the
path is a fast path if the smallest W/L ratio is greater than the specified
maximum value. The path is a slow path if the greatest W/L ratio is less than
the specified minimum value.

RCTime

This argument applies only to method 2. The path RC delay calculation is
based on the approach used by the cckRCDlyPath command. If the path
delay is less than the specified minimum value, the path is treated as a fast
path. If the path delay is greater than the specified maximum value, the path
is treated as a slow path.

fCapRptRatio

This argument works only with the rptAggrNote argument. If specified, the
cckStaticXtalk command uses the fCapRpt ratio value (0<=value<=1) to
launch a quick check of coupling capacitors only. The other end of coupling
capacitors is reported when its (CC/C_total) is greater that thefCapRpt ratio
value.
316 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Signal Integrity Checks
If you do not use this argument, the coupling capacitors check does not run.
There is no default.

rptAggrNode

This argument works only with the fCapRptRatio argument. It reports the
qualified aggressor signals across the related coupling capacitors through
the specified nodes. You can use a wildcard character in the node name.

subckt

Specifies to conduct a static crosstalk analysis within the specified
subcircuit domain.

node

Specifies a static crosstalk analysis on the specified nodes. You can use this
argument with the subckt argument.

skipSub

Runs static crosstalk analysis without considering the nodes in the specified
subcircuit domain.

skipNode

Runs static crosstalk analysis without considering the specified nodes.

skipElem

Runs static crosstalk analysis without considering the specified elements.

debug

Specify a value of 1 to output all valid paths to a gziped file with a
.xtkdebug extension. The default is 0 (off).

Examples
cckStaticXtalk fCapTh=1p vrth=0.01 vfth=0.02 method=1
modelWLRatio=(nx, 12, 18) modelWLRatio=(px, 16, 24)

In this example the transistor W/L ratio determines the fast/slow paths in the
design. The analysis only considers the capacitors larger than 1pF. A path with
an nx type transistor with a minimum W/L ratio greater than 18 is most likely a
fast path. A path with a px type transistor with a minimum W/L ratio greater
than 24 is most likely a fast path. The cckStaticXtalk command collects and
reports the violations with rise glitch greater that 0.01v and fall glitch greater
that 0.02v.

ckStaticXtalk fCapTh=1p vrth=0.01 vfth=0.01 method=2 RCTime=(0.5n
3n 0.4n 4n)
HSIMplus® Reference Manual 317
C-2009.06

Chapter 8: CircuitCheck
Signal Integrity Checks
In this example the path RC delay (RC time constant) determines the fast/slow
paths in the design. The analysis only considers the capacitors larger than 1
pF. The cckStaticXtalk command collects and reports the violations with rise
glitch greater that 0.01v and fall glitch greater that 0.02v. A rising path with a
delay less than 0.5n is considered a fast path. If the delay is larger than 3n, it is
considered a slow path. A falling path with a delay less that 0.4n is considered
a fast path. If the delay is larger than 4n, it is considered a slow path.

The following three files are created:
■ hsim.cckxtk or out_file.cckxtk: These files show path-pairs on the interested

floating capacitors. In each pair, one path is fast and the other is slow.
■ hsim.cckvr or out_file.cckvr: Path-pairs that cause a large rising noise glitch

will be reported in these files.
■ hsim.cckvf or out_file.cckvf: These files contain path-pairs that cause large

falling glitch, hence smaller vf.

Note:

The cckStaticXtalk command replaces the cckStaticXtalk_GroupCmd
command. Table 7 shows how the cckStaticXtalk command arguments map
to the cckStaticXtalk_GroupCmp commands.

Table 7

cckStaticXtalk argument Equivalent cckStaticXtalk_GroupCmd command

fCapTh cckXtalkFloatingCap

vrth cckXtalkRiseVolt

vfth cckXtalkFallVolt

method cckXtalkByWL and cckXtalkByRC

modeWLRatio cckXtalkModelWLratio

RCTime cckXtalkRiseTimeConst and cckXtalkFallTimeConst

fCapRptRatio cckXtalkReportCouplingCapRatio

rptAggrNode cckXtalkReportAggressorNode

subckt cckXtalkAtNode
318 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Signal Integrity Checks
hsim.cckxtk Output Sample

The hsim.cckxtk output sample contains pairs of slow and fast paths as shown
in the following:

; Report format:
; Serial_num Capacitor_name Cap_1st_node_name Cap_2nd_node_name
Cap_value \
; minWL_mos_name_on_low_imp_path
minWL_mos_name_on_high_imp_path
; Low_imp_path:
; Vsrc_node_name
; Elem_name Elem_type L/W or Resistance
; High_imp_path:
; Vsrc_node_name
; Elem_name Elem_type L/W or Resistance
Total number of low and high impedance path pairs for
floating capacitors=2912
User defined values:
Floating capacitance threshold=1e-012(F)
Use MOSFET WL ratio to find low/high impedance paths.
nx min=12, max=18
px min=16, max=24
px2 min=10, max=20
1 c6x gx1 wl8 4.51e-012 mx7|mn1 mx55|mi30
 low_imp_path:
 gnd
 mx7|mn1nmos0.4/5
 * mx7|xi38|mn1@3 nmos0.4/5
 * mx7|xi38|mn1@2 nmos0.4/5
 * mx7|xi38|mn1@5 nmos0.4/5
 * mx7|xi38|mn1@4 nmos0.4/5
 high_imp_path:
 gnd
 mx55|mi30 nmos 0.4/3

node cckXtalkAtNode

skipSub cckXtalkSkipNode

skipElem cckXtalkSkipElem

Table 7

cckStaticXtalk argument Equivalent cckStaticXtalk_GroupCmd command
HSIMplus® Reference Manual 319
C-2009.06

Chapter 8: CircuitCheck
Signal Integrity Checks
Note:

MOSFET mx7|mn1 has parallel transistors. The sum of their W/L ratios is
documented. Hence, the effective W/L is (5 * 5/0.4)=62.5 > (max=18). It is
a fast path.

Floating capacitor c6x has two end nodes: gx1 and wl8. A fast falling path,
whose MOSFET with smallest W/L is mx7|mn1, consists of parallel transistors.
For the high impedance path, its smallest MOSFET is mx55|mi30, whose W/L
is 3/0.4 < (min=12).

hsim.cckvr Output Sample

The hsim.cckvr output sample is shown in the following:

Total number of Vr errors=2
User defined values:
Floating capacitance threshold:1e-012(F)
Vr threshold:0.01(V)
Use mos WL ratio to find low/high impedance paths.
nx: min=12, max=18
px: min=16, max=24
px2: min=10, max=20
S.N. Cap_name Node1 Node2 Ctotal(F) Cfloat(F) Vr(V) Low_imp_mos
High_imp_mos
1 c101 x5|io6 x4|i6b 3.7e-012 1.3e-012 0.35 mx4|mi79 mx9|mi54
 low_imp_path:
 gnd
 mx4| mi79 nmos 0.4/25
 high_imp_path:
 vdd
 mx9|mi54 pmos 0.5/5

Note:

The floating capacitor is c101. It has two nodes: x5|io6, x4|i6b. The total
capacitance on the slow path is 3.7 pF (including the floating
capacitance=1.3 pf). The rising noise glitch is 0.35V. The smallest MOSFET
on the low impedance path is mx4|mi79. The smallest MOSFET on the high
impedance path is mx9|mi54.

hsim.cckvf Output Sample

The hsim.cckvf output sample is shown in the following:
320 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Signal Integrity Checks
Total number of Vf errors=115
User defined values:
Floating capacitance threshold:1e-012(F)
Vf threshold:0.3(V)
Use mos WL ratio to find low/high impedance paths.
nx: min=12, max=18
px: min=16, max=24
px2: min=10, max=20
S.N. Cap_name Node1 Node2 Ctotal(F) Cfloat(F) Vf(V) Low_imp_mos
High_imp_mos
1 c201 xi5|io4 xi4|io4b 6.7e-012 2.3e-012 0.66 mx54|mi79 mx59|mi54

low_imp_path:
gnd
mx54| mi79 nmos 0.4/25

high_imp_path:
vdd
mx59|mi54 pmos 0.5/5

Note:

The floating capacitor is c201. The total capacitance on the slow path is 6.7
pF. The falling glitch will result in vf=0.66V. The smallest MOSFET on the
low impedance path is mx54|mi79. The smallest MOSFET on the high
impedance path is mx59|mi54.

Example 51
cckXtalkFloatingCap 1.e-12
cckXtalkRiseVolt 0.01
cckXtalkFallVolt 0.3
cckXtalkByRC 1
cckXtalkRiseTimeConst min=0.5n max=3n
cckXtalkFallTimeConst min=0.4n max=4n

Use RC-delay to decide the fast and slow paths. The floating capacitors
threshold is 1 pF. Any coupling capacitors value exceeding 1 pF will be
considered. From those capacitors’ two ends, trace to VDD and GND to find
rising and falling paths. For a rising path, if its rc-delay is smaller than 0.5 ns, it
is a fast path. If its delay is larger than 3 ns, it is a slow path. Similarly for the
falling paths. Fast and slow path-pairs are located at each interested floating
capacitor. Then, compute the coupling impact. If the rising noise glitch is larger
than 0.01V, this path-pair will be reported in hsim.cckvr. If the falling glitch is
large enough to make Vf smaller than 1.79V, then this path is in hsim.cckvf.
HSIMplus® Reference Manual 321
C-2009.06

Chapter 8: CircuitCheck
Signal Integrity Checks
cckxtk Output Sample

The hsim.cckxtk output sample is shown in the following:

; Report format:
; Serial_num Capacitor_name Cap_1st_node_name
Cap_2nd_node_name Cap_value \
; Time_constant_on_low_imp_path
Time_constant_on_high_imp_path
; Low_imp_path:
; Vsrc_node_name
; Elem_name Elem_type L/W or Resistance
; High_imp_path:
; Vsrc_node_name
; Elem_name Elem_type L/W or Resistance
Total number of low and high impedance path pairs for floating
capacitors=2647
User defined values:
Floating capacitance threshold1e-012(F)
Use RC delay to find low/high impedance paths.
Rise time-constant:min=5e-010, max=3e-009
Fall time-constant:min=4e-010, max=4e-009
S.N. Cap_name Node1 Node2 Cap_value(F) Min_time_constant
Max_time_constant
1 c249 xite<0 rd<9 7.6e-012 3.9933e-010 1.43892e-008
low_imp_path:

gnd
mxer|xi8|mn1 nmos 0.4/10

high_imp_path:
vdd

mxer|xi9|mi54 pmos 0.5/20
mxer|xi9|mi56 pmos 0.5/20

hsim.cckvr Output Sample

The hsim.cckvr output sample is shown in the following:
322 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Leakage Current Detection
Total number of Vr errors=4
User defined values:
Floating capacitance threshold:1e-014(F)
Vr threshold:0.01(V)
Use RC delay to find low/high impedance paths.
Rise time-constant: min=5e-010, max=3e-009
Fall time-constant: min=4e-010, max=4e-009S.N. Cap_name Node1
Node2 Ctotal(F) Cfloat(F) Vr(V) Min_time_constant
Max_time_constant
1 c81 xik2|i5 xik4|io2b 5.87e-012 2.4e-012 0.2.42 3.68e-010 5.0e-
009

low_imp_path:
gnd
xi43|mi9 nmos 0.4/25

high_imp_path:
vdd
xi13|mi5 pmos 0.5/5

hsim.cckvf Output Sample

The hsim.cckvf output sample is shown in the following:

Total number of Vf errors=1501 (1501)
User defined values:
Floating capacitance threshold:1e-012(F)
Vf threshold:0.2(V)
Use RC delay to find low/high impedance paths.
Rise time-constant: min=5e-010, max=3e-009
Fall time-constant: min=4e-010, max=4e-009
S.N. Cap_name Node1 Node2 Ctotal(F) Cfloat(F) Vf(V)
Min_time_constant Max_time_constant
1 c1081 xik1|io2 xik1|io4b 5.487e-012 2.04e-012 0.73042 3.68e-
010 5.0e-009

low_imp_path:
gnd
xi313|mi79 nmos0.4/25

high_imp_path:
vdd
xi313|mi54 pmos0.5/5

Leakage Current Detection

These CircuitCheck commands are designed to detect leakage-current paths,
and to estimate the contribution of the nodes to the leakage current.
HSIMplus® Reference Manual 323
C-2009.06

Chapter 8: CircuitCheck
Leakage Current Detection
Detect Leakage Paths Between Voltage Supply Nodes

cckMaxStaticLeak
Syntax
cckMaxStaticLeak <num=n>

Description
CircuitCheck reports any path leaking current from one voltage source to
another source statically. For example, there is a conducting path in Figure 31
on page 297 from VDD to GND.

Figure 33 Conducting Path

CircuitCheck limits the number of Warnings by num=n. This type of Warning
will be in .cckleak file.

Examples
cckMaxStaticLeaknum=10

The following is the Static leakage path between voltage sources output
sample resulting from the command example above:

* Static leakage path between voltage sources

A static leakage path to
 node (vdd, v=1.65)
 from node (rmaddr<63>) thru (xm.xyy2.mp)
 from node (0, v=0) thru (xm.rz)

vdd

p1

 n1

d

dd
324 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Leakage Current Detection
Leakage Current Detection in Non-Conducting Transistors

This function detects the OFF transistors at the standby time and computes the
leakage current. Since the leakage current of an OFF device depends on its
length, width and state of its drain and source nodes. For example, if a node is
in high impedance mode; each group will be detailed in a summary report.

cckOffLeakI
Syntax
cckOffLeakI <tag=tagName> <subckt=subName> <inst=instName>

<vsrc=vsrcName> <vt=threshold> <time=standByTime>
<ioff=ioffCmd> <hzStage=hzLimit> <detail=[0|1]>
<separate_file=[0|1]>

Parameters
tag

A label in the report.

subckt

Examines the instances in this subckt.

inst

Instance name(s) to be checked.

vsrc

Voltage source name from which OFF devices are traced.

vt

Voltage threshold used to decide if a device has a leakage current. The
default is 0.1V.

time

Standby time when checking is performed.

ioff

File name that contains the current ratios per unit length for each model.

hzStage

A series of OFF devices will make some nodes to be in high-impedance
mode. In that case, each OFF device will have a high-z stage number,
based on the distance from the non-high-z nodes. The default is 2.
HSIMplus® Reference Manual 325
C-2009.06

Chapter 8: CircuitCheck
Leakage Current Detection
detail

If set to 1, all the OFF transistors and the high-z stage for each instance will
be printed. Otherwise, it is 0.

separate_file

If set to 1, the summary will be printed to a separate file.

Description
The cckOffLeakI command is added to a CircuitCheck command file and
invoked through:

.param hsimCktCheck=cmdFile

Leakage Current in OFF Transistor
The leakage current of an OFF device depends on the voltage of its drain (D)
and source (S) node. If a trace is run from a given voltage source node to an
OFF device and reach the S node first, then if V(D) > V(S) +vt, this OFF device
has a leakage current.

Checking is performed at time 10n, 20n, 41n and 66n and traced from node 0.
Multiple commands are allowed at different times and from different voltage
sources.

Figure 34 OFF Device Leakage Current

gnd

M1 off

node A

if node A’s voltage
Va > Vgnd + vt, M1 is
considered to have leakage
current.

M2 off

M3 off

gnd

node B

node C

M2 and M3 are off. Since M4 is
ON, node B is not a high-
impedance node. If the voltage of
node B is greather than (gnd + vt),
M3 has a leak. For M2, we
compare the voltage difference
between nodes C and B. if it is
larger than vt, then M2 has a
leakage.

M4 ON
326 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Leakage Current Detection
Tracing starts from the given voltage source specified in the command. For
example, Figure 32 on page 299, a trace to node A is begun from a GND node
with zero voltage, and where M1 is OFF. Then the voltage at A is compared. If
Va > gnd +vt, M1 has a leakage current.

From the GND node, OFF device M3 can be traced continuously until it
reaches M2. To consider the leakage current in M3, the voltage at node B and
GND are compared. If Vb > gnd+vt, M3 has a leakage. At this point, Vb=0 and
Vgnd=0 so M3 has no leakage. For M2, which is also OFF, the voltages of
nodes C and B are compared. If Vc > Vb + vt, M2 has a leakage.

If some nodes are in a high-impedance (high-Z) state, the effects on adjacent
nodes must be considered. Since the voltage of a high-z node is unknown,
tracing must be continued to find the node voltage of the next stage. Before
proceeding, however, the high-z stage must be defined.

High-Z Stage Definition A High-z stage is the distance from an OFF device
with high-z node to an non-high-z node. Figure 33 on page 300 shows an
example of a definition of high-z stage.

In Figure 33, tracing starts at a given voltage source such as GND. For one
branch, OFF devices such as M3, M2 and M1 are tested and stop at node A,
which is VDD or non-high-z node. Another tracing starts from GND where two
branches of OFF devices are found. One branch is M8 -> M7 -> M6 and the
other is M8 -> M7 -> M4 -> M5. Nodes D and E are either power supply or non-
high-z nodes.
HSIMplus® Reference Manual 327
C-2009.06

Chapter 8: CircuitCheck
Leakage Current Detection
Figure 35 OFF Device Leakage Current with a High Impedance Node

When deciding the leakage current, only the top device in each branch is
considered. In Figure 33 on page 300, only M1, M6 and M5 are considered
since they are the last element in each branch starting from GND node.

Figure 33, illustrates the following:
■ M1 is at high-z stage 3
■ M6 is at high-z stage 3
■ M5 is at stage 4.

The leakage current at a large high-z stage is smaller than that at the small
high-z stage as illustrated by the measurement. Therefore, the current ratios at
different high-z stages need to be specified. Refer to Leakage Current Ratio on
page 301 and Example 51 on page 302.

Leakage Current Ratio

The ratio in the current IoffCmd file is the leakage current per unit width for
each model and length.

M1
off

M2
off

M3
off

node A:
vdd or non-high-z

node B: gnd

hz

hz
M6
off

M7
off

M8
off

node D:
vdd or non-high-z

node C:
gnd or non-high-z node closer
to gnd

hz

hz

hz

M4
off

M5
off

node E: vdd or non-high-z

M1 is at high-z stage 3, since
it goes through M2, M3 to
reach gnd.

M5 is at high-z stage 4, since it
goes through M4, M7, M8 to
reach node C. M6 is at high-z
stage 3.
328 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Leakage Current Detection
For example, in the following command:

nch 0.18u 2e-4 z2 1.5e-4 z3 1e-4

nch is the model name. 0.18u is the length of the transistor. The leakage
current per unit width is 2e-4 (Amp/meter) for an OFF device with high-z stage
0 or 1. If an OFF device is at high-z stage 2, the unit width leakage current is
1.5e-4 (Amp/meter). If a device is at high-z stage 3, then its leakage current is
1e-4 (Amp/meter). The higher the high-z stage, the less its leakage current.
■ Determine which OFF devices in Figure 33 on page 300 have leaks:

• In Figure 33, for M1, nodes A and B are considered. The nodes
between A and B are not considered since they are at high-z mode.
Tracing begins from node B (i.e., node B is closer to GND node). If Va
> Vb + Vt, where Vt is the threshold specified in the command, M1 has
a leak. If M1 is a nch device of L=0.18u, its leakage current is the current
ratio of z3 (1e-4 Amp/meter) multiplied by the width of M1.

• For M6, nodes D and C are considered. If Vd > Vc +vt, M6 has a leakage
current. Otherwise, it does not have a leak. If M6 is a nch device with
L=0.25u, then its leakage current is the current ratio z3 (0.5e-4 Amp/
meter) multiplied by the width of M6.

• For M5 at high-z stage 4, nodes E and C are considered. If Ve > Vc +
vt, M5 has a leak. If only the OFF device with maximum high-z stage 3
is to be considered, M5 will not be considered. Now for the remaining
OFF devices, for example, M4, since it is not the last element in the
branch, it is considered to have no leakage.

■ The total leakage current is I (leak in M1) + I (leak in M6).
■ If the current ratio is not given, the total width of the OFF devices with the

same model and length is added together.
■ The length in the current ratio file may have a range. For example 0.18u to

4u means the devices with length from 0.18u to 4u, inclusively.

Add the cckOffLeakI syntax in Example 51 to the CircuitCheck command file:

Example 52
cckOffLeakI tag=t1 inst=* vsrc=0 vt=0.4 time=10n time=20n \
time=41n time=66n detail=1 separate_file=1 ioff=ioff.cmd \
hzStage=3
cckOffLeakI tag=t2 inst=* vsrc=vbb vt=0.4 time=6n time=8n \
time=15n time=56n detail=1 separate_file=1 ioff=ioff.cmd \
hzStage=3
HSIMplus® Reference Manual 329
C-2009.06

Chapter 8: CircuitCheck
Leakage Current Detection
Add the ioff.cmd syntax to the current ratio file as shown below:

/* leakage current for every size L
 * syntax:
 *
 * model_name L(meter) off_current(Amp/meter) highZCnt
 * off_current
 *
 * length unit=meter
 * current unit=Amp
 *
 * unit must be specified. for instance,
 * L=2u (2e-6 memter)
 * the unit for off_current ratio is Amp/meter
 * if length has range, use “to”
 */

nch 0.18u 2e-4 z2 1.5e-4 z3 1e-4
nch 0.19u to 4u 1e-4 z2 0.8e-4 z3 0.5e-4
pch 0.18u 1.5e-4 z2 1.1e-4 z3 0.7e-4

Command Output
Producing the command output is accomplished as follows:

1. The options specified are listed in the command as follows:

**
* tag=t1 vt=0.400 hzStage=3 separate_file=1 detail=1
* vsrc=0 time=10n time=20n time=41n time=66n
* inst=*
* ioff=ioff.cmd
* leakage current spec is:
* model length offI(A/meter) highZ_stage offI(A/m)
* pch 0.18u 0.00015 z2 0.00011 z3 7e-005
* nch 0.19u to 4u 0.0001 z2 8e-005 z3 5e-005
* nch 0.18u 0.0002 z2 0.00015 z3 0.0001
**

2. All the OFF devices of model nch with length 0.18u are detected. These nch
devices will be further separated into different high-z stages.

• For devices at high-z stage 0 or 1, its unit width leakage current is 2e-4
Amp/meter. Therefore the total width of nch devices of L=0.18u are
computed.

• For nch device at high-z stage 2, the unit width ratio 1.5e-4 is used.

• For nch device at high-z stage 3, the unit width ratio 1e-4 is used.
330 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Leakage Current Detection
• For nch device at high-z stage 4 and above, their leakage current are
not computed since they are too small.

• Similarly, a nch device with L=0.19u to L=4u is considered. They will
use different current ratio.

• For a pch device, there are different ratios.

• When an OFF device is found and its current ratio is not specified in the
current spec file, only the total width for each given length is computed.

A sample output summary is shown in Example 52:

Example 53 :
Summary @ time 10n from Vsrc (0) tag (t1):

model length totWidth OFF_I(Amp)
pch L=0.48u

W=2u (pch device with L=0.48u is not specified in the spec
file. we simply compute the total width.)
pch L=0.18u

 W=4u Ioff=6e-010(@0.00015)
 W=301.7u Ioff=3.3187e-008 (@0.00011) HiZ=2

nch L=0.19u to 4u
 W=0u Ioff=0 (@0.0001)
 W=0u Ioff=0 (@8e-005) HiZ=2
 W=0u Ioff=0 (@5e-005) HiZ=3

nch L=0.18u
 W=183.2u Ioff=3.664e-008 (@0.0002)
 W=130u Ioff=1.95e-008 (@0.00015) HiZ=2
 W=0u Ioff=0 (@0.0001) HiZ=3

In the detailed mode, every OFF device is printed and the high-z stage is
indicated as shown in Example 53.

Example 54 :
xram.xr2.xr0.xu8.mn : nch L=1.8e-007 W=8e-007
xram.xr2.xr18.xu10.xu8.mn: nch L=1.8e-007 W=8e-007
xram.xr2.xr6.xu10.xu8.mn: nch L=1.8e-007 W=8e-007
xcam.xh_30.xi7.mn : nch L=1.8e-007 W=1e-006 HiZ=2
xcam.xh_22.xi11.mn : nch L=1.8e-007 W=1e-006
xcam.xh_54.xi7.mn : nch L=1.8e-007 W=1e-006 HiZ=2
xcam.xh_31.xi7.mn : nch L=1.8e-007 W=1e-006 HiZ=2
xcam.xh_54.xi9.mn : nch L=1.8e-007 W=1e-006
xcam.xh_59.xi9.mn : nch L=1.8e-007 W=1e-006
xcam.xh_16.xi9.mn : nch L=1.8e-007 W=1e-006
HSIMplus® Reference Manual 331
C-2009.06

Chapter 8: CircuitCheck
Leakage Current Detection
Power-Down Floating-Gate Checking

Floating gates are detected by extending the existing Hi-Z (high-impedance)
check to detect the leakage path during the power down mode. Hi-Z node
voltage may be about one-half of the VDD voltage causing its fanout elements
to partially conduct leakage current.

This check detects Hi-Z nodes, and marks their associated fanout transistors to
be ON. If the operation forms any conducting path with device(s) driven by Hi-Z
node(s), or a DC path with the leakage current larger than the threshold value,
then these paths will be reported. The list can be checked to isolate the
problematic Hi-Z nodes, so they can be clamped to either VDD or GND; which
should avoid the leakage problem.

cckAnalogPDown
Syntax
cckAnalogPDown <tag=name> <time=check_time_1

<time=check_time_2 ..>>> <vsrc=source
destination_vsrc_name 1 <vsrc=source
destination_vsrc_name 2 … >>>>

Parameters
time

The time interval when cckAnalogPDown is being performed. Multiple check
times can be specified.

vsrc

vsrc name(s) that form the potential leakage path. cckAnalogPDown only
looks for the conducting path(s) associated with the specified vsrc names.

cckAnalogPDownIth
Syntax Definitions
cckAnalogPDownIth <current_threshold_value>

Parameters
current_threshold_value

If the leakage current on the dcpath is detected by cckAnalogPDown is
larger than this specified threshold value, the path will be listed in the
cckAnalogPDown report.
332 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Leakage Current Detection
Example
cckAnalogPDown tag=chk_1 time=5n time=7n vsrc=vdd vsrc=gnd

cckAnalogPDown conducts a power-down leakage-path check at both 5.0 ns
and 7.0 ns. It then reports DC paths with leakage currents larger than the
default 1uA current threshold flowing from VDD to GND, or the conducting
paths with device(s) driven by a Hi-Z node. See the following example.

cckAnalogPDown tag=chk_2 time=5n time=7n vsrc=vdd vsrc=gnd
cckAnalogPDownIth 10u

Using the example above, except changing the default 1uA to 10uA, the report
will appear as follows:

* --
* DC Path Check (analog power-down check)
* pdownIth = 10e-006 Amp
* vsrc = vdd
* vsrc = gnd
* title = chk_2
* at = 0.000000005
* at = 0.000000007
* sort = 0
* separate_file = 1
* --
path 1 from vdd to 0 @ 0.000000005s

(gateIsHiZ) xls.x1i146.mp1 (PMOS: Ids=0)
drain xlsda1.n1n152 5.25
source vdd 5.25
gate xlsda1.rstd -0.0155812

(gateIsHiZ) xlsda1.x1i146.mn1
(NMOS: Ids=1.50143e-012)

drain xlsda1.n1n152 5.25
source 0 0
gate xlsda1.rstd -0.0155812

Note:

If the value for HSIMSTEADYCURRENT is greater than the value for
cckAnalogPDownIth incorrect results may occur. Ensure that
HSIMSTEADYCURRENT is less than cckAnalogPDownIth

cckElemI
cckElemI is used in transient simulation to monitor the current through each
element. If the absolute value of the current exceeds the threshold ith,
HSIMplus® Reference Manual 333
C-2009.06

Chapter 8: CircuitCheck
Leakage Current Detection
CircuitCheck reports the element name, current, and time. See cckElemI on
page 191 for detailed description.

cckExiPath
cckExiPath is used to detect excessive current paths from a power supply to
ground. See cckExiPath on page 192 for detailed description.

Static Analysis

The concept of static analysis is the ability to propagate characteristics of the
design, in this case static logic 0 and static logic 1, throughout the whole design
without the need of vectors or transient simulation. To propagate static logic 0
and static logic 1 throughout the design, it is necessary to define rules
associated with the propagation. These propagation rules are used to
determine if a static logic state (0 or 1) can be seen by a node through a
network of design elements like MOSFETs, resistors, capacitors, and diodes.
HSIMplus, with the Circuit Check Option, can analyze the design's state to
identify static high impedance (HiZ) nodes and static DC paths, with a minimum
of a design netlist and supply voltages defined.

Static 0 and Static 1 Notes
A node is considered static 0 if it has a static conducting path to a qualified
GND node and no possibility of a static conducting path to a qualified VDD
node, see below for definitions of qualified GND and VDD nodes relative to this
static 0 and static 1 node concept. Similarly a node is considered static 1 if it
has a static conducting path to a qualified VDD node and no possibility of a
static conducting path to qualified GND node.

A qualified VDD node is defined as a node directly connected to a constant
voltage source with a value greater than 0 volts.

A qualified GND node is defined as a node directly connected to a constant
voltage source with a value equal to 0 volts.

The definition of a static conducting path is a series path consisting of resistors,
inductors, 'on' n-MOSFET or p-MOSFET transistor drain/source channels , or a
combination of these.

Static HiZ node and static DC path analysis requires MOSFETs to be either
considered conducting (On), non-conducting (Off), or 'unknown'. The
definitions/analysis used to determine the state of a MOSFET are described
334 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Leakage Current Detection
below. To help facilitate more representative results the concept of MOSFET
threshold is necessary. MOSFET threshold is defined using the command
parameters nmosOn and pmosOn, for n-MOSFET and p-MOSFET transistors,
respectively. For example:

Example 55 Mosfet Conducting (On)/Non-Conducting (Off) Rule
nmosOn and pmosOn :user defined command parameters used in the
On/Off mosfet analysis with units of volts

(example: nmosOn=0.0 pmosOn=3.0).

If (nmos gate node is static 1 && its' gate voltage > 'nmosOn')
the mosfet is considered 'on'

else if nmos gate node is static 0 the mosfet is considered 'off'
else the mosfet is considered 'unknown'

If (pmos gate node is static 0 && its' gate voltage < 'pmosOn')
the mosfet is considered 'on'.

else if pmos gate node is static 1 the mosfet is considered 'off'.
else the mosfet is considered 'unknown'

By performing the static logic state propagation it is possible to check for static
HiZ nodes and static DC paths in order to improve design functionality and to
improve power consumption. Because the propagation is performed statically,
the coverage is greater than what can be achieved via dynamic simulation,
ensuring more design errors are reported and ultimately more corrections can
be implemented to ensure design correctness.

Static High Impedance Node
A node is said to be a Static High Impedance Node if it has no HiZ qualified
static conducting path to either a qualified VDD or GND node.

A HiZ qualified static conducting path is defined as a series path consisting of
resistors, inductors, ‘on’ or ‘unknown’ n-MOSFET transistor drain/source
channels , ‘on’ or ‘unknown’ p-MOSFET transistor drain/source channels, or a
combination of these.

cckStaticHZNode
To execute the CircuitCheck’s ‘Static High Impedance Node Check’ specify the
parameter cckstaticHZNode in the circuit check command file.

Syntax
cckstaticHZNode <pmosOn=val0> <nmosOn=val1>

<fanout=0|1|2|3> <pCap=0|1> <separate_file=0|1>
HSIMplus® Reference Manual 335
C-2009.06

Chapter 8: CircuitCheck
Leakage Current Detection
Parameters
pmosOn=<val0> (required)

pmosOn defines the voltage threshold <val0> used to determine ‘on’
p-MOSFET transistors. See Example 54 on page 308.

nmosOn=<val1> (required)

nmosOn defines the voltage threshold <val1> used to determine ‘on’
n-MOSFET transistors. See Example 54 on page 308.

fanout=[0|1|2|3]

fanout defines the nodes to report. The possible values are:

• 0 - reports all qualified HiZ nodes.

• 1 - reports only nodes connected to MOSFET gates.

• 2 - reports only nodes connected to MOSFET bulks

• 3 - reports only nodes connected to either MOSFET gates or bipolar
transistor (BJT) bases. This is the default value.

• 4 - reports only nodes connected to either MOSFET drain/source or BJT
emitter/collector

pCap=[0|1]

pCap defines the nodes to report when pseudo capacitors are encountered.
A pseudo capacitor is defined as a MOSFET with drain and source shorted
(or a bi-polar transistor with emitter and collector shorted). The possible
values are:

• 0 - pseudo capacitors have no affect on how HiZ nodes are reported.
This is the default value.

• 1 - if a node is considered HiZ and "only" pseudo capacitors are
connected via their MOSFET gates (or bi-polar transistor bases) the
node is not reported.

Note:

The pCap parameter has higher priority than the fanout parameter.

separate_file=[0|1]

Circuit Check places Static High Impedance Node warnings into the <hsim
output prefix>.cck output file when separate_file is set to 0. If separate_file
is set to 1, the results are placed into the <hsim output prefix>.SHZNd output
file.
336 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Leakage Current Detection
Note:

All of these parameters can be specified with global settings. Refer to Global
Parameter Settings on page 321.

Example
cckstaticHZNode pmosOn=3.0 nmosOn=0.0

Static DC Path
A static DC Path is said to exist if a “DC qualified static conducting path” exists
between a qualified VDD node and another qualified VDD or GND node.

A DC qualified static conducting path is a series path consisting of resistors,
inductors, ‘on’ NMOS transistor drain/source channels, ‘on’ PMOS transistor
drain/source channels.

To view static DC paths through the active circuit debugger (ACD), use the -
acd option when calling HSIM as shown below:

hsim input_deck.sp -acd -o output_prefix

The ACD browser opens, shows static DC paths grouped by qualified power
node name, and traces them by element or node.

To execute static DC path analysis, the parameter cckStaticDCPath must be
specified in the circuit check command file.

 .param hsimcktcheck=<circuit check command file>

cckStaticDCPath
Syntax
cckStaticDCPath pmosOn=val0 nmosOn=val1 <separate_file=0|1>

<diodeon vt_value>

Parameters
pmosOn=<val0> (required)

pmosOn defines the voltage threshold <val0> used to determine ‘on’
p-MOSFET transistors.

nmosOn=<val1> (required)

nmosOn defines the voltage threshold <val1> used to determine ‘on’
n-MOSFET transistors.
HSIMplus® Reference Manual 337
C-2009.06

Chapter 8: CircuitCheck
CircuitCheck Utilities
separate_file=[0|1]

Circuit Check places Static High Impedance Node warnings into the <hsim
output prefix>.cck output file when separate_file is set to 0. If separate_file
is set to 1, the results are placed into the <hsim output prefix>.SDCPath
output file.

diodevalue=vt_value

If Vanode - Vcathode >= vt value you specify, the conducting path is formed
between P and N. Otherwise no conducting path is formed between P and
N. If you do not use this argument, by default all diode devices are
considered not to be conducting.

Note:

All of these parameter can be specified with global settings. Refer to Global
Parameter Settings on page 321.

Example
cckStaticDCPath pmosOn=3.0 nmosOn=0.0

CircuitCheck Utilities

These CircuitCheck commands are designed to check various circuit functions
that are not covered in one of the other categories. These commands include:
■ cckBasic
■ cckCompareOp
■ cckPatternMatch on page 316
■ cckPatternConstraint on page 317
■ cckSetMosDir on page 319
■ cckTgPair on page 319

Basic Checking

cckBasic
cckBasic performs a basic check for valid parameters, substrate connections,
node paths to voltage sources and floating gates. Warnings are reported when
errors or inconsistencies are found.
338 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
CircuitCheck Utilities
Syntax
cckBasic [0|1] num=<n>

Parameters
cckBasic [0|1]

If 0 or 1 is not specified in cckBasic, CircuitCheck issues a warning message
in the log file. cckBasic 0 is the default. Set to 1 to turn basic checking on.

num=<n>

This value limits the total number of Warnings reported. The default is 300.

Description
To use this CircuitCheck option, add cckBasic 1 in the CircuitCheck command
file. No other commands must be put into this file. CircuitCheck then checks for
the following:
■ Parameters
■ Substrate connection before DC
■ Whether nodes have path to voltage sources
■ Floating gate

Example
cckBasic 1 num=2000

This enables cckBasic and sets the maximum warnings to 2000.

Comparing DC Results Between HSIM and Other Simulators

cckCompareOp
cckCompareOp provides an automatic DC comparison of HSIM's results with
results in a given reference file. The comparison automatically finds the nodes
within the given file, and then compares HSIM's results with the reference data
at those specified nodes.

The function of cckCompareOp is to automatically compare the DC OP, which
is computed in the current simulation with a given DC OP reference file using
the following syntax:
HSIMplus® Reference Manual 339
C-2009.06

Chapter 8: CircuitCheck
CircuitCheck Utilities
Syntax
cckCompareOp <refFile=fileName> <format=[eldo|hsim]>

<subckt=subckt_name> <node=node_name>
<skipsub=skip_sub_name> <skipnode=skipnode_node_name>
<time=doComparisionAtThisTime >
<outFile=output_file_name>

Syntax Definitions
 refFile

Selected reference file.

 format

Currently, only eldo and hsim formats are supported.

 subckt, node

subckt/node to be compared, cckCompareOp will use this setting as a filter
to filter out nodes listed in the reference file. Only nodes specified in the
scope of subckt/node will be compared.

 skipsub, skipnode

Contrary to subckt/node, skipsub/skipnode will skip nodes in the given
scope when comparing with reference nodes.

 time

DC time at which comparison will be conducted, default is 0.

 outFile

Compared results file. If not specified, the output will be written to the
<prefix>.cck file, where <prefix> is given via the -o option of HSIM.

Output Fields
The output is an ASCII report file containing the following fields:

Node_Name

Compares ELDO and HSIM hierarchical names.

HSIM_DC_OP(V)

HSIM-provided DC op condition.

REFERENCE_DC_OP(V)

Eldo-provided DC op condition.
340 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
CircuitCheck Utilities
Relative difference in %

Relative to HSIMVDD

The output file is sorted by relative difference with the highest value on top. The
reference DC OP format is ELDO.

Examples
cckCompareOp refFile=inv1_0.iic time=0n format=eldo \
outFile=hsim_cmpop.log skipsub=inv10 skipnode=*
cckCompareOp refFile=inv1_100n.iic time=100n format=eldo \
outFile=hsim100_cmpop.log node=*

The following is a typical cckCompareOp output file.

* Comparison of operating points.
*
* Spectre OP file: inv1_100n.iic
* transient time: 0

-------------Start Compare Op----------------

Node_NameHSIM_DC_OP(V)Eldo_DC_OP(V)(HSIM-Eldo)_DC_OP/

Hsim_Vdd(%)
x3.5 +5.0000000000000000-0.0000017426983195+166.667
x5.9 +5.0000000000000000-0.0000042658173509+166.667
x5.7 +5.0000000000000000-0.0000006782416429+166.667
x5.5 +5.0000000000000000-0.0000027092119370+166.667
x1.3 +5.0000000000000000-0.0000007398899505+166.667
x5.3 +5.0000000000000000-0.0000001779232473+166.667
x1.5 +5.0000000000000000-0.0000001967053253+166.667
x5.1 +5.0000000000000000-0.0000024511264310+166.667
x1.7 +5.0000000000000000-0.0000024611588271+166.667
x4.10+5.0000000000000000-0.0000000221863606+166.667
x1.9 +5.0000000000000000-0.0000001658784807+166.667
x4.8 +5.0000000000000000-0.0000029060007400+166.667
x4.6 +5.0000000000000000-0.0000022913118397+166.667
x2.2 +5.0000000000000000-0.0000027995864791+166.667
x4.4 +5.0000000000000000-0.0000017390747854+166.667
--
-----------------Compare Op End-----------------------
HSIMplus® Reference Manual 341
C-2009.06

Chapter 8: CircuitCheck
CircuitCheck Utilities
Find Subcircuit Instances

cckMatchSub
Reports all the instances of the specified subcircuits to the output file
<prefix>.ccksub by traversing the hierarchical netlist.

Syntax
cckMatchSub <subckt=subckt_name1,subckt_name2, ...etc.>

<ReptHierNode=0|1>

Parameters
subckt

The subckts specified are the ones to be matched.

ReptHierNode

Setting ReptHierNode=1 reports all the hierarchical node names in the
output file <prefix>.ccksub. ReptHierNode=0 is the default.

Examples
cckMatchSub subckt=buf1 ReptHierNode=1

The output is shown in the following:
342 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
CircuitCheck Utilities
Instances of Sub buf1:
Instance 1: x1
* Port *
in
-- x1.in
-- tx1
out
-- x1.out
-- tx2
vdd
-- x1.vdd
-- v3
gnd
-- x1.gnd
-- v5
Instance 2: x2
* Port *
in
-- x2.in
-- tx2
out
-- x2.out
-- tx3
vdd
-- x2.vdd
-- v2
gnd
-- x2.gnd
-- v4
2 Instances of Sub buf1 in Total

Pattern Matching Capability

cckPatternMatch
Syntax
cckPatternMatch <file=pattern_file_name>

<subckt=subckt_name> <ReptHierNode=0|1>
<IgnorePattern=pattern_name(s)> <noOverlap=1|0>
<MatchModel=0|1> <ReptParallel=0|1>

Description
cckPaternMatch enables pattern matching to designated devices while
conducting selected CircuitCheck commands. Compatible commands include:
HSIMplus® Reference Manual 343
C-2009.06

Chapter 8: CircuitCheck
CircuitCheck Utilities
■ cckTgPair
■ cckDlySkipElem
■ cckXtalkSkipElem

Parameters
file

Specifies the pattern file name containing the patterns to be selected for
matching to the circuit.

subckt

Defines the specified subckt as the scope to apply pattern matching.

ReptHierNode

Setting ReptHierNode=0 default causes CircuitCheck to only report the
pattern matched node. When ReptHierNode=1, the pattern matched node
and the up-stream hierarchical nodes are reported as well.

IgnorePattern

Specifies pattern name(s) that are excluded during pattern matching.
Multiple pattern names are specified and wildcards are supported.

noOverlap

noOverlap is used only if there is an overlap between pattern matching
results.

noOverlap=1

default specifies that the MOSFET devices inside the circuit are matched
only once during pattern matching.

noOverlap=0

indicates that the MOSFET devices inside the circuit are matched multiple
times during pattern matching. This option is used only there is overlap
between mappings of the pattern matching result.

MatchModel

MatchModel=1 requires that the models of the mappings of the pattern
matching result must also match the models of the patterns specified in the
pattern file. MatchModel=0 is the default.

ReptParallel

ReptParallel=1 reports all parallel devices in the output file
<prefix>.cckpat_match. ReptParallel=0 is the default.
344 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
CircuitCheck Utilities
Example
The following example shows multiple pattern names in the IgnorePattern
extension:

cckPatternMatch file=pattern IgnorePattern=p1 p2 p12*

cckPatternConstraint
Syntax
cckPatternMatch file=aa subckt=s32_d1lat_0
cckDlyskipElem pattern=1 inst=m3 inst=m4 subckt=s32_d1lat_0
cckPatternConstraint pattern=<pattern_name>
Wlratio=<logical_expression>
cckNoSimu 1

where file=aa within cckPatternMatch points to the file that contains the pattern
to be matched as shown in Example 55.

Examples

Example 56
** 1st line must be comment or empty (same as spice file) **
.subckt 1 n3 n5
m3 n5 n3 vdd p
m4 n5 n3 gnd n
m5 n3 n5 vdd p
m6 n3 n5 gnd n
.ends

Note:

Each pattern in the file must be described in SPICE format terms except,
there size information is not required. All or the patterns are grouped in the
same file specified in the file option.

Pattern matching will be enabled and applied onto the cckDlySkipElem
command, to look for the designated pattern named 1 within the scope of
subckt s32_d1lat_0. If there is a match, the corresponding m3 and m4
transistors will be classified as qualified candidates to be skipped. Since the
command file also contains cckPatternConstraint, which is used to specify
additional matching criteria, the pattern 1 in this example must meet the
matching criteria of the WLratio='m3>m5'.

If cckNoSimu=1, no simulation is performed. Example 56 shows an example.
HSIMplus® Reference Manual 345
C-2009.06

Chapter 8: CircuitCheck
CircuitCheck Utilities
Example 57

In sub (s32_d1lat_0) match 1 (1) patterns
Mapping 0:
* Mos *
m3 -- xia2.mp1
m4 -- xia2.mn1
m5 -- xia4.mp1
m6 -- xia4.mn1
* Net *
vdd -- vdd
gnd -- gnd
n3 -- zo
n5 -- o

Note:

Nodes connected to voltage sources are treated differently. Example 57
illustrates two patterns that are not the same.

Example 58
<pattern 1>
.subckt clampnmos11 vdd nb
MMa vdd nc nb nb NY
RRa nb nc $[RF]
.ends
<pattern 2>
.subckt clampnmos11 na nb
MMa na nc nb nb NY
RRa nb nc $[RF]
.ends

In pattern 1 has nodes connected to the global VDD signal which is a voltage
source node. In pattern 2, the global VDD signal is a non-voltage source node
na. Since these two patterns are not the same, pattern matching will not treat
them the same.

cckSetMosDir
cckSetMosDir is used to set the signal or current flow direction through
MOSFETs in order to perform other static and dynamic tests. See
cckSetMosDir on page 259 for detailed description.
346 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
CircuitCheck Utilities
Setting Transistor Directions

There are two methods for setting transistor direction at either the gate or
circuit level by using cckTgPair.

cckTgPair
cckTgPair <dirN=[D2S|S2D]> <subckt=subcktname>

<inst=nmosName> <pattern=patternname>

Parameters
cckTgPair

Works with pattern matching technology to identify designated transistors
based on patterns pre-defined using cckPatternMatch. Pattern names
selected from those predefined are matched. The direction of the transistors
to be matched will be limited to those with the direction specified in the dirN
option. Refer to the cckPatternMatch section for details.

Method 1: Setting a User-Specified Transistor Gate Transistor Direction
It is not easy to determine the correct direction for a transfer gate. Therefore,
transistor direction in a transfer gate may be specified using the following
syntax:

tgPair <dirN=[D2S|S2D]> <subckt=subcktName> <inst=nmosName>

Parameters
tgPair

Transfer gate pair (tgPair) includes an n-MOSFET and a p-MOSFET
forming a transfer gate.

dirN=D2S|S2D

The parameters are defined as drain-to-source (D2S) and source-to-drain
(S2D). The direction of an n-MOSFET device is set using this syntax.

Note:

Only the n-MOSFET direction needs to be set since other p-MOSFETs
are found in this pair and assigned the same direction as in n-MOSFET.

Example
tgPair dirN=S2D subckt=aa inst=mn1
HSIMplus® Reference Manual 347
C-2009.06

Chapter 8: CircuitCheck
CircuitCheck Utilities
subckt=aa, finds a n-MOSFET transistor mn1 and assigns its direction as S2D.
All the instantiations of aa will have this direction for mn1.

The node name may also be used as the starting point to define the direction.
For example, a MOSFET device has a drain node called dd and source node
called ss. If this transistor is from drain to source, then node dd sets the
direction in mn1.

tgPair <fromNode=nd1> <subckt=aa> <inst=mn1>

where fromNode=nd1. The mn1 instance in subckt aa is first found. Node
nd1 must be either a drain or source node of mn1. If nd1 is mn1's drain node,
this syntax command sets the mn1 direction to be drain-to-source. If nd1 is
mn1's source node, then the mn1 direction is source-to-drain.

Method 2: Defining Transistor Direction in a Circuit. This method defines
the direction for an individual transistor in a subckt. It is added into an input
SPICE file.

Syntax
.param <hsimMosDir=[1|2|3]> <subckt=aa> <inst=bb>

Parameters
hsimMosDir=1

Source-to-drain (S2D)

hsimMosDir=2

Drain-to-source (D2S)

hsimMosDir=3

Bi-directional (BID)

subckt=aa inst=bb

In the subckt aa, the direction selected by the option is assigned to transistor
bb. The transistors bb in all the instantiations of aa will have the same
direction.
348 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
Global Parameter Settings
Global Parameter Settings

Global parameter settings allow you to specify, un-specify, specify_global, and
restore_global CircuitCheck commands when setting parameters for the
following CircuitCheck commands:
■ cckMosV on page 173
■ cckCapV on page 180
■ cckDioV on page 180
■ cckResV on page 180
■ cckFloatGateIsrc on page 194
■ cckDiode on page 188
■ cckNmosB_gt_DS on page 196
■ cckNmosG_gt_DS on page 200
■ cckPmosB_lt_DS on page 213
■ cckPmosG_lt_DS on page 217
■ cckStaticHZNode on page 308
■ cckStaticDCPath on page 310

The parameters covered by these commands are: vlth, vhth, vpth, vnth, lvd,
uvd, lvg, uvg, lvs, uvs, lvb, uvb, num, rptTrace, vt, subinfo, listall, limitmos,
risePmosfallNmos, separate_file, filterAlert, pmoson, nmoson, trace, pcap,
fanout, lvp, lvn, uvp, uvn, extTrace, and mode.

Each parameter has a current value and a global value. Current values and
global values can be different.

For each CircuitCheck command, the value of a given command parameter is
assigned based on the following priority order:

1. Local command value if defined

2. Current value if defined

3. Global value if defined

4. Parameter remains undefined (in some instances, the default value will be
used)

specify Syntax:
specify param1=val1 … paramN=valN
HSIMplus® Reference Manual 349
C-2009.06

Chapter 8: CircuitCheck
Global Parameter Settings
Sets the current values for the parameters used in all of the commands defined
after the specify command.

unspecify Syntax:
unspecify param1 … paramN

Removes the current values of param1 … paramN used in all of the commands
defined after the unspecify command.

unspecify *

Removes the current values from all parameters.

specify_global Syntax:
specify_global param1=val1 … paramN=valN

Sets the global values of parameters used in all commands that are defined in
the CircuitCheck command file.

restore_global Syntax:
restore_global param1 … paramN

Restores the current value of param1 … paramN to the global values.

restore_global *

For all parameters with global values defined, the current value of each
parameter is restored to the global value.

Example:
CircuitCheck command file:

--
cckPmosG_lt_DS vhth=1.0 inst=* vt=0.3 vnth=0 vpth=0 rptTrace=1
cckPmosB_lt_DS vhth=1.0 inst=* vt=0.3 vnth=0 vpth=0 rptTrace=1

specify vhth=1 uvg=4.0 lvd=1.0
cckMosv NA_report model=NA inst=* vhth=0.1 uvs=2.0 uvb=2.0 vnth=0
vpth=0 rptTrace=1

specify_global vpth=-0.5 rptTrace=0 uvg=3.0 uvs=3.0 lvs=1.0 lvd=0
cckMosv PA_report model=PA inst=* lvd=2.0 lvs=2.0 uvb=2.0 vnth=0

restore_global uvg lvd
cckMosv tag1 model=NA inst=* uvs=2.0 uvb=2.0 vnth=0 vpth=-0.5
rptTrace=0

cckMosv tag2 model=PA inst=* vhth=0.1 uvg=5.0 lvs=0 uvb=2.0 vnth=0
vpth=-0.5 rptTrace=0
350 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
CircuitCheck Tutorial
Resulting CircuitCheck commands:

--
cckPmosG_lt_DS vhth=1.0 inst=* vt=0.3 vnth=0 vpth=0 rptTrace=1
uvg=3.0 uvs=3.0 lvs=1.0 lvd=0

cckPmosB_lt_DS vhth=1.0 inst=* vt=0.3 vnth=0 vpth=0 rptTrace=1
uvg=3.0 uvs=3.0 lvs=1.0 lvd=0

cckMosv NA_report model=NA inst=* vhth=0.1 uvg=4.0 uvs=2.0 uvb=2.0
lvd=1.0 vnth=0 vpth=0 rptTrace=1 lvs=1 rptTrace=1

cckMosv PA_report model=PA inst=* lvd=2.0 lvs=2.0 uvb=2.0 vnth=0
uvg=4.0 vpth=-0.5 rptTrace=0 uvs=3.0

cckMosv tag1 model=NA inst=* vhth=1 uvg=3.0 lvd=0 lvs=1 uvs=2.0
uvb=2.0 vnth=0 vpth=-0.5 rptTrace=0

cckMosv tag2 model=PA inst=* vhth=0.1 uvg=5.0 uvs=3 lvs=0 lvd=0
uvb=2.0 vnth=0 vpth=-0.5 rptTrace=0

CircuitCheck Tutorial

This tutorial provides information and examples for using CircuitCheck
commands in HSIM. The commands are specified in an input netlist file as
follows:

Invoking CircuitCheck

In the main input file - (top.sp), add the following lines so that HSIM will read in
the two cck and device files.

.param hsimCktCheck=cck_cmd_file

The tcheck mosv commands with its parameters (see tcheck mosv on
page 266) is used to monitor the node voltages. The set can be invoked by
adding the following syntax to an HSIM input file.

.param hsimDeviceV=dev_v_file

The ntrig and intrig commands (see ntrig on page 242) are used in the
interactive mode to find the first state change for the node after a specified time
in nanoseconds. ntrig specifies the node name while intrig specifies the node
ID. The report lists the elements causing the node voltage to change: i.e.,
HSIMplus® Reference Manual 351
C-2009.06

Chapter 8: CircuitCheck
CircuitCheck Tutorial
ntrig node_name <-t time> <-f file1> <-mt time1>
intrig node_id <-t time> <-f file1> <-mt time1>

Test Case

Typical commands used in CircuitCheck include the following from the cck file.

Note:

For comments: /* (start comment) and */ (end comment) are used. /* must
always be placed at the beginning of a line before simulation; for example,
immediately following netlist parsing.

Note:

For syntax: “\” denotes a line continuation.
352 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
CircuitCheck Tutorial
cckParam erMaxCap=0.001 waMaxCap=1.e-8
cckParam erMaxMosW=0.01 waMaxMosW=1000u
cckParam erMaxMosL=0.01 waMaxMosL=1000u
cckParam erMaxMosAD=0.0001 waMaxMosAD=1.e-6
cckParam erMaxMosPD=0.01 waMaxMosPD=0.001
cckParam erMaxMosTox=5.e-8 waMaxMosTox=3e-8
cckParam num=100
/* To check a particular model, add one of the following:
 * cckParam model=name, erMaxMosW=..., and waMaxMosW=...
 * These parameters contain the specific values shown in
 * this test case.*/
 cckParam erMaxMosW=2
 cckParam model=m1 erMaxMosW=4
/* In this test case, template A0 is created to keep the
 * default parameter values.
 * Line 1.Does not have any model, will overwrite the
 * maxMosW to be 2 in template A0, which is used for general
 * purpose checking.
 * Line 2.Creates a new template A1 that contains the
 * default parameter values and the new maxMosW=4.
 * Therefore, complete the following steps:
 * Define all the parameters' values for general purpose
 * checking.
 * Start to define the special values for different models;
 * one model per line where each line contains the new
 * values for this model.
 */
/* Substrate check. Forward bias threshold is 0.2 */
cckSubstrate num=500 vt=0.2 mode=2 start=10n stop=50n /
start=200n stop=300n
/* Diode check. Forward bias threshold is 0.4 */
cckDiode num=500 vt=0.4 start=10n stop=50n
/* Floating gate check */
cckFloatGateIsrc 1
/* Static leakage path check */
cckMaxStaticLeak num=100
/* Check whether a node is stuck at 0 or 1. Limit the node
checking to some area of the design indicated by an asterisk (*) */
cckMaxStuckAt0 num=5000 node=xcam* node=xram*
cckMaxStuckAt1 num=5000 node=xcam*
/* Check each pmos to determine which logic-high power
 * supply its nodes can reach.
 * a.) The (min, max) voltage sources reached from gate,
 * drain, src.
 * b.) If the gate node is less than drain/src by 0.3 volts,
 * it is reported.
 * c.) Since voltage drop is considered through nmos and
 * pmos, specify vnth=0.6 for nmos and vpth=-0.5 for pmos
 */
HSIMplus® Reference Manual 353
C-2009.06

Chapter 8: CircuitCheck
CircuitCheck Tutorial
cckPmosG_lt_DS vhth=0.9 vnth=0.6 vpth=-0.5 inst=* vt=0.3
/* Check each pmos. If a gate has a higher voltage than D/S,
 * it is reported. */
cckNmosG_gt_DS vlth=0.7 vnth=0.6 vpth=-0.5 inst=* vt=0.2
/* Pmos substrate check. Trace from D/S and Bulk nodes. If a
 * bulk node reaches a lower power supply, it is reported. */
cckPmosB_lt_DS vhth=0.9 vnth=0.6 vpth=-0.5 inst=* vt=0.1 \
num=200
/* similar for nmos's bulk checking */
cckNmosB_gt_DS vlth=0.7 vnth=0.6 vpth=-0.5 inst=* vt=0.1 \ num=200
/* Path to vdd/gnd check*/
cckPathToVsrc num=900 node=* fanout=1
/* Add the following syntax immediately following the DC
 * operating point: */
/* To check for un-initialized latches. Focus on the
 * instances in subckt=q1latchsd1 */
cckLatchUnInit 1
cckLatchInElem subckt=q1latchsd1 inst=*
cckLatchSkipElem subckt=a920traddrbuf2 inst=xu5*
cckLatchSkipElem inst=xram.xpipe_5*
/* To get a static path delay analysis, specify: */
cckRCDlyPath 1
cckRCRiseDelay min=0.05n max=3e-9 inside=0
cckRCFallDelay min=0.04n max=3.2e-9 inside=0
cckLimitRisePmosFallNmos 1
cckSetMosDir 0
cckDlySkipElem subckt=p2sticky inst=mpwk
inst=mnwk
/* To do static crosstalk analysis, specify: */
cckXtalkFloatingCap 1.e-14
cckXtalkRiseVolt 0.04
cckXtalkFallVolt 1.5
cckXtalkByWL 0
cckXtalkmodelWLratio model=pch min=12 max=20
cckXtalkmodelWLratio model=nch min=12 max=15
cckXtalkByRC 1
cckXtalkRiseTimeConst min=0.5n max=3n
cckXtalkFallTimeConst min=0.4n max=4n
/* For a description of cckRCDlyPath see page 257,
 * for cckXtalkByRC and cckXtalkByWL, see *
 cckStaticXtalk_GroupCmd on page 287 */
/* To skip some node or look at some node, then specify: */
cckXtalkAtNode node=xcam* --> examine these nodes
cckXtalkAtNode node=xram* --> examine these nodes
cckXtalkSkipNode node=xram* --> don't go thru these nodes
cckXtalkSkipElem inst=xram.x* --> don't go thru these \ elements
/* NOTE: At this time Skip and AtNode are mutually exclusive.
 * If Skip is used, then AtNode cannot be specified.
354 HSIMplus® Reference Manual
C-2009.06

Chapter 8: CircuitCheck
CircuitCheck Tutorial
 * Conversely, if the AtNode is chosen,
 * then Skip can't be used. */
/* during simulation, fast check node voltage, elem current
 * and leakage current */
/* in simulation, check node min and max voltage */
cckNodeVoltage num=100 vmax=2.0 vmin=-0.3
cckNodeVoltage num=100 vmax=1.64 vmin=-0.3 model=nch
cckNodeVoltage num=100 lvgs=-1.66 lvgd=-1.66 model=* \ start=60n
cckNodeVoltage num=100 lvgs=-1.64 lvgd=-1.64 model=pch \
start=20n stop=50n
/* (Note: in this comment an asterisk (*) is used to
 * represent a number.) To check the node voltage of
 * transistors connecting to constant * power supply,
 * use ...*. The following command will check the tp018
 * transistors
 * connecting through * resistors to constant power supply
 * 1.8V. If the D/S node voltage * is less than 1.79, it is
 * reported. This command can do a quick check * on
 * IR-drop */
cckNodeVoltage model=tp018 constV=1.8 vmin=1.79
/* Check the current through element in simulation */
cckElemI ith=1.e-6 model=pch constV=1.65

Test Case Example for tcheck mosv
Typical commands used in CircuitCheck for device voltage checking include
the following from the tcheck mosv file.

.tcheck jtlv mosv model=pch mos=xram* lvdb=-1.6 uvdb=-1 \ lvsb=-
2.6 uvsb=-1.5 stop=30n start=60n
.tcheck jtl2 mosv model=pch \ mos=xram* lvgs=-0.6 uvds=1 .tcheck
jtl1 mosv model=nch mos=* cond=' \
(vds < -1.0 || vgs < -0.75)'
/* to do post-process device voltage check, add */
.tcheck post=1
.tcheck post=2

Run HSIM
When post=2 appears, voltage will continue to be read in the fsdb file using the
same process.

Note:

If post=1, then 2 processes are run:
■ Standard HSIM
■ HSIM -post_devv
HSIMplus® Reference Manual 355
C-2009.06

Chapter 8: CircuitCheck
CircuitCheck Tutorial
356 HSIMplus® Reference Manual
C-2009.06

9
9HSIM-ADMS Integration

Provides information on the single-kernel integration of HSIM into Mentor's
multilanguage ADvanced Mixed-signal Simulator (ADMS).

Introduction to HSIM-ADMS

HSIM-ADMS is the single-kernel integration of HSIM into Mentor Graphics’®
multilanguage ADvanced Mixed-signal Simulator™ (ADMS). This integration
adds capability for co-simulation of circuit blocks represented in SPICE format
in HSIM, along with VHDL, Verilog, VHDL-AMS, and Verilog-AMS in ADMS.
HSIM-ADMS allows designers to verify large mixed-signal designs with the
flexibility of simulating various blocks at different levels of abstraction.

ADMS Overview

ADMS is a language-neutral, mixed-signal simulator that enables top-down
design and bottom-up verification of multimillion gate analog/mixed-signal
System-on-Chip (SoC) designs. The integration with HSIM provides a choice of
four high-performance simulation engines: HSIM, Eldo, ModelSim, and Eldo-
RF for modulated steady state simulation. ADMS is integrated into the Mentor
Graphics AMS SoC Design flow and the Virtuoso® Analog Design
Environment. For more detailed information on the features, tool flow, and
usage of ADMS please refer to Mentor's ADMS User’s Manual.
HSIMplus® Reference Manual 357
C-2009.06

Chapter 9: HSIM-ADMS Integration
HSIM-ADMSTool Setup
HSIM-ADMSTool Setup

Licensing

Mentor ADMS License
In order to add HSIM-ADMS integration to Mentor Graphics’ ADMS simulator, a
license must be obtained for the following Mentor part number:

Synopsys HSIM License
To enable HSIM simulation in ADMS, the “hsim-adms” license feature is
required.

Installing and Configuring ADMS

Follow these steps to install and configure ADMS:

1. Install the ADMS software tree into the desired location, as described in the
Mentor Graphics’ ADMS Installation Manual.

2. Install the HSIM software tree into a separate location as described in the
<Product Name> User’s Manual, Chapter 3: Installation and Operation.

3. Set up the ADMS environment using the following syntax:

setenv anacad <tree where you installed ADMS>
source $anacad/com/init_anacad

4. Set up the HSIM environment using the following syntax:

setenv HSIM_LIBRARY_PATH <path inside the HSIM software tree
to libadmshsim.so>
setenv LD_LIBRARY_PATH $HSIM_LIBRARY_PATH:<path to
libtcl8.4.so>:$LD_LIBRARY_PATH

5. Set up the Licenses using the following syntax:

setenv LM_LICENSE_FILE <path to ADMS license>:<path to HSIM
license>

Part Number Product Name Category Class

222514 ADMS Foreign SPICE I/F Op SW
358 HSIMplus® Reference Manual
C-2009.06

Chapter 9: HSIM-ADMS Integration
HSIM-ADMS High-level Architecture and Data Flow
HSIM-ADMS High-level Architecture and Data Flow

HSIM-ADMS employs black box (BB) type communications for design
elaboration using the architecture shown in Figure 36 on page 359.

Figure 36 HSIM-ADMS Architecture

ADMS starts elaborating the design in the Generation phase where it
accomplishes the following:
■ Loads all compiled modules
■ Establishes block-level connectivity

Design Database

HSIM Netlist

ADMS
Internal Description

HSIM Parser +

ADMS Generation

ADMS Simulation Kernel

(Black Box Mode)

Simulation Engine

Connector
HSIMplus® Reference Manual 359
C-2009.06

Chapter 9: HSIM-ADMS Integration
HSIM-ADMS Simulation Flow
Note:

HSIM establishes connectivity inside the blocks.

During parsing and elaboration, the ADMS kernel analyzes the SPICE portion
of the design looking for all subcircuit instances whose definitions are defined
as HSIM black box in the ADMS configuration commands located in the
command file.

ADMS then creates a SPICE netlist containing all of the elements that you
specified to be sent to HSIM. By virtue of this type of black box implementation
SPICE block parsing accomplished by the ADMS kernel is minimal. It is
accomplished only to the extent that is required for ADMS to send these blocks
to HSIM. ADMS only looks inside the SPICE blocks to see the X instances of
subcircuits that are sent to HSIM.

The SPICE intermediate netlist containing all the HSIM elements is then sent to
HSIM. HSIM parses the netlist and reports warnings or errors as they would be
in a stand-alone simulation. When parsing is successfully completed,
simulation begins with ADMS as the master and HSIM as the slave. ADMS
coordinates all of the synchronization between ADMS and HSIM engines.

HSIM-ADMS Simulation Flow

To simulate a design in HSIM-ADMS, perform the following steps:

1. Compile language modules and entities.

All ADMS language modules, including the following types, must be
compiled into ADMS libraries:

• Verilog

• Verilog-AMS

• VHDL

• VHDL-AMS

ADMS provides various compilation commands to meet the requirements
for different hierarchical structures such as SPICE instantiating Verilog,
VHDL instantiating SPICE, etc.

Note:

Refer to Mentor Graphics’ ADMS User’s Manual for complete
information on creating ADMS libraries and how to correctly compile
language-based models.
360 HSIMplus® Reference Manual
C-2009.06

Chapter 9: HSIM-ADMS Integration
HSIM-ADMS Simulation Flow
2. Create a command file.

Create a command file containing the appropriate analysis, post processing
commands, etc. The ADMS command file is then inserted into the simulator
as follows:

• SPICE-on-Top: If SPICE is at the top level of the design hierarchy, the
command file is simply the top level SPICE netlist.

• Verilog-, VHDL-, Verilog-AMS-, Verilog-AMS-on-Top: If any of these
language modules is at the top level of the design hierarchy, the
command file should contain all of the following:

Post Processing Commands: .meas, .plot, .probe, etc.

Design Parameter List: .param definitions, etc.

Analysis Commands: .tran , .AC, etc.

• Language-on-Top Restrictions: The only restriction pertaining to
Language-On-Top is that the command file must not contain any X
instances.

Note:

Refer to the ADMS User’s Manual to find complete information on
how to create these command files.

3. Insert HSIM-ADMS partitioning commands.

ADMS enables different partitioning commands to specify the blocks to be
sent to the HSIM simulator.

• Partitioning Command Placement: Partitioning commands can be
handled in either of the following ways:

Inserted directly into the command file

Inserted using .include from another text file

• Specifying Blocks: Specify the blocks to be sent to HSIM using ADMS
partitioning commands described in HSIM-ADMS Configuration
Commands on page 366.

Note:

Refer to the ADMS User’s Manual for complete information on
writing partitioning commands for HSIM-ADMS.

4. Add HSIM-ADMS command file options.

HSIM and/or ADMS options are added as follows:
HSIMplus® Reference Manual 361
C-2009.06

Chapter 9: HSIM-ADMS Integration
HSIM-ADMS Examples
• ADMS options: ADMS .cmd file

• HSIM options: hsim.ini file

Note:

Refer to the ADMS User’s Manual for complete information on
adding ADMS options to the ADMS .cmd file. Also refer to Chapter
3 of the <Product Name> User’s Manual for a description of hsim.ini
files.

5. Invoke HSIM-ADMS using the vasim command.

After the design is compiled into an ADMS library, and the appropriate
command file is created, HSIM-ADMS is invoked using the command
vasim.

HSIM-ADMS Examples

Figure 37 on page 362 illustrates a five element inverter chain with Verilog at
the top level. The inverter chain has both Verilog- and SPICE-based inverters.

Figure 37 HSIM-ADMS Inverter Chain

Based on the HSIM-ADMS inverter chain shown in Figure 37, Example 59 is
an example of the ADMS command file test_admshsim_verilogontop.sp.

U1 U2 U3 U4 U5
SPICE SPICE Verilog SPICE Verilog
362 HSIMplus® Reference Manual
C-2009.06

Chapter 9: HSIM-ADMS Integration
HSIM-ADMS Examples
Example 59 ADMS Command File Example: test_admshsim_verilogontop.sp
* HSIM-ADMS partitioning commands
.HSIMBB
.part bb subckt=(inv_spice, supply)
.option compat
.lib 'c018lv.l' TT
.temp 27
*subckt definitions for the inverters and power supply block
.subckt supply vdd vin
vvdd vdd 0 pwl(0 0 10n 0 12n 1.8 30n 1.8 32n 0.0 60n 0.0 62n +
1.8 150n 1.8)
vvin vin 0 pwl(0 0 10n 0 12n 1.8 30n 1.8 32n 0.0 60n 0.0 62n +
1.8 150n 1.8)
.ends
.subckt inv_spice vdd in out
m1 out in vdd vdd pch w=10e-6 l=0.18e-6
m2 out in 0 0 nch w=5e-6 l=0.18e-6
c0 out 0 1fF
.ends

The boundary elements shown in Example 60 are required to allow correct
domain conversion from Analog to Digital and vice-versa.

Example 60 ADMS A2D and D2A Boundary Elements
.defhook a2d_def d2a_def
.model d2a_def d2a mode=std_logic vhi=1.8 vlo=0.0
.model a2d_def a2d mode=std_logic vth=0.9
* Post Processing and Analysis Commands
.measure tran freq1 TRIG V(ring_out) VAL=0.9 TD=20e-9 RISE=1 +
TARG V(ring_out) VAL=0.9 TD=20e-9 RISE=2
.measure tran freq2 TRIG V(ring_out) VAL=0.9 TD=90e-9 RISE=1 +
TARG V(ring_out) VAL=0.9 TD=90e-9 RISE=2
.plot tran v(ring_out) v(s1) v(s2) v(s3) v(s4) v(s5) v(s6) + v(vdd)
.tran 1n 30n
.end

Example 61 Verilog Top-Level Module: top.v
module top;
wire ring_out,vin,vdd;
inv_spice I1(vdd,vin ,s1);
inv_spice I2(vdd,s1,s2);
inv_verilog I3(vdd,s2,s3);
inv_spice I4(vdd,s3,s4);
inv2_verilog I5(vdd,s4,ring_out);
supply m2 (.vdd(vdd), .vin(vin));
endmodule
HSIMplus® Reference Manual 363
C-2009.06

Chapter 9: HSIM-ADMS Integration
HSIM-ADMS Examples
Example 62 ADMS do File
run -all
quit -f

Use the following steps to compile and run simulation in Verilog-on-top
configurations:

1. Create the ADMS Library using the following syntax:

valib amslib

2. Compile the Verilog inverter into the ADMS Library using the following
syntax:

valog inv_verilog.v -ms

3. Compile the Verilog Top Level module into the ADMS library using the
following syntax:

valog top.v -ms

4. Invoke HSIM-ADMS using the command file test_verilogontop.sp and do file
ams.do using the following syntax:

vasim -cmd test_admshsim_verilogontop.sp top -do ams.do

5. Invoke the EZwave Viewer to see the waveforms using the following syntax:

ezwave test_admshsim_verilogontop.wdb &

The same inverter chain illustrated in Figure 37 can be run using a SPICE-on-
TOP configuration as shown in Example 63 through Example 67:

Example 63 SPICE-on-Top
Command file: test_admshsim_spiceontop.sp.
.lib 'c018lv.l' TT
.temp 27
364 HSIMplus® Reference Manual
C-2009.06

Chapter 9: HSIM-ADMS Integration
HSIM-ADMS Examples
Example 64 HSIM-ADMS Partitioning Commands
.HSIMBB
.part HSIMBB subckt=(inv_spice)
* Top level Netlist connectivity
X1 vdd vin s1 inv_spice
X2 vdd s1 s2 inv_spice
Y3 inv_verilog PORT: vdd s2 s3
X4 vdd s3 s4 inv_spice
Y5 inv_verilog PORT: vdd s4 ring_ out
vvdd vdd 0 1.8
vin in 0 pwl(0 0 10n 0 12n 1.8 30n 1.8 32n 0.0 60n 0.0 62n
+ 1.8 150n 1.8)
.subckt inv vdd in out
m1 out in vdd vdd pch w=10e-6 l=0.18e-6
m2 out in 0 0 nch w=5e-6 l=0.18e-6
c0 out 0 1fF
.ends

Example 65 HSIM Model Card to Define The Verilog Inverter Model to be
Instantiated from SPICE

.model inv_verilog macro lang=verilog mod=inv

Example 66 ADMS A2D and D2A boundary elements are required to allow
correct domain conversion from A2D and D2A.

.defhook a2d_def d2a_def

.model d2a_def d2a mode=std_logic vhi=1.8 vlo=0.0

.model a2d_def a2d mode=std_logic vth=0.9

Example 67 Post-processing and Analysis Commands
.measure tran freq1 TRIG V(ring_out) VAL=0.9 TD=20e-9 RISE=1 +
TARG V(ring_out) VAL=0.9 TD=20e-9 RISE=2
.measure tran freq2 TRIG V(ring_out) VAL=0.9 TD=90e-9 RISE=1 +
TARG V(ring_out) VAL=0.9 TD=90e-9 RISE=2
.plot tran v(ring_out) v(s1) v(s2) v(s3) v(s4) v(s5) v(s6)
+ v(vdd)
.tran 1n 30n
.end

Follow these steps to compile and run the design in a SPICE-on-TOP
configuration using HSIM-ADMS commands.

1. Create the ADMS Library using the following syntax:

valib amslib

2. Compile the Verilog inverter into the ADMS library using the following
syntax:
HSIMplus® Reference Manual 365
C-2009.06

Chapter 9: HSIM-ADMS Integration
HSIM-ADMS Configuration Commands
valog inv_verilog.v -ms

3. Invoke HSIM-ADMS using the command file test_spiceontop.sp and
ams.do do file using the following syntax:

vasim -cmd test_admshsim_spiceontop.sp top -do ams.do

4. Invoke the EZwave Viewer to see the waveforms using the following syntax:

ezwave test_admshsim_spiceontop.wdb &

HSIM-ADMS Configuration Commands

Partitioning Your Design

HSIM-ADMS provides three different ways to partition your design between
ADMS and HSIM:
■ .HSIMBB and .part: Partitioning commands
■ #HSIMBB and #ENDHSIMBB: Black-box delimiters
■ .bbinclude: Black-box include function

Since HSIM only supports SPICE and Verilog-A models, only blocks containing
SPICE or Verilog-A elements are sent to HSIM. The current partitioning model
is subcircuit-based so that all subcircuit instances specified in the partitioning
commands will be sent to HSIM.

.HSIMBB and .part
Multiple .part commands can be used in the netlist. However, if two .part
commands refer to the same subckt name, one of them will be ignored. These
commands should appear at the netlist header.

Syntax
.HSIMBB
.part HSIMBB subckt=<comma separated subckt name list>

.HSIMBB

Tells ADMS to activate HSIM.

.part

Lists the subckt-names to send to HSIM.
366 HSIMplus® Reference Manual
C-2009.06

Chapter 9: HSIM-ADMS Integration
HSIM-ADMS Configuration Commands
#HSIMBB and #ENDHSIMBB
The delimiters #HSIMBB and #ENDHSIMBB can be used to enclose sections
of a netlist containing only subckt definitions.

#HSIMBB

Indicates the beginning of an enclosed list of subcircuit definitions.

#ENDSHIMBB

Indicates the end of an enclosed list of subcircuit definitions.

.bbinclude
Adds the subcircuit definition file to the main netlist.

Syntax
.bbinclude <netlist containing subckt definitions>

HSIM-ADMS Hierarchy

Only the top subckt in a given hierarchy tree must be specified for HSIM in
black box mode and ADMS sends the entire hierarchy tree to HSIM. Figure 38
provides an example.

Figure 38 HSIM-ADMS Hierarchy Tree

Specify only the top level sub1 as HSIM black box mode to send the entire
hierarchy tree depicted in Figure 38 to HSIM. Example 68 and Example 69
illustrate two methods to accomplish this procedure.

sub 1

sub 2sub 2

sub 3sub 4sub 3

X1
HSIMplus® Reference Manual 367
C-2009.06

Chapter 9: HSIM-ADMS Integration
HSIM-ADMS Control Options
Example 68 Using #HSIMBB and #ENDHSIMBB
#HSIMBB
.subckt sub1 n1 n2 n3

M1 …
.ends
.subckt sub2 n1 n2 n3

M2 …
.ends
.subckt sub3 n1 n2 n3

M3 ….
.ends
.subckt sub4 n1 n2 n3

M4 ….
.ends
#ENDHSIMBB
X1 n1 n2 n2 sub1

Example 69 Using .part
.HSIMBB
.part BB subckt = (sub1)
X1 n1 n2 n2 sub1

HSIM-ADMS Control Options

Passing HSIM Options in HSIM-ADMS

HSIM accepts various simulation control options for the following functions:
■ Accuracy
■ Simulation Speed
■ Netlist Format
■ Vector Files

In HSIM-ADMS, these options can be passed to HSIM through the following
methods:
■ ADMS Netlist file
■ ADMS Command line
368 HSIMplus® Reference Manual
C-2009.06

Chapter 9: HSIM-ADMS Integration
HSIM-ADMS Control Options
Passing HSIM Options in the ADMS Netlist File
HSIM options are specified by .param statements specified in the ADMS netlist
file. Use the following syntax:

.param HSIM<optionname>=<val>

In the ADMS netlist file, .param statements should be enclosed between
#HSIMBB and #ENDHSIMBB. For example:

#HSIMBB
.param HSIMANALOG=2.0
.param HSIMTAUMAX=1us
#ENDHSIMBB

Passing HSIM Options on the ADMS Command Line
HSIM options can also be passed to ADMS using the ADMS command line
with the following syntax:

vasim -cmd <command file> <other ADMS arguments> -eldoopt
"-hsimopt <HSIM options separated by spaces>
-endhsimopt>”

The following example illustrates this feature.

vasim -cmd test.sp -eldoopt "-hsimopt -eldo -endhsimopt"

HSIM-ADMS DC Iterations

The maximum number of DC iterations can be controlled using the
HSIMDCITER option in the ADMS command file using the following syntax:

.option HSIMDCITER=<val>

HSIM-ADMS Boundary Elements

Since HSIM-ADMS is a mixed-signal simulator, a provision to define boundary
elements that convert signals from analog-to-digital and digital-to-analog
domains is required. ADMS provides several types of built-in boundary
elements to support this function. User-designed custom boundary elements
can also be added in VHDL-ADMS to facilitate specialized modeling
requirements. Refer to the ADMS User’s Manual for detailed information on
HSIM-ADMS boundary elements.
HSIMplus® Reference Manual 369
C-2009.06

Chapter 9: HSIM-ADMS Integration
HSIM-ADMS Control Options
Special Supply Converters

A special type of D-to-A boundary element is employed when a SPICE
subcircuit is powered by a digital power supply. To control digital supply
converters, the following syntax is used:

.model <user supplied model_name> D2A mode=std_supply
vhi=<val> vlo=<val>

In the syntax example above, a D2A element is defined with a user-supplied
name. This converter is a special supply converter that allows ADMS to
partition SPICE when the power supplies are coming from a digital domain.

You must also use .hook syntax to insert this boundary element on the
specified supply net, as in the example below.

The following example illustrates a code sample to be placed into the ADMS
command file that defines and uses the specified digital supply converters.

Commands to insert the boundary elements with special supply converters on
the nets vdd_pll, vss_pll:

.defhook a2d_def d2a_def

.hook vdd_pll mod=d2a_POWER

.hook vss_pll mod=d2a_POWER

Commands to define the default boundary elements:

.model d2a_def d2a mode=std_logic vhi=1.8 vlo=0.0

.model a2d_def a2d mode=std_logic vth=0.9

Commands to define the special digital supply boundary element:

.model d2a_POWER d2a mode=STD_SUPPLY vhi=1.8 vlo=0.0

Interactive Debugging

It is possible to do interactive debugging during ADMS simulation. In order to
pass HSIM commands to ADMS during simulation, add following code into your
admshsim.tcl file, located in your home directory:

proc hsim { command } {
 set tcp [ms_ipc::getClient hdlav3]
 dp_RPC $tcp starteldotcl "hsim $command"
}

Next, add the following line into your .vams_setup file, which is also located in
your home directory:
370 HSIMplus® Reference Manual
C-2009.06

Chapter 9: HSIM-ADMS Integration
HSIM-ADMS Outputs
source ~/admshsim.tcl

During an ADMS simulation, you can pass HSIM commands at the prompt with
the following syntax:

hsim "nc out"

HSIM-ADMS Outputs

Logfile Outputs

ADMS generates a logfile such as <command_file>.chi file. By default,
HSIM generates hsim.log logfile

Waveform Outputs

By default ADMS generates a .wdb waveform output format file to EZwave.

In order to generate to .cou format file for Xelga, add following at the ADMS
command line:

vasim -eldoopt "-gwl cou"

To generate to .fsdb waveform output format to turboWave (or nWave), set
HsimOutput=fsdb in the hsim.ini file or enclose it between #HSIMBB and
#ENDHSIMBB in the ADMS netlist file. For example:

#HSIMBB
HsimOutput=fsdb
#ENDHSIMBB

Black Box Mode Limitations[1]

HSIM-ADMS uses a black box mode implementation in which ADMS cannot
see the design being sent to HSIM. Users should be aware of the following
limitations in the ADMS usage model.
■ Limitations when Using the Standard ADMS GUI

The features of the standard ADMS GUI cannot be used on design blocks
partitioned to HSIM including:

• Descending the hierarchy in the structure window
HSIMplus® Reference Manual 371
C-2009.06

Chapter 9: HSIM-ADMS Integration
Black Box Mode Limitations[1]
• Viewing the nets inside a subckt instance partitioned to HSIM.

• Viewing the nets inside a verilog-A model instance partitioned to HSIM.

• The HSIMSPEED is limited to 5.

Therefore, net plots inside HSIM from the ADMS GUI (using add wave or
add log) can not be created.

Net plots can be developed from either of the following files:

• ADMS command file

• Do file
■ Limitations on Changing SPICE Blocks Previously Sent to HSIM

SPICE blocks previously sent to HSIM can be changed using the ADMS
.BIND command. However, it is not possible to swap SPICE blocks internal
to HSIM; such as subcircuits at levels lower than the top level of SPICE; with
ADMS behavioral models.

■ Limitations on Using SPICE Net Spy with HSIM

It is not possible to use Net Spy on SPICE signals internal to HSIM. Also,
add wave and add log do not work from the ADMS Do file.
372 HSIMplus® Reference Manual
C-2009.06

Chapter 9: HSIM-ADMS Integration
References
References

[1] The limitations discussed in this section apply to Mentor Graphics’s HSIM
integration into ADMS.
HSIMplus® Reference Manual 373
C-2009.06

Chapter 9: HSIM-ADMS Integration
References
374 HSIMplus® Reference Manual
C-2009.06

10
10HSIM-Virtuoso Analog Design Environment Interface

This chapter describes how to integrate HSIM into the Cadence® Virtuoso®
Analog Design Environment using the HSIM-Virtuoso Interface. The
approaches described in this chapter can be tightly coupled to a Cadence
database that requires intensive data preparation or they can be loosely
integrated while maintaining the signal cross probing functionality.

Note:

Cadence’s Analog Artist product is now known as Virtuoso Analog Design
Environment, so the HSIM interface is now referred to as the HSIM-Virtuoso
Interface, or for simplification purposes, the Interface. In previous releases,
the interface was referred to as the Analog Artist Interface (AAI).

HSIM Virtuoso Analog Design Environment Interface Package Options
and Platform Support

Synopsys provides an All-In-One Package that permits installation of one or
multiple installation approaches listed below:
■ AANNI (Native Netlist Integration)
■ AAI HSIM (HSIM Socket Interface)
■ AAI HSIMD (HSIM Direct Interface)
■ AACoSim (CoSim Integration)

The HSIM Virtuoso Analog Design Environment Interface has been developed
on Cadence Design Framework II 4.4.5. and has been tested on the following
versions:

4.4.5

4.4.6
HSIMplus® Reference Manual 375
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
All-In-One Package (AAIM)
5.0.0

5.1.41

The Interface is supported on the following platforms:
■ Solaris
■ HPUX
■ Linux

All-In-One Package (AAIM)

AAIM Installation & Setup

Synopsys provides an installation tar file. The tar file can be used to install any
or all of the Interface options: AANNI, AAI HSIM Socket, AAI HSIMD, and/or
AACoSim.

To install the All-In-One Package, use the following steps:

1. Obtain the tar file.

Obtain the following installation tar file from the Synopsys ftp site:

AAIM-<version>-mmddyear.tar.gz

2. Set up HSIM_ARTISTIF.

 Unzip and untar the tar file then, set the following environment variable:

setenv HSIM_ARTISTIF <AAI_installation_dir>/AAIM-<version>-
mmddyear

3. Add the nsdaAAIMPkgList and load statements.

Add the following two statements in the .cdsinit file:

nsdaAAIMPkgList='(“hsimD” “hsim” “AACoSim” “AANNI”)
load(“<AAI_installation_dir>/AAIM-<version>-mmddyear/
install/nsdaAAIMInvoker.il”)

Important:
nsdaAAIMPkgList must be entered as shown and placed prior to the
load statement.

All of the package(s) specified in nsdaAAIMPkgList are installed. The syntax
shown above installs the following:
376 HSIMplus® Reference Manual
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
All-In-One Package (AAIM)
• AANNI

• AAI HSIM

• AAI HSIMD

• AACoSim

To add the Sandwork’s WaveView Analyzer link to the Interface, add WV
in the nsdaAAIMPkgList statement, as shown in the following syntax:

nsdaAAIMPkgList='(“hsimD” “hsim” “AACoSim” “AANNI” “WV”)

AANNI is the default package if nsdaAAIMPkgList is an empty list, as
shown in the following syntax:

nsdaAAIMPkgList='()

The menu files are based on the specific integration approaches as
shown in the following:

• AACoSim: spectreVerilog.menus, spectreSVerilog.menus

• AANNI: simui.menus

• AAI HSIM: hsim.menus

• AAI HSIMD: hsimD.menus

All the menu files are located under the AAIM-<version>-
mmddyear/menus subdirectory.

4. Locate the menu file subdirectory.

Locate the menu file in user's working environment. It can be either of the
following directories:

• <user_working_dir>/menus

• <user_home_dir>/menus

5. Merge the menu files.

The provided menu file can be merged with the menu file in the Cadence
tree, as shown in the following example:

<CDS_install_dir>/tools/dfII/etc/tools/menus/simui.menus

6. Set up the executable.

Set the Interface to point to the appropriate HSIM executable as shown in
the following command syntax:
HSIMplus® Reference Manual 377
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
Native Netlist Integration (AANNI)
setenv HSIM_HOME <your_HSIM_installation_dir>

7. Obtain an Interface license.

Obtaining the hmartld license daemon is required before conducting any
interface flows. The license daemon resides in the HSIM release tree such
as $HSIM_HOME/bin/hmartld. Without the Interface license daemon
properly located, the following error message will be displayed in the
Cadence central information window and the Interface flow will not proceed.

.......
Checking out Synopsys license ...
Error ipcWriteChild: Attempt to write to expired process -
ipc:-1
.....

AAIM Uninstallation

To uninstall any part of the AAIM software, delete any unwanted software
package name in the nsdaAAIMPkgList statement as shown in the following
syntax example:

nsdaAAIMPkgList='(“hsim” “AANNI”)

Note:

Using the syntax above, only AAI HSIM socket and AANNI are installed. AAI
HSIMD and AAICoSim will not be installed.

Native Netlist Integration (AANNI)

Native Netlist Integration Installation & Setup

This section describes how to use the HSIM-Virtuoso Interface to integrate
HSIM’s simulation engine into the Virtuoso Analog Design Environment. The
Native Netlist Integration software has a different integration approach than
traditional approaches such as HSIM socket and HSIMD direct. The key
features are described below.

Native Netlist Integration Features

Native Netlist Integration has the following features:
378 HSIMplus® Reference Manual
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
Native Netlist Integration (AANNI)
■ HSIM parameters and command line options specification.
■ Top-level netlist creation.
■ HSIM simulation.
■ Browse and view ASCII output files.
■ Signal cross-probing and waveform display.
■ Save/load state.
■ Does not conduct design host netlisting.
■ Does not require a special view and simInfo from device libraries.
■ Does not require an additional Cadence license for operation.

Basic Native Netlist Integration Flow

Figure 39 displays the typical Native Netlist Integration process flow.
HSIMplus® Reference Manual 379
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
Native Netlist Integration (AANNI)
Figure 39 Process Flow

Porting the Existing Design

Since Native Netlist Integration does not conduct host netlist creation nor
require special view and simInfo from the device libraries, there are no major
porting issues for existing designs when migrating from traditional socket and
direct integration approaches.

Native Netlist Integration Window and Pull-Down Menus

With Native Netlist Integration properly setup and installed in the Virtuoso
Analog Design Environment window shown in Figure 40, the pull-down menu
appears. It is located on the RIGHT hand side of the form. Also, if WV is also
specified in the nsdaAAIMPkgList statement, there will also be a WV menu
next to the menu header.

Specify Design
&

Select Host Simulator

Activate AANNI Menu
&

Checkout License

Create Host Netlist

Specify HSIM Parameters

Create Top-Level Netlist

HSIM Simulation

Waveform Viewing
&

Cross-Probing
380 HSIMplus® Reference Manual
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
Native Netlist Integration (AANNI)
Caution!

The window may need to be enlarged to view the menu if there are a large
number of existing pull-down menus displayed from the local environment
setup.

Figure 40 HSIM-Virtuoso Design Environment Interface Window

Initially, all items in the menu are disabled and appear as grayed out text as
shown in Figure 41.

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
HSIMplus® Reference Manual 381
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
Native Netlist Integration (AANNI)
Figure 41 HSIM-Virtuoso Design Environment Interface Window & Pull-down
Menu

A design and designated host simulator such as spectre or hspiceS must be
specified before the pull-down menu commands become active. If they are not
specified, a warning message is displayed as shown in Figure 42.

Figure 42 Warning Message Window

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
382 HSIMplus® Reference Manual
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
Native Netlist Integration (AANNI)
Environment Setup

After specifying a design and simulator, select Setup Environment in the pull
down menu. The Environment Setup(1) window containing the Environment
Options form shown in Figure 43 will appear.

Figure 43 Setup Options Form Window

Basic Setup
The options displayed on the basic form include the following:
■ [Basic]: If the [Basic] screen button is displayed, the setup form only displays

the most frequently used buttons and entry fields.
■ Netlist Syntax: Indicates what kind of netlist syntax the host netlister is going

to generate.
■ Result Directory: Allows user to specify directory for storing output data.
■ Output File Name Prefix: Is equivalent to the -o option of HSIM,
■ Case Sensitive: Is equivalent to the -case option of HSIM

Advanced Setup
To perform more advanced environment setups, click on the [Basic] screen
button and select Advanced from the options displayed. The form enlarges and
provides additional setup options as shown in Figure 44.

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
HSIMplus® Reference Manual 383
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
Native Netlist Integration (AANNI)
Figure 44 Advanced Setup Options Form Window

The advanced options displayed on this form include the following:

© 2007, Cadence Design Systems, Inc.
All rights reserved worldwide. Printed
384 HSIMplus® Reference Manual
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
Native Netlist Integration (AANNI)
■ HSIM/Host results togglable?: The default is Yes, which allows AANNI to
preserve a copy of the HSIM simulation result in case you would like to
conduct HSIM-based or host simulator-based waveform probing/viewing.
The default location for the preserved HSIM simulation copy is your home
directory. You can change the location through the "Psf Directory for
Toggle" entry field. Refer to Toggle between Spectre and HSIM Simulation
Database for Waveform Probing on page 391 for more details.

■ Command Line Prefix: Whatever specified in this field will be attached in the
beginning of the HSIM command line.

■ Command Line Options: Allows user to specify additional HSIM command
line options if applicable.

■ Using 64-bit HSIM?: If turned on, it is equivalent to set the following in your
working environment: setenv HSIMPLUS_64 1.

■ HSIM HOST MODE with local and remote radio buttons: The remote radio
button permits AANNI users to run HSIM installed on a remote machine. To
run HSIM through remote mode, select the remote radio button from HSIM
HOST MODE and fill in the remote host name. Since the operation is done
via the rsh Unix command, make sure that the .rhosts file is set up and the
HSIM executable is in the search path on the remote machine.

When the [OK] screen button is selected, the Synopsys artistIF license is
automatically checked out. If the license checkout is successful, all of the menu
commands will be activated and a licence checkout confirmation will be
displayed as shown in Figure 45.

Figure 45 License Checkout Confirmation Window
HSIMplus® Reference Manual 385
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
Native Netlist Integration (AANNI)
Setup Parameters

Native Netlist Integration provides several forms to allow specification of HSIM
parameter and command options. This works similarly with HSIM socket and
HSIMD direct integrations.
■ HSIM -> Setup Parameters -> Basic: Basic specifies parameters for HSIM

commands including HSIMVDD, HSIMSPEED, HSIMOUTPUT, etc. Refer
to the HSIM Simulation Reference Manual: Chapter 6, Simulation
Parameters for details on HSIMVDD and HSIMSPEED. Refer to the HSIM
Simulation Reference Manual: Chapter 8, Simulation Output for information
on HSIMOUTPUT and other output formats.

■ HSIM -> Setup Parameters -> Advanced: Advanced specifies less
frequently used parameters. These parameters are classified into different
categories based on their specific functionality.

Basic and Advanced HSIM parameters in the form have the same default
values as HSIM.

Figure 46 HSIM Basic Parameters Form
386 HSIMplus® Reference Manual
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
Native Netlist Integration (AANNI)
■ HSIM -> Setup Parameters -> Manual
Netlist options or statements can be manually keyed-in and then included in
the top (final) netlist. All content specified in this form must follow the legal
netlist syntax shown in Figure 47.

Figure 47 Manual Command Entry Window

Netlisting

Native Netlist Integration netlisting provides the following functionality:
■ Create Top Netlist
■ Edit Top Netlist
■ Create Top & Host Netlist
■ View Host Netlist

Create Top Netlist
HSIM -> Netlisting -> Create Top Netlist

By default, Create Top Netlist only creates the top-level netlist content. If there
is no existing host netlist, Native Netlist Integration automatically creates the
host netlist before making the top-level netlist. The top-level netlist can then be
created which includes the following:
HSIMplus® Reference Manual 387
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
Native Netlist Integration (AANNI)
■ Host netlist: Automatically generated by the host netlister.
■ HSIM parameters and options: HSIM Basic and Advanced parameters.
■ Manually generated netlist statements or options: HSIM Manual

parameters.

Edit Top Netlist
HSIM -> Netlisting -> Edit Top Netlist

Edit Top Netlist allows manual editing of the top-level netlist generated by
Create Top Netlist with any text editor. To set up the editor for opening the top
netlist, set and export the HSIM_FAVORITE_EDITOR shell environment
variable as shown in the following syntax example:

export HSIM_FAVORITE_EDITOR=xedit

In this syntax example, xEdit is used as the is set as the default editor so that
Native Netlist Integration reads in this environment variable and automatically
set the editor accordingly in icfb or icms. Users can temporarily switch to and
from various editors at any time entering the following command directly in the
Command Interpreter Window (CIW).

editor=”commandToInvokeEditor”

To set the editor to vi, enter the following in the CIW window:

editor=”vi”

Figure 48 shows a typical top-level netlist.
388 HSIMplus® Reference Manual
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
Native Netlist Integration (AANNI)
Figure 48 Typical Top-Level Netlist

Create Top & Host Netlist
HSIM -> Netlisting -> Create Top & Host Netlist

Create Top & Host Netlist creates the top-level netlist and forces the host
simulator to update or regenerate the host netlist.

View Host Netlist
HSIM -> Netlisting -> View Host Netlist

View Host Netlist opens the host netlist file for viewing.

Run HSIM
HSIM -> Run HSIM
HSIMplus® Reference Manual 389
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
Native Netlist Integration (AANNI)
■ HSIM -> Run HSIM runs HSIM simulation on the top-level netlist with
command line options specified using the Setup Environment option form,
when applicable.

■ After running HSIM, all output files are stored in the directory specified under
the Result Directory in the Setup Environment form.

■ A Waveform window similar to the one shown in Figure 49 will automatically
display for pre-selected signals.

Figure 49 Waveform Window
■ Cross probing of results is also supported.
■ If parameter settings are modified and HSIM -> Run HSIM is run directly

without updating the top netlist, Native Netlist Integration displays a
confirmation dialog box asking whether the Top Netlist File should be
recreated when running HSIM as shown in Figure 50. Use the [Yes] or [No]
screen buttons to tell the system whether to update the Top Netlist File or
not.

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
390 HSIMplus® Reference Manual
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
Native Netlist Integration (AANNI)
Figure 50 Top Netlist File Regeneration Confirmation Window

Regenerate the Netlist and Run HSIM

HSIM -> Re-Netlist & Run HSIM

Re-Netlist & Run HSIM forces the host netlist or top netlist to be updated and/or
regenerated and run HSIM.

Toggle between Spectre and HSIM Simulation Database for
Waveform Probing

HSIM -> Hsim/Spectre Results Toggle

If you want to perform Spectre® simulation and HSIM simulation within the
same Virtuoso Analog Design Environment session you can display the
associated waveform through the standard plotting and cross-probing features
by switching between the Spectre simulation results and the HSIM simulation
results. After setting up the HSIM environment, the program points to the HSIM
simulation database for waveform display by default. If you are interested in
HSIM simulation only through the whole Virtuoso Analog Design Environment
session you can ignore this feature.

The default setting for case sensitivity and database toggle can be specified in
either a .cdsinit file or .aannienv file. The .cdsinit file can reside in your current
working directory or your home directory. If you specify the setting in the
.aannienv file, the interface program searches for it first in the current working
directory and then in the home directory. If the setting resides in both of these
files, the .aannienv setting has the higher priority (and in this case AAI also
issues a warning message).
HSIMplus® Reference Manual 391
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
Native Netlist Integration (AANNI)
Figure 51 HSIM-Spectre Results Toggle

There are two database toggle flows that are recommended to if you need to
perform Spectre simulation as well as HSIM simulation:

Toggle Flow I:
Start a Virtuoso Analog Design Environment session and complete the
following steps:

1. Setup -> Design

2. Setup -> Simulator -> Spectre

3. Setup -> Model Libraries…

4. Analyses -> Choose…

5. Outputs -> To Be Plotted…

6. Simulation->Netlist and Run (conduct Spectre simulation)

7. Results -> Direct Plot (plot Spectre simulation result)

8. HSIM -> Setup Environment

9. HSIM -> Re-Netlist & Run HSIM

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
392 HSIMplus® Reference Manual
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
Native Netlist Integration (AANNI)
10. Results -> Direct Plot (plot HSIM simulation result)

11. HSIM -> Hsim/Spectre Results Toggle -> Switch to Spectre result

12. Results -> Direct Plot (plot Spectre simulation result)

13. HSIM -> Hsim/Spectre Results Toggle -> Switch to Hsim result

14. Results -> Direct Plot (plot HSIM simulation result)

Toggle Flow II:
Start a Virtuoso Analog Design Environment session and complete the
following steps:

1. Setup -> Design

2. Setup -> Simulator -> Spectre

3. HSIM -> Setup Environment

4. Setup -> Model Libraries…

5. Analyses -> Choose…

6. Outputs -> To Be Plotted…

7. HSIM -> Re-Netlist & Run HSIM

8. Results -> Direct Plot (plot HSIM simulation result)

9. HSIM -> Reset Environment

10. Simulation -> Netlist and Run (conduct Spectre simulation)

11. Results -> Direct Plot (plot Spectre simulation result)

12. HSIM -> Setup Environment

13. HSIM -> Re-Netlist & Run HSIM

14. HSIM -> Hsim/Spectre Results Toggle -> Switch to Spectre result

15. Results -> Direct Plot (plot Spectre simulation result)

16. HSIM -> Hsim/Spectre Results Toggle -> Switch to Hsim result

17. Results -> Direct Plot (plot HSIM simulation result)

Note:

The above recommended flows assume that Spectre simulation and HSIM
simulation are each conducted once respectively. If you intend to conduct
more than one Spectre run within the same HSIM-Virtuoso session you
must to first select HSIM -> Reset Environment immediately before running
HSIMplus® Reference Manual 393
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
Native Netlist Integration (AANNI)
the Spectre simulation. This ensures that the data access function points to
the correct simulator. Otherwise, the plotting may not be able to map to the
appropriate waveform database.

CircuitCheck in the HSIM-Virtuoso Interface Environment

HSIM -> CircuitCheck

The HSIM-Virtuoso Interface integrates the CircuitCheck (CCK) features into
the Virtuoso Analog Design Environment. Specific CCK commands or the
entire CCK command file can be specified using the Native Netlist Integration
GUI as shown in Figure 52. The interface combines CCK-related information
into the top-level netlist for HSIM to analyze.

CCK usage details are described in HSIM-Virtuoso CircuitCheck Integration on
page 405. Detailed CCK command syntax and usage is contained in Chapter
8, CircuitCheck.

Figure 52 Editing CircuitChecks Window

View Log File

HSIM -> View Log File
394 HSIMplus® Reference Manual
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
Native Netlist Integration (AANNI)
View Log File displays the HSIM log file.

View Output ASCII Files

HSIM -> View Output ASCII File

View Output ASCII File brings up the file browser containing all the ASCII
results stored in the result directory as shown in Figure 53.

Figure 53 File Browser Window

Save/Load States
Native Netlist Integration supports the Virtuoso Analog Design Environment
saving and loading states feature that contains HSIM Parameters, AANNI
Setups, and CircuitChecks options. These options are added to the Virtuoso
Analog Design Environment Saving State window as shown in Figure 54.
HSIMplus® Reference Manual 395
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
Native Netlist Integration (AANNI)
Figure 54 Saving State Form Window

These options have the following functions:
■ HSIM Parameters: HSIM Parameters is used to save or load states

specified through Setup Parameters->Basic.
■ AANNI Setups: This option is used for miscellaneous related parameters to

the Native Netlist Integration flow.
■ CircuitChecks: CircuitChecks is primarily used for commands specified

through the Editing CircuitCheck form.
■ Saved states will be stored in files under the directory specified in the

Session-> Options…->State Save Directory field.
■ Once states for Native Netlist Integration are saved, they can be loaded

using the Session->Load States… form as shown in Figure 55.

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
396 HSIMplus® Reference Manual
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
Native Netlist Integration (AANNI)
Figure 55 Loading State Form Window

Note:

Before loading Native Netlist Integration states, the HSIM -> Setup
Environment must first be activated or a warning message is displayed
as shown in Figure 56. Loading save state without first activating Native
Netlist Integration results in missing parameters settings.

Figure 56 HSIM Native Netlist Integration Warning Message Window

Check in Synopsys License

When the Virtuoso Analog Design Environment session is terminated, the
artistIF license is automatically checked in and a message is generated
Command Interpreter Window as shown in Figure 57.

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
HSIMplus® Reference Manual 397
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
Native Netlist Integration (AANNI)
Figure 57 Log Window with Synopsys Licence Check Confirmation

Note:

The HSIM -> Reset Environment command is also located under the HSIM
pull-down menu for the following reasons:

■ The artistIF license is forced to be checked in so that even a current session
is active, the commands under the HSIM pull down menu will be inactivated
and the released artistIF license can be used by other users.

■ Native Netlist Integration releases ownership of the data access function
back to the host simulator. This is required to perform special features such
as signal cross probing. It is possible for users to switch back-and-forth
between the host simulator and HSIM within the same Virtuoso Analog
Design Environment session to conduct simulation and then cross probing.

Caution!

It is strongly recommended that users issue the HSIM -> Reset
Environment command before switching back to the host simulator to
eliminate associated host simulator signal cross-probing failures.

Cadence Cross-probing

Native Netlist Integration works with Cadence® cross-probing functionality with
the following steps:

1. After simulation has completed, select Results > Direct Plot > Transient
Signal, as shown in Figure 58.
398 HSIMplus® Reference Manual
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
Native Netlist Integration (AANNI)
Figure 58 Virtuoso Analog Design Environment Window with the Results-
>Direct Plot->Transient Signal Pull-down Windows

When Transient Signal is selected, the Virtuoso Schematic Editor window
shown in Figure 59 is automatically displayed.

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
HSIMplus® Reference Manual 399
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
Native Netlist Integration (AANNI)
Figure 59 Virtuoso Schematic Editor Window

2. Go to the desired level of design by using Design->Hierarchy->Descend
Edit (or Read) in the Virtuoso Schematic Editor window as shown in
Figure 59.

3. Select the signals to probe by LEFT clicking with the mouse. Signals can be
either node voltage or instance current. Press [Esc] to terminate the signal
selection process. The corresponding signal wave form will be displayed on
the Waveform window as shown in Figure 60.

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
400 HSIMplus® Reference Manual
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
Native Netlist Integration (AANNI)
Figure 60 Virtuoso Schematic Editor Window & Corresponding Waveform
Window

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
HSIMplus® Reference Manual 401
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
Native Netlist Integration (AANNI)
WaveView Analyzer Cross-probing

In addition to supporting the Cadence Waveform viewer, Native Netlist
Integration also supports cross-probing functions with Sandwork’s WaveView
Analyzer (WV). Currently, WaveView Analyzer only partly supports hierarchical
cross-probing.

Note:

Cross-hierarchy signal probing is not supported.

To use WaveView Analyzer for cross probing, use the following steps.

1. Select WV->start WV.

2. In the Virtuoso Schematic Editor window, select the desired circuit hierarchy
level.

3. Select WV->New probe->Transient, as shown in Figure 61.

Figure 61 Cross-probing with WaveView Analyzer

4. Select the signal to be plotted by clicking VIN and then press Escape to
display the waveform as shown in Figure 62.

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
402 HSIMplus® Reference Manual
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
Native Netlist Integration (AANNI)
Figure 62 Virtuoso Schematic Editor Window Showing a Selected Signal
Plotted in WaveView Analyzer

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
HSIMplus® Reference Manual 403
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
CoSim (AACoSim) Integration
5. Repeat Step 1 through Step 4 in this section for additional signals.

CoSim (AACoSim) Integration

The purpose of CoSim integration is to integrate the Synopsys co-simulation
technology into Cadence Virtuoso Analog Design Environment, the integration
approach is very similar to Native Netlist Integration (AANNI), which utilizes the
host simulator (such as spectreVerilog or hspiceSVerilog) to generate the host
netlist (digital as well as analog parts), then make the top-level netlist with the
cosim configuration file to conduct HSIM Verilog co-simulation. CoSim shares
the same installation procedures with Native Netlist Integration with additional
UNIX environment setup.

Note:

During the simulation cycle for CoSim (AACoSim) the hsim-cosim license is
required, in addition to the artistIF license.

UNIX Setup

To set up CoSim for the Unix environment, perform the following tasks.

1. Set up the search path for Verilog simulator executable.

set path=(/usr/local/vendors/cadence/ldv40/tools/bin $path)

2. Set up $LD_LIBRARY_PATH

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:
<vpi_library_location>

Note:

The vpi library is normally located in the HSIM release tree; e.g., “/
version/06-23-2004/hsimplus/platform/sunos_57/bin”) The vpi library is
required to perform the co-simulation

CoSim Installation

To install CoSim, you must first receive the AAIM package, then set the
HSIM_HOME and HSIM_ARTISTIF environment variables to where HSIM and
AAIM packages are located, respectively.
404 HSIMplus® Reference Manual
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
HSIM-Virtuoso CircuitCheck Integration
Next, perform the following steps:

1. Copy $HSIM_ARTISTIF/menus/spectreVerilog.menus to either user's
$HOME/menus/ or <working_directory>/menus directory

2. Use the following two lines in user's .cdsinit file to invoke CoSim :

nsdaAAIMPkgList='(“AACoSim”)
load(“<AAI_installation_directory>/install/
nsdaAAIMInvoker.il”)

Basic CoSim Flow

Here is the basic CoSim flow:

1. User starts icms or icfb session, brings up the Virtuoso Analog Design
Environment window.

2. Select spectreVerilog as the simulator, specify library and design.

3. HSIM pull-down menu shows on the RIGHT hand side of the Virtuoso
window.

4. Conduct spectreVerilog netlisting, generate digital and analog host netlist.

5. Select HSIM -> Setup Environment, [OK] to check out HSIM artistIF license
and activate all the CoSim commands under HSIM pull-down menu.

6. Similar to Native Netlist Integration, use HSIM -> Setup Parameters to
specify desired HSIM parameters.

7. Select HSIM -> Netlisting -> Create Top Netlist to generate the top-level
netlist (cosim.scs).

8. Select HSIM -> Run HSIM CoSim to start the co-simulation.

HSIM-Virtuoso CircuitCheck Integration

Native Netlist CircuitCheck

Native Netlist CircuitCheck is the integration interface between Virtuoso and
the CCK commands built into HSIM. This approach and the GUI interface
provide an easy to use mechanism for setting up all kinds of CCK commands to
perform various circuit checking. For detailed usage of each CCK command
and their option settings, please refer to Chapter 8, CircuitCheck.
HSIMplus® Reference Manual 405
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
HSIM-Virtuoso CircuitCheck Integration
Note:

Although Native Netlist Integration does not require a CCK license, a
separate CCK license is required in addition to the HSIM license during the
simulation cycle. This allows the CCK commands to be set and edited
however, these commands will not take effect when HSIM is run unless a
CCK license is available.

Perform the following steps to open the CCK GUI form.

1. Check out an artistIF license from the Virtuoso Analog Design Environment
window shown in Figure 63 as follows:

2. Choose HSIM->Setup Environment.

Figure 63 Virtuoso Analog Design Environment Window

3. Choose HSIM->CircuitCheck to open the Editing CircuitChecks window
shown in Figure 64.

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
406 HSIMplus® Reference Manual
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
HSIM-Virtuoso CircuitCheck Integration
Figure 64 Editing CircuitChecks

The following are descriptions of the Editing CircuitChecks window features
shown in Figure 64.

7

10

1

2

4

5

6

8

11

12

3

9

HSIMplus® Reference Manual 407
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
HSIM-Virtuoso CircuitCheck Integration
1 [Add{{CCK{{Commands{{Manually]

Most CCK commands can be covered and selected through the cyclic
selection on the form. New commands or those with complex parameter
configurations can also be entered manually. Figure 65 displays the window
used to manually enter commands.

Figure 65 Add Command into CCK Command File Manually Window

Commands added using this window are included in the file generated via
the Edit CircuitChecks form as described in the following sections.

2 CCK Command Applied

CCK Command Applied shows the list of CCK commands selected for
application. To apply a command, press any associated Apply? button on
the form.

The name of the selected command is listed in the CCK Command Applied:
list box of the Editing CircuitChecks window shown in Figure 64 on
page 407. Only the commands listed in the list box will be output into a CCK
command file. These will then be included in the HSIM simulation netlist.

3 [{-{]

The [{-{] screen button to the RIGHT of the CCK Command Applied list box
is used to deselect an applied command. To deselect a command, select
and highlight the command from the list of commands in the CCK Command
Applied: list box and press the [{-{] screen button.

4 CCK Command Groups

Chapter 8, CircuitCheck, describes all CCK commands, which are classified
into 3 groups having the following classifications:
408 HSIMplus® Reference Manual
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
HSIM-Virtuoso CircuitCheck Integration
• Group 1

• Group 2

• Group 3

Note:

There is no Group 2 displayed in the drop down list shown in
Figure 66 since Group 2 commands are mainly used in the
interactive mode.

Figure 66 CCK Command Group Drop-Down List

5 CCK Command Name

This drop down menu accommodates all CCK commands within the
selected command group; for example, Group 1 commands are shown in
Figure 67.

Figure 67 CCK Command List
HSIMplus® Reference Manual 409
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
HSIM-Virtuoso CircuitCheck Integration
In the list shown in Figure 68, there is only one Group 3 command; however,
it has numerous options listed.

Figure 68 CCK Commands Applied: Window

6 CCK Command Value

CCK Command Value contains a list of commands with assigned values
selected from a pre-determined list. A cyclic value button permits selecting
from the command list.

Some commands themselves have values but without options.

7 Apply?

Apply? applies the command selected from the CCK Command Name: drop
down menu. The name of selected command is listed in the CCK Command
Name: list box when activated. If Apply? is deselected, then the
corresponding command name will be removed from the applied command
list box.
410 HSIMplus® Reference Manual
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
HSIM-Virtuoso CircuitCheck Integration
8 Sets of options

Certain commands allow multiple sets of options, e.g. different CCK
command sets may be specified with different models. To setup multiple
options, perform the following, Select [+]. The [+] screen button is located
on the RIGHT of the window.

Select [+] refreshes the bottom portion of the Editing CircuitChecks form to
reflect a new option set with the new set number. The default option set
values are set as shown in Figure 69:

Figure 69 Editing CircuitChecks Window

If any command has multiple option sets, each set is presented on an
individual command line in the output file.

9 Sets of options

Use the [{+{] and the [{-{] screen buttons to add or delete an option set from
an option set. The [{+{] and the [{-{] screen buttons function as follows:
HSIMplus® Reference Manual 411
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
HSIM-Virtuoso CircuitCheck Integration
• [{+{] adds a new set of options.

• [{-{] deletes the selected set of options from the current selection shown
on the menu.

10 Command option

The Command option specifies the command option name, especially when
multiple option sets are applied in the CCK command.

Figure 70 Editing CircuitChecks Window with Commands

11 Combinations of related options

Some related CCK command options are used in combination such as start/
stop, subckt/inst, subckt/node, skipsub/skipinst, etc. These combinations
can be specified in multiple sets having different option values. The string
field displayed at item [11]. displays the current user specified setting. The
controls described in [12] to are used to modify this field.
412 HSIMplus® Reference Manual
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
HSIM-Virtuoso CircuitCheck Integration
12 [{+{] and [{-{] for combined options

The [{+{] and [{-{] screen buttons are used to control the option as follows:

• [{+{] adds the corresponding option=value pair into the string field
described in [11].

• [{-{] deletes the last added option=value pair.

Viewing Commands When Multiple Commands Are Applied
When more than one command is applied, it is possible to navigate between
each of the commands by double clicking on a command name listed in the
applied command list box as shown in Figure 71.

Figure 71 Editing CircuitChecks Window
HSIMplus® Reference Manual 413
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
HSIM-Virtuoso CircuitCheck Integration
cckCommandFile, cckDeviceVFile
Selecting the [OK] screen button on the CircuitCheck form generates two files
in the same directory as the top netlist file.
■ cckCommandFile lists all applied Group 1 commands.
■ cckDeviceVFile lists all applied Group 3 commands.

The top netlist file should always be recreated to include these CCK command
files.

WaveView Analyzer Integration

To use WaveView, do the following (use Native Netlist Integration as an
example):

1. Set HSIMOUTPUT to wdf as shown in Figure 72.
414 HSIMplus® Reference Manual
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
HSIM-Virtuoso CircuitCheck Integration
Figure 72 Basic HSIM Simulator Parameters Form

2. Generate the netlist.

3. Run the simulation.

4. Choose WV -> New Probes -> Transient to cross-probe the waveform using
WaveView Analyzer, as shown in Figure 73.

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
HSIMplus® Reference Manual 415
C-2009.06

Chapter 10: HSIM-Virtuoso Analog Design Environment Interface
HSIM-Virtuoso CircuitCheck Integration
Figure 73 Cross-probing Window

5. Select the desired signals from the schematic.

6. Press [Esc] to display the waveforms to WaveView Analyzer.

See the WaveView v2004.5 User's Guide for details of the WaveView Analyzer
features.

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
416 HSIMplus® Reference Manual
C-2009.06

11
11Verilog/VHDL/HSIM Co-Simulation

Provides information on the Verilog/VHDL/HSIM co-simulation works.

This chapter presents a solution to Verilog/VHDL/HSIM co-simulation. The
chapter is structured in the following order:
■ System environment variable setup
■ Analog/digital partitioning flows and examples
■ Configuration commands
■ Setup and partitioning guidelines

Verilog/VHDL/HSIM co-simulation allows a design to be partitioned into digital
and analog blocks and simulated as one. The digital partition is in Verilog/
VHDL and simulated by a Verilog/VHDL simulator. HSIM simulates the analog
partitions with SPICE netlist format. The co-simulation interfaces synchronize
both the Verilog/VHDL simulator and HSIM as well as passing and translating
signal values back and forth between these two simulators.

The Synopsys Verilog/VHDL/HSIM co-simulation offers three analog/digital
partitioning flows to fit into different design and verification methodologies:
■ Verilog/VHDL netlist on top with leaf instances assigned to SPICE.
■ SPICE netlist on top with leaf instances assigned to Verilog or VHDL.
■ Integration with Virtuoso® Analog Design Environment with analog and

digital netlists generated by SPECTRE/Verilog co-simulation.

Cadence® NC-Verilog®/VHDL[1] and Mentor Graphics ModelSim® are
supported. Cadence Verilog-XL[2] also works with co-simulation, but it is not
fully tested. Other PLI 2.0 compliant Verilog/VHDL simulators may also work
with HSIM co-simulation but have not been fully tested.

Co-simulation uses Verilog Procedural Interface (VPI) or Programming
Language Interface (PLI) 2.0, to interact with ncsim, NC-Verilog/VHDL
HSIMplus® Reference Manual 417
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Setting Up System Environment Variables for Co-Simulation
simulator. The co-simulation executable is a shared library including VPI code
and the HSIM engine. Co-simulation starts with ncsim as the master simulator
which dynamically links with the co-simulation library and invokes the HSIM
engine. The single process combines the ncsim, co-simulation interface, and
HSIM engine. The interactions between ncsim and HSIM go through VPI
function calls. This approach does not need any communication backplane and
interprocess communication (IPC). Thus, best performance can be achieved.

Setting Up System Environment Variables for Co-Simulation

Before running co-simulation, the system must be set up using the following
steps.

1. Set the NC-Verilog/VHDL executables path as shown in the following
example:

set path=($path /usr/local/vendors/cadence/ldv40/tools/bin)

2. Add the NC-Verilog/VHDL library path to the LD_LIBRARY_PATH
environment variable as shown in the following syntax example:

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}/bin:/usr/local/
vendors/cadence/ldv40/tools/inca/lib:/usr/local/vendors/
cadence/ldv40/tools/lib

3. Add the directory containing libvpihsim.so to LD_LIBRARY_PATH.
libvpihsim.so is the VPI shared library shipped to Synopsys customers.

4. Add a directory containing the Tool Command Language (TCL) shared
library and output the shared library, such as libFSDB.so, to
LD_LIBRARY_PATH. Shared libraries are provided in the tool installation.

Note:

For the HP-UX platform, the library path environment variable is
SHLIB_PATH and the VPI shared library is libvpihsim.sl.

Note:

To run co-simulation with VCS and Verilog-XL, set the TCL_LIBRARY
environment variable to the HSIM tool installation directory containing
the init.tcl file.
418 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-Simulation with Verilog as the Top Instance
Co-Simulation with Verilog as the Top Instance

High-Level Co-Simulation Instructions

High-level co-simulation provides the steps necessary to run Verilog/HSIM
Co-simulation without using the cell view approach.

Note:

Syntax Convention: A backslash character (\) in syntax examples marks a
line continuation. Where there is no space before the \, the line continues
unbroken. If a there is a space prior to the \, a space exists in the syntax.

To perform high-level co-simulation without using the cell view approach, do
the following:

1. For those Verilog modules to be simulated by HSIM, replace their module
body with only one line as shown in the following syntax example:

initial $nsda_module();

2. Provide a SPICE netlist for Verilog modules that have the same module/
subcircuit and port names.

3. Recompile the Verilog source code using ncvlog. Proper hdl.var and cds.lib
are required for ncvlog.

4. Insert ncelab with an additional command line option where libvpihsim.so is
the VPI share library shipped to Synopsys customers as shown in the
following syntax example:

-loadvpi libvpihsim.so:nsda_vpi_startup

5. Specify HSIM parameters such as the netlist file name in the cosim.cfg file.

6. Run ncsim with additional command line option as shown in the following
syntax example:

-loadvpi libvpihsim.so:nsda_vpi_startup +nsda+”cosim.cfg”

Detailed Co-Simulation Instructions

The information contained in this section provides details on running Verilog/
HSIM co-simulation using the cell view approach.
HSIMplus® Reference Manual 419
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-Simulation with Verilog as the Top Instance
To perform detailed co-simulation using the cell view approach, do the
following:

1. Create new Verilog source files for the modules to be simulated in HSIM. It
is not necessary to modify the original Verilog source code. The modules
should have the same module name and port name as the original Verilog
modules. The module body contains only the following syntax line:

initial $nsda_module();

Use a new file name extension, such as .cs, to compile the new files into a
new view such as cosim view.

2. Modify hdl.var to define a new view as shown in the following syntax
example:

DEFINE VIEW_MAP (.cs => cosim)

3. The selected view described in the previous syntax is cell based. For an
instance based view selection, insert the following compilation directive
before the instance in the original Verilog source code as shown in the
following syntax:

`uselib lib=cosim_lib view=cosim

4. Create a SPICE netlist for the Verilog modules. Make sure to have the same
subcircuit name as the Verilog module name and port names as well.

Note:

If a subcircuit name is different from the module name, use
map_subckt_name to associate them.

5. Compile the new Verilog files into a new view as specified in hdl.var.

6. Prepare co-simulation configuration file, e.g. cosim.cfg, with HSIM
parameters and co-simulation parameters.

7. Run the NC-Verilog command with additional -loadvpi command option.
NC-Verilog is a Cadence product that requires three steps to run a
simulation: compilation, elaboration, and simulation. The related commands
are:

• Compilation—Use the ncvlog command. The syntax is :

% ncvlog top.v gate.cs

• Elaboration—Use the ncelab command. The syntax is:
420 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-Simulation with Verilog as the Top Instance
% ncelab -loadvpi libvpihsim.so:nsda_vpi_startup -access \
+rwc -LIBNAME cosim_lib cosim_lib.top -snapshot \
cosim_lib.top:cosim

• Simulation—Use the ncsim command. The syntax is:

% ncsim -loadvpi libvpihsim.so:nsda_vpi_startup \
+nsda+”cosim.cfg” cosim_lib.top:cosim

where libvpihsim.so is the VPI share library are shipped with the
product.

Note:

The ncsim command line option +nsda+ is used to pass the
cosim.cfg configuration file name to co-simulation. If the +nsda+
option is not specified, the default configuration file is cosim.cfg.

Example 70 on page 423 illustrates a simple inverter chain with five inverters of
which two are in analog and three in digital. The inv module is shown in both
the top.v and gate.cs files. Since hdl.var defines the .cs file as cosim view with
a higher precedence over the default module view, the inv module is simulated
in HSIM. Its equivalent subcircuit is defined in the inv.spi file.

Sample files for the example include the following:
■ top.v

Verilog source code that contains the default inv module. This file is
compiled into the default module view.

■ gate.cs

Verilog source code containing an inv module to be simulated by HSIM. This
file is compiled into the cosim view.

■ hdl.var

Verilog configuration file that specifies a cosim view, asks the compiler to
compile *.cs source files into cosim view, and asks elaborator to pick cells
with cosim view whenever available.

■ cds.lib

Verilog configuration file that defines design libraries. The physical directory
for a design library must pre-exist. Refer to the Cadence NC-Verilog User
Manual for details.

■ inv.spi and test.spi
HSIMplus® Reference Manual 421
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-Simulation with Verilog as the Top Instance
SPICE netlist with inv subcircuit simulated by HSIM.
■ cosim.cfg

Co-simulation configuration file that specifies both HSIM and co-simulation
parameters such as the SPICE netlist file name.
422 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-Simulation with Verilog as the Top Instance
Example 70 Verilog Netlist on Top Flow Co-Simulation
======== top.v ========

// Top cell with 5 chain inverters, but pushing thru
// one more level of hierarchy by my_buf
`timescale 1ns / 10ps

module top;
wire z1, z2, z3;
testbench tb(z1, z2, z3, a);
chain main(a, z1, z2, z3);

endmodule

module testbench(z1, z2, z3, a0);
input z1, z2, z3;
output a0;
reg a0;
always #25 a0=~a0;
initial begin

a0=1'b1;
$monitor($time,, a0,, z1,, z2,, z3);
#200;
$finish;

end
endmodule

module chain (a, z1, z2, z3);
input a;
output z1, z2, z3;
my_buf x1 (a, z1);
my_inv x2 (z1, z2);
my_buf x3 (z2, z3);

endmodule
module inv (a, z);

input a;
output z;
assign z=~a;

endmodule

module my_inv (a, z);
input a;
output z;
assign z=~a;

endmodule

module my_buf (a, z);
input a;
output z;
wire t;
HSIMplus® Reference Manual 423
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Instance Based Instantiation with Verilog Configuration
my_inv IV1(a, t);
inv IV2(t, z);

endmodule

======= gate.cs =======
module inv (a, z);

input a;
output z;
initial $nsda_module();

endmodule

====== inv.spi ======
.subckt inv a z
m1 z a vdd vdd p l=0.5u w=5u as=1.0e-10 ad=1.0e-10 ps=0
+ pd=0
m2 z a 0 0 n l=0.5u w=3u as=1.0e-10 ad=1.0e-10 ps=0 pd=0
.ends

====== test.spi =====
.param VDDVAL=3v
* global nodes
.global vdd vss gnd
* supplies
vvdd vdd 0 dc VDDVAL
vgnd gnd 0 dc 0v
.inc models
.inc inv.spi
.print v(*)
.end

======== cosim.cfg ========
set_args test.spi

======== hdl.var =========
DEFINE WORK cosim_lib
DEFINE VIEW_MAP (.cs => cosim)

======== cds.lib =========
DEFINE cosim_lib ./cosim_lib

Instance Based Instantiation with Verilog Configuration

NC-Verilog 5.1 supports instance based instantiation by using Verilog
configurations in accordance with the IEEE standard, IEEE 1364-2001. A
library map file contains the binding rules. This feature is invoked using ncvlog
and ncelab with the -libmap command line option to specify the library map file.
424 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Instance Based Instantiation with Verilog Configuration
Multiple implementations of the same module can be compiled into different
design libraries. Using Verilog configurations, ncelab searches design libraries
to bind instances as shown in Example 71.

Example 71 Instance Based Instantiation
====== File: top.v ======
module top();

chain a1(...);
chain a2(...);

endmodule

module chain(...);
inv i1(...);
inv i2(...);

endmodule

module inv(in, out);
input in;
output out;
assign out = ~in;

endmodule

====== File: inv.cs ======
module inv(in, out);

input in;
output out;
initial $nsda_module();

endmodule

====== Library map file: lib.map ======
library rtlLib top.v;
library cosimLib inv.cs;

config cfg;
design rtlLib.top;
default liblist rtlLib cosimLib;
instance top.a2.i1 liblist cosimLib;

endconfig

To compile the design units, invoke ncvlog using the following syntax:

% ncvlog -libmap lib.map top.v inv.cs

This compiles the design units into the appropriate libraries as follows:

Design Units Library

top rtlLib
HSIMplus® Reference Manual 425
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-Simulation with VHDL as the Top Instance
In the lib.map (library map) file, the Verilog configuration cfg specifies an
instance based instantiation for instance top.a2.i1. To elaborate the top design,
use the following command:

% ncelab -libmap lib.map cfg -loadvpi \
libvpihsim.so:nsda_vpi_startup -access +rwc

The instance top.a2.i1 is bound to the design unit inv in cosimLib while the
remaining three inv instances are bound to the design unit inv in rtlLib. During
co-simulation, the instance top.a2.i1 is partitioned to the analog simulator and
the others are simulated by Verilog simulator. With the Verilog configuration,
analog/digital partitioning for co-simulation can be accomplished in an instance
based fashion.

Refer to the NC-Verilog User Manual and IEEE 1364-2001 standard for further
details on instance based instantiation.

Co-Simulation with VHDL as the Top Instance

The Cadence ncsim is able to simulate pure Verilog, pure VHDL, and mixed
Verilog/VHDL designs. This Synopsys co-simulation uses VPI to interact with
ncsim. However, VPI can only access Verilog objects. In order to co-simulate
with VHDL, HSIM needs Verilog as the media to interact with VHDL indirectly.
Therefore, a Verilog wrapper is required.

Use the following steps to run co-simulation with VHDL designs.

1. Create a Verilog module with the same port definition as the VHDL entity to
be partitioned to SPICE. This Verilog module contains only one statement
as the module body and functions as a wrapper around the SPICE block as
shown below:

initial $nsda_module();

2. Modify the original VHDL code to instantiate the new Verilog module.

chain rtlLib

inv (from inv.cs) cosimLib

inv (from top.v) rtlLib

Design Units Library
426 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-Simulation with VHDL as the Top Instance
3. Compile the VHDL code with ncvhdl as shown in the following syntax:

% ncvhdl top.vhd

4. Compile the Verilog code with ncvlog as shown in the following syntax:

% ncvlog gate.cs

5. Elaborate the design with ncelab as shown in the following syntax:

% ncelab -loadvpi libvpihsim.so:nsda_vpi_startup -access +rwc
top:a

6. Prepare SPICE netlist for the SPICE block.

7. Setup co-simulation configuration file.

8. Run co-simulation with ncsim as shown in the following syntax:

% ncsim -loadvpi libvpihsim.so:nsda_vpi_startup
+nsda+cosim.cfg top

Note:

Bi-directional port in VHDL/HSIM co-simulation is not supported.

 Example 72 on page 428 shows a VHDL on top design of a inverter chain with
two leaf inverters assigned to SPICE. The VHDL entity inv is replaced by a
SPICE subcircuit inv for co-simulation. A Verilog module inv is created as the
wrapper of the SPICE subcircuit.

The following sample files are used in Example 72:
■ top.vhd: The VHDL design
■ gate.cs: The Verilog wrapper for SPICE subcircuit inv.
■ test.spi: SPICE netlist
■ inv_sub.spi: SPICE netlist
■ cosim.cfg: Co-simulation configuration file
■ hdl.var: NC-Verilog configuration file
■ cds.lib: NC-Verilog configuration file
HSIMplus® Reference Manual 427
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-Simulation with VHDL as the Top Instance
Example 72 VHDL on Top Flow Co-Simulation Files
========== File: top.vhd ===========
library ieee;
use ieee.std_logic_1164.all;
library std;
use std.textio.all;
entity top is
end top;
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_textio.all;
library std;
use std.textio.all;
architecture A of top is
 component

testbench port (z1, z2, z3: in std_logic;
 a: out std_logic);
 end component;
 component

cut port (a: in std_logic;
 z1, z2, z3: out std_logic);
 end component;
 signal a, z1, z2, z3: std_logic;
begin
 tb: testbench PORT MAP (z1, z2, z3, a);
 main: cut PORT MAP (a, z1, z2, z3);
 process (a, z1, z2, z3)
 VARIABLE I: LINE;
 begin

 write(I, now, left, 15);
 write(I, a , right, 3);
 write(I, z1, right, 3);
 write(I, z2 , right, 3);
 write(I, z3 , right, 3);
 writeline(output, I);

 end process;
end;
library ieee;
use ieee.std_logic_1164.all;
entity testbench is
 port (z1, z2, z3: in std_logic;

 a: out std_logic);
end testbench;
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_textio.all;
library std;
use std.textio.all;
428 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-Simulation with VHDL as the Top Instance
architecture behav of testbench is
 signal tick: std_logic;
begin
 process
 variable i: std_logic := '0';
 variable initial: integer := 0;
 begin
 a <= i;
 tick <= i after 3 ns;

if (now >= 250 ns) then
 wait;
end if;

 wait for 25 ns;
 i := NOT i;
 end process;
 process(tick)
 variable error: STRING (1 to 7) := "ERROR: ";
 VARIABLE I: LINE;
 begin
 if (now > 0 ns) then
 if (tick /= z1) or
 (tick = z2) or
 (tick = z3) then
 write(I, error, left, 7);
 write(I, now, left, 15);
 write(I, tick, right, 3);
 write(I, z1, right, 3);
 write(I, z2, right, 3);
 write(I, z3, right, 3);
 writeline(output, I);
 end if;
 end if;
 end process;
end behav;
library ieee;
use ieee.std_logic_1164.all;
entity cut is
 port (a: in std_logic;

 z1, z2, z3: out std_logic);
end cut;
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_textio.all;
library std;
use std.textio.all;
architecture gate of cut is component

my_buf port (a: in std_logic;
 z: out std_logic);
HSIMplus® Reference Manual 429
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-Simulation with VHDL as the Top Instance
 end component;
 component

my_inv port(a: in std_logic;
 z: out std_logic);
 end component;
 signal m1, m2, m3: std_logic;
begin
 x1: my_buf PORT MAP (a, m1);
 x2: my_inv PORT MAP (m1, m2);
 x3: my_buf PORT MAP (m2, m3);
 z1 <= m1;
 z2 <= m2;
 z3 <= m3;
-- process (a, m1, m2, m3)
-- VARIABLE I: LINE;
-- begin
-- write(I, now, left, 15);
-- write(I, a , right, 3);
-- write(I, m1, right, 3);
-- write(I, m2 , right, 3);
-- write(I, m3 , right, 3);
-- writeline(output, I);
-- end process;
end;
library ieee;
use ieee.std_logic_1164.all;
entity my_inv is
 port(a: in std_logic;

 z: out std_logic);
end my_inv;
library ieee;
use ieee.std_logic_1164.all;
architecture behav of my_inv is
begin
-- z <= NOT a after 1 ns;
 z <= NOT a;
end;
--library ieee;
--use ieee.std_logic_1164.all;
--entity inv is
-- port(a: in std_logic;
-- z: out std_logic);
--end inv;
--library ieee;
--use ieee.std_logic_1164.all;
--architecture behav of inv is
--begin
-- z <= NOT a after 1 ns;
430 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-Simulation with VHDL as the Top Instance
-- z <= NOT a;
--end;
library ieee;
use ieee.std_logic_1164.all;
entity my_buf is
 port (a: in std_logic;

 z: out std_logic);
end my_buf;
library work;
use work.all;
architecture gate of my_buf is
 component

my_inv port(a: in std_logic;
 z: out std_logic);
 end component;
 component

inv port(a: in std_logic;
 z: out std_logic);
 end component;
 signal t: std_logic;
begin
 IV1: my_inv PORT MAP (a, t);
 IV2: inv PORT MAP (t, z);
end gate;

========== File: gate.cs ===========
module inv (a, z);
 input a;
 output z;
 initial $nsda_module();
endmodule
========== File: test.spi ===========
.param VDDVAL=3v
* global nodes
.global vdd vss gnd
* supplies
vvdd vdd 0 dc VDDVAL
vgnd gnd 0 dc 0v
.inc models
.inc inv_sub.spi
.print v(*)
.end
========== File: inv_sub.spi ===========
.subckt inv a z
m1 z a vdd vdd p l=0.5u w=5u as=1.0e-10 ad=1.0e-10 ps=0 pd=0
m2 z a 0 0 n l=0.5u w=3u as=1.0e-10 ad=1.0e-10 ps=0 pd=0
.ends
.subckt invs a z vcc
HSIMplus® Reference Manual 431
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-Simulation with SPICE as the Top Instance
m1 z A vdd vdd p l=0.35u w=400u as=1.0e-10 ad=1.0e-10 ps=0 pd=0
m2 z a 0 0 n l=0.35u w=200u as=1.0e-10 ad=1.0e-10 ps=0 pd=0
.ends
========== File: cosim.cfg ===========
set_argsspice/test.spi
========== File: hdl.var ===========
DEFINE WORKcosim_lib
DEFINE VIEW_MAP(.cs => cosim, .vhd => vhd, .v => module)
========== File: cds.lib ===========
INCLUDE /rmnt/tools/cadence/LDV51QSR1/tools/inca/files/
cds.lib
DEFINE cosim_lib ./cosim_lib

Co-Simulation with SPICE as the Top Instance

In this design flow, the SPICE netlist is the design top instance. Verilog
instances are instantiated from the SPICE netlist. In general, circuit designers
have the whole SPICE netlist and would like to replace certain digital blocks
with Verilog instances.

To run co-simulation, the cosim.v Verilog interface file is automatically
generated by executing HSIM command against the original SPICE netlist. The
cosim.v file contains the Verilog top module instaitiating Verilog instances to
replace SPICE subcircuits. Then co-simulation is conducted against cosim.v,
other Verilog source files for digital instances, and the original SPICE netlist.

The procedure to run co-simulation for this design flow is described as follows:

1. Create a configuration file such as cosim.cfg for both HSIM and
co-simulation containing the following commands:

• set_args: Used with HSIM command line options including the SPICE
netlist to run HSIM.

• digital_cell or digital_cell_inst: Specifies the Verilog instances in the
SPICE netlist.

• verilog_file: Specifies the Verilog file containing the Verilog module
definitions.

Here is an example of a cosim.cfg file:

set_args spice/test.spi
digital_cell invd
verilog_file verilog/invd.v
432 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-Simulation with SPICE as the Top Instance
In this example, invd.v defines the Verilog inverter, and
digital_cell defines the digital partitions instantiated in cosim.v
which is generated by HSIM.

2. Run HSIM with the configuration file. HSIM stops simulation after generating
cosim.v as shown in the following example:

% hsim -cscfg cosim.cfg

Once cosim.v is generated, Step 2 can be skipped in future co-simulation
runs if analog/digital partitioning and the Verilog port analog/digital interface
definitions remain unchanged.

3. Use the Verilog compiler to compile cosim.v together with other Verilog
source files.

4. Start co-simulation from the top Verilog module defined in cosim.v and the
SPICE netlist. HSIM will skip simulating the SPICE subcircuits specified in
digital_cell or digital_cell_inst commands.

Example 73 on page 434 presents a simple inverter chain with a SPICE netlist
on top and two leaf inverters partitioned to Verilog. Sample files for Example 73
include the following:
■ cosim.v: Verilog top module that instantiates two Verilog inverters. This

digital interface file is automatically generated by HSIM.
■ test.spi: SPICE top netlist of an inverter chain.
■ inv.spi: SPICE netlist for an inverter.
■ invd.spi: SPICE netlist of the inverter to be partitioned to Verilog.
■ buf.spi: A SPICE inverter chain.
■ invd.v: A Verilog inverter module.
HSIMplus® Reference Manual 433
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-Simulation with SPICE as the Top Instance
Example 73 SPICE Netlist-On-Top Flow Co-Simulation
====================== File: cosim.v ======================
‘timescale 1ns / 10ps
module top;

wire w1; // x1.n1
wire \x1.n1 = w1;
wire w2; // out1
wire \out1 = w2;
wire w3; // x3.n1
wire \x3.n1 = w3;
wire w4; // out
wire \out = w4;
// Instance section
invd \x1.x2 (
w1, w2);
invd \x3.x2 (
w3, w4);
// interface nodes
initial begin

$nsda_a2d_node(w1, "x1.n1");
$nsda_d2a_node(w2, "out1");
$nsda_a2d_node(w3, "x3.n1");
$nsda_d2a_node(w4, "out");

end
initial $nsda_module(1);
// By default, spiceflow co-simulation will use

.tran time
// for the simulation time
// To specify simulation time from verilog, please

add
// command "spice_finish 0"
// in the cosim config file
// initial begin
// #100 $finish;
// end

endmodule
====================== File: test.spi ======================
*
.param VDDVAL=3v
* global nodes
.global vdd vss gnd
* supplies
vvdd vdd 0 dc VDDVAL
vgnd gnd 0 dc 0v
* top level netlist
x1 in out1 buf
x2 out1 out2 inv
x3 out2 out buf
434 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Spectre/Verilog Co-Simulation Running Under the Virtuoso Analog Design Environment
x4 out dummy inv
.inc models
.inc inv.spi
.inc invd.spi
.inc buf.spi
vin in 0 pwl 0n 0v 1n 0v 1.1n 3v 6n 3v 6.2n 0v r
.print v(*)
.tran 0.1n 100n
.end
=========== File: inv.spi =============
.subckt inv a z
m1 z a vdd vdd p l=0.5u w=5u as=1.0e-10 ad=1.0e-10 ps=0 pd=0
m2 z a 0 0 n l=0.5u w=3u as=1.0e-10 ad=1.0e-10 ps=0 pd=0
.ends
=========== File: invd.spi ============
.subckt invd a z
m1 z a vdd vdd p l=0.5u w=5u as=1.0e-10 ad=1.0e-10 ps=0 pd=0
m2 z a 0 0 n l=0.5u w=3u as=1.0e-10 ad=1.0e-10 ps=0 pd=0
.ends
=========== File buf.spi ==============
.subckt buf in out
x1 in n1 inv
x2 n1 out invd
.ends buf
============ File: invd.v ============
`timescale 1ns/10ps
module invd (a, z);

input a;
output z;
assign z =~a;

endmodule

Note:

To co-simulate a VHDL block in SPICE on the top flow, create a Verilog
wrapper for the VHDL entity with the same port definition. In the new
Verilog module, instantiate the VHDL entity.

Spectre/Verilog Co-Simulation Running Under the Virtuoso Analog
Design Environment

The Virtuoso Analog Design Environment provides the co-simulation capability
for Spectre® and Verilog®. The HSIM and NC-Verilog co-simulation are
integrated into the Virtuoso Analog Design Environment GUI based on the
HSIMplus® Reference Manual 435
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Donut Partitioning with Verilog as the Top Instance (V-S-V)
Spectre and Verilog netlists generated by Virtuoso. Refer Chapter 10, HSIM-
Virtuoso Analog Design Environment Interface for specific details.

The procedure to run batch mode in HSIM and NC-Verilog co-simulation with
netlists generated by Virtuoso Analog Design Environment is as follows:

1. Generate Spectre and Verilog netlists: In the Analog Artist window, select
spectreVerilog as the simulator. Select design and then generate netlists.

2. Run spectreVerilog co-simulation to generate the vmx run script,
runSimulation, in the project directory. Stop spectreVerilog co-simulation
after runSimulation is created.

3. From the project directory, run HSIM co-simulation by using runnsdavmx
command with the vmx run script as an input argument as shown in the
following syntax example:

% runnsdavmx runSimulation [options]

runnsdavmx options include:

• -include <hsim_netlist_file>

• -config <cosim_config_file>

• -prefix <hsim_prefix>: (default) hsim.

• -outdir <output_directory>: (default) spectre -raw option.

• -vsrcd2a <0|1>: (default is 0) This option is used to set the D2A input
as a voltage source.

• -xl: This option is used to invoke Verilog-XL for co-simulation.

• -help

Donut Partitioning with Verilog as the Top Instance (V-S-V)

Using Verilog-on-Top Partitioning

In the V-S-V partitioning flow, the top instance is in Verilog and some modules
will be simulated in HSIM. Within the modules to be simulated in HSIM,
submodules can be partitioned to Verilog.

To use donut partition with Verilog on top, perform the following steps.

1. Use the analog_cell statements specify analog/digital partitioning. The
syntax for analog_cell is:
436 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Donut Partitioning with Verilog as the Top Instance (V-S-V)
analog_cell <cell name> -vmod <verilog module name>...

where <cell name> specifies the module to be simulated in HSIM and -vmod
<verilog module name> specifies the module under <cell name> that
remains in Verilog.

Any number of module names can be specified by adding additional -vmod
<verilog module name> parameters. Refer to analog_cell on page 448 for
additional information.

2. Run the simulation as normal Verilog netlist-on-top flow. The first run will exit
before simulation time 0, generating a .cs and file for each donut cell.

3. Include the .cs files in Verilog compilation and run the simulation. The
modules will be partitioned and simulated as specified in the analog_cell
command.

Note:

The cosim view file extension (.cs) is optional and can be specified in
the analog_cell command.

Figure 74 and Example 74 show donut partitioning with a Verilog top. The
co-simulation configuration file should contain the analog_cell command.
HSIMplus® Reference Manual 437
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Donut Partitioning with Verilog as the Top Instance (V-S-V)
Figure 74 Verilog Top Co-Simulation Working in Donut Partitioning

Example 74 Verilog Top Co-Simulation Working in Donut Partitioning
============= cosim.cfg =============
set_args spice/test.spi
analog_cell -ext cs -dir . hsimmod -vmod invd -vmod invd3
analog_cell -ext cs -dir . hsimmod_2 -vmod invd2 -vmod invd3
analog_cell -ext cs -dir . pure_hsimmod

In the configuration file shown in Figure 74 and Example 74, the syntax is as
follows:
■ hsimmod, hsimmod_2, and pure_hsimmod: Modules simulated in HSIM.
■ invd, invd2, and invd3: Submodules simulated in Verilog.
■ -vmod: A global option. For example, if -vmod invd3 is present only in the

hsimmod command line, all instances of invd3 will be in Verilog, including
those in hsimmod_2.

inv invinvd3invd invd inv invd3

inv invd3invd2 inv invd3

invdinv inv

·

·

hsimmod

hsimmod_2

pure_hsimmod vlogmod

bufferbuffer

buffer buffer

Verilog Top
438 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Donut Partitioning with Verilog as the Top Instance (V-S-V)
First Run Example

% ncvlog verilog/top.v verilog/invd.v
% ncelab -loadvpi libvpihsim.so:nsda_vpi_startup -access \ +rwc
-LIBNAME cosim_lib cosim_lib.top -snapshot \ cosim_lib.top:cosim
% ncsim -loadvpi libvpihsim.so:nsda_vpi_startup \
+nsda+”cosim.cfg” cosim_lib.top:cosim

After first run, the following files are generated in the specified “.” output
directory. In this example, it is the current directory:
■ hsimmod.cs
■ hsimmod_2.cs
■ pure_hsimmod.cs

Second Run Example

% ncvlog verilog/top.v verilog/invd.v hsimmod.cs \ hsimmod_2.cs
pure_hsimmod.cs
% ncelab -loadvpi libvpihsim.so:nsda_vpi_startup -access \ +rwc
-LIBNAME cosim_lib cosim_lib.top -SNAPSHOT \ cosim_lib.top:cosim
% ncsim -loadvpi libvpihsim.so:nsda_vpi_startup \
+nsda+”cosim.cfg” cosim_lib.top:cosim
HSIMplus® Reference Manual 439
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Donut Partitioning with Verilog as the Top Instance (V-S-V)
Verilog and SPICE Files:
============= top.v =============
`timescale 1ns/10ps
module top;

reg vlog_drv;
wire h_in_1;
wire h_out_1;
wire h_out_2;
wire h_out_3;
wire v_out;

invd inv_vtop(vlog_drv, h_in_1);
hsimmod h_mod_1(h_in_1, h_out_1);
hsimmod_2 h_mod_2(h_out_1, h_out_2);
pure_hsimmod h_mod_3(h_out_2, h_out_3);
vlogmod v_mod(h_out_3, v_out);

initial begin
#0 vlog_drv = 1'bz;
#10 vlog_drv = 1'b1;
#10 vlog_drv = 1'b0;
#10 vlog_drv = 1'b1;
#10 vlog_drv = 1'b0;
#10 $finish;
end

endmodule

module vlogmod (vmod_in, vmod_out);
input vmod_in;
output vmod_out;
invd inverter(vmod_in, vmod_out);

endmodule

module hsimmod (in, out);
input in;
output out;
wire out0, out1, out2;
invd inst_invd(in, out0);
buffer inst_buf1(out0, out1);
inv nst_inv(out1, out2);
buffer inst_buf2(out2, out);

endmodule

module hsimmod_2 (in, out);
input in;
output out;
wire out0, out1;
invd2 inst_invd2(in, out0);
440 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Donut Partitioning with Verilog as the Top Instance (V-S-V)
buffer inst_buf1(out0, out1);
buffer inst_buf2(out1, out);

endmodule

module pure_hsimmod (in, out);
input in;
output out;

endmodule

============= invd.v =============
`timescale 1ns/10ps

module invd (a, z);
input a;
output z;

assign z =~a;
always @(a)$display(“%t invd : z = %v”, $time, z);

endmodule

module invd2 (a, z);
input a;
output z;

assign z =~a;
always @(a)$display”%t invd2: z = %v”, $time, z);

endmodule

module invd3 (a, z);
input a;
output z;

assign z =~a;
always @(a)$display(“%t invd3: z = %v”, $time, z);

endmodule

module inv (a, z);
input a;
output z;

assign z =~a;
always @(a)v$display(“%t inv : z = %v”, $time, z);

endmodule

module buffer (in, out);
input in;
output out;
wire n1;
HSIMplus® Reference Manual 441
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Donut Partitioning with Verilog as the Top Instance (V-S-V)
inv inst_inv(in, n1);
invd3 inst_invd(n1, out);

endmodule

============= test.spi =============
.param VDDVAL=3v

* global nodes
.global vdd vss gnd

* supplies
vvdd vdd 0 dc VDDVAL
vgnd gnd 0 dc 0v

.inc models

.inc inv.spi

.inc invd.spi

.inc buf.spi

.subckt hsimmod in out
x0 in out0 invd
x1 out0 out1 buffer
x2 out1 out2 inv
x3 out2 out buffer
.ends

.subckt hsimmod_2 in out
x0 in out0 invd2
x1 out0 out1 buffer
x3 out1 out buffer
.ends

.subckt pure_hsimmod in out
x4 in out0 inv
x5 out0 out inv
.ends

vin in 0 pwl 0n 0v 1n 0v 1.1n 3v 6n 3v 6.2n 0v
.print v(*)
.tran 0.1n 10n

.end

============= inv.spi =============
.subckt inv a z
m1 z a vdd vdd p l=0.5u w=5u as=1.0e-10 ad=1.0e-10 ps=0 pd=0
m2 z a 0 0 n l=0.5u w=3u as=1.0e-10 ad=1.0e-10 ps=0 pd=0
442 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Donut Partitioning with SPICE as the Top Instance (S-V-S)
.ends

============= invd.spi =============
.subckt invd a z
m1 z a vdd vdd p l=0.5u w=5u as=1.0e-10 ad=1.0e-10 ps=0 pd=0
m2 z a 0 0 n l=0.5u w=3u as=1.0e-10 ad=1.0e-10 ps=0 pd=0
.ends

.subckt invd2 a z
m1 z a vdd vdd p l=1.0u w=10u as=1.0e-10 ad=1.0e-10 ps=0 pd=0
m2 z a 0 0 n l=1.0u w=6u as=1.0e-10 ad=1.0e-10 ps=0 pd=0
.ends

.subckt invd3 a z
m1 z a vdd vdd p l=1.0u w=10u as=1.0e-10 ad=1.0e-10 ps=0 pd=0
m2 z a 0 0 n l=1.0u w=6u as=1.0e-10 ad=1.0e-10 ps=0 pd=0
.ends

============= buf.spi =============
.subckt buffer in out
x1 in n1 inv
x2 n1 out invd3
.ends buffer

Donut Partitioning with SPICE as the Top Instance (S-V-S)

Using SPICE-on-Top Partitioning

In the S-V-S partitioning flow, the top instance is in SPICE and Verilog
instances are instantiated from the SPICE netlist. This is similar to the normal
SPICE netlist-on-top flow. Within the Verilog module, sub blocks can be
simulated in HSIM. The Verilog module containing analog cells is similar to the
top Verilog module in the normal standalone Verilog netlist-on-top flow.

To use SPICE-on-top donut partitioning, perform the following steps:

1. Specify the cosim view of the sub block in the Verilog module to be
simulated in HSIM. This is similar to the Verilog netlist-on-top flow where the
hdl.var file should contain the following syntax specifying cosim view:

DEFINE VIEW_MAP (.cs => cosim)

2. Replace the module body of the sub block in the Verilog module to be
simulated in HSIM with the following syntax line:
HSIMplus® Reference Manual 443
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Donut Partitioning with SPICE as the Top Instance (S-V-S)
initial $nsda_module();

3. Specify the following in the co-simulation config file:

set_args spice/test.spi
digital_cell buffer
verilog_file verilog/buf.v

where buffer is the Verilog module name, and verilog/buf.v is the
Verilog file name.

4. Run HSIM with the configuration file. HSIM stops simulation after generating
cosim.v as shown in the following example:

% hsim -cscfg cosim.cfg

Note:

Once cosim.v is generated, Step 3 can be skipped in future
co-simulation runs if analog/digital partitioning and the Verilog port
analog/digital interface definitions remain unchanged.

5. The Verilog compiler is used to compile cosim.v together with other Verilog
source files.

6. Start co-simulation from the top Verilog module defined in cosim.v and the
SPICE netlist. HSIM will skip simulating the SPICE subcircuits specified in
digital_cell commands while partitioning the sub-block specified in Step 2
into HSIM.

Figure 75 is an example of donut partitioning with a SPICE top. Within the
SPICE top, the buffer is partitioned to Verilog while one of its sub blocks, inva,
is partitioned to be simulated in HSIM.

Figure 75 SPICE Top Co-Simulation Working in Donut Partitioning

SPICE top

buffer

invainvd· ·
444 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Donut Partitioning with SPICE as the Top Instance (S-V-S)
First Run Example

% hsim -cscfg cosim.cfg

Second Run Example

% ncvlog verilog/cosim.v verilog/buf.v verilog/gate.cs

% ncelab -loadvpi libvpihsim.so:nsda_vpi_startup -access \ +rwc
-LIBNAME cosim_lib cosim_lib.top -SNAPSHOT \ cosim_lib.top:cosim

% ncsim -loadvpi libvpihsim.so:nsda_vpi_startup \
+nsda+”cosim.cfg” cosim_lib.top:cosim
HSIMplus® Reference Manual 445
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Donut Partitioning with SPICE as the Top Instance (S-V-S)
Verilog and SPICE Files
============= test.spi =============
.param VDDVAL=3v

* global nodes
.global vdd vss gnd

* supplies
vvdd vdd 0 dc VDDVAL
vgnd gnd 0 dc 0v

* top level netlist
x1 in out1 buffer

.inc models

.inc inva.spi

.inc invd.spi

.inc buf.spi

vin in 0 pwl 0n 0v 1n 0v 1.1n 3v 6n 3v 6.2n 0v
.print v(*)
.tran 0.1n 10n

.end

============= inva.spi =============
.subckt inva a z
m1 z a vdd vdd p l=0.5u w=5u as=1.0e-10 ad=1.0e-10 ps=0 pd=0
m2 z a 0 0 n l=0.5u w=3u as=1.0e-10 ad=1.0e-10 ps=0 pd=0
.ends

============= invd.spi =============
.subckt invd d_a d_z
m1 d_z d_a vdd vdd p l=0.5u w=5u as=1.0e-10 ad=1.0e-10 ps=0 pd=0
m2 d_z d_a 0 0 n l=0.5u w=3u as=1.0e-10 ad=1.0e-10 ps=0 pd=0
.ends

============= buf.spi =============
.subckt buffer in out
x1 in n invd
x2 n out inva
.ends buffer

============= buf.v =============
`timescale 1ns/10ps

module buffer (in, out);
input in;
446 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Save-Restart in Co-Simulation
output out;
wire n;

invd inst_invd (in, n);
inva inst_inva(n, out);
endmodule

module invd (d_a, d_z);
input d_a;
output d_z;

assign d_z = ~d_a;
always @ (d_a) $display(“%t invd : d_z = %v”, $time, d_z);

endmodule

============= gate.cs =============
`timescale 1ns/10ps

module inva (a, z);
input a;
output z;

endmodule

Save-Restart in Co-Simulation

Co-simulation allows you to save the complete simulation state. Simulation can
be restarted at a later time by loading the simulation state and continued from
where it was saved. The simulation state is saved to a Verilog snapshot and an
HSIM save file, hsim.iic.<time>. You can restart the simulation by invoking the
Verilog snapshot.

To save a simulation state, you can get into ncsim interactive mode and apply
the save command as shown in the following example:

ncsim> run -clean
ncsim> save <snapshot name>

To restart the simulation, use ncsim command with the saved snapshot as
shown in the following example:

% ncsim <snapshot name>

Restart from within ncsim interactive mode is not supported.
HSIMplus® Reference Manual 447
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Configuration File Commands
Appending a Waveform in Co-Simulation

Co-simulation allows waveforms to be appended to fsdb or wdf files using the
appropriate syntax as follows:

ncsim +restart+"<-fsdb fsdb_filename>" <snapshot name>
ncsim +restart+"<-wdf wdf_filename>" <snapshot name>

In the following command example, a new waveform will be appended to
hsim_save.fsdb:

ncsim +restart+"-fsdb hsim_save.fsdb" <snapshot name>

Configuration File Commands

This section lists the configuration file commands used in Verilog/VHDL/HSIM
co-simulation.

The value sets of some common configuration command arguments are as
follows:

<bool>

0, 1

<positive number>

1, 2, 3, etc.

<double>

Floating point number

<time>

Floating point number plus time unit. For example, 100p and 1n stand for
100 pico seconds and 1 nano second, respectively.

<file>

File name

analog_cell

Generates Verilog module templates containing the $nsda_module() statement
for analog partitions in the Verilog as the top instance flow.
448 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Configuration File Commands
Syntax
analog_cell [-ext <file name extension>] [-dir <directory>]

<cell 1> <cell 2> -vmod <verilog sub-module name>...

Arguments
-ext

Specifies file name extension for the generated Verilog module templates.
The default file name extension is cs.

-dir

Specifies the directory to put the generated Verilog module template. The
default directory is the current working directory.

cell name

Can be a wildcard.

-vmod

Specifies the submodule that remains in Verilog. Do not use wild cards.

Note:

When using the -vmod option, only one cell within an analog_cell
command may be used.

Description
The analog_cell command generates Verilog module templates containing
the $nsda_module() statement for analog partitions in the Verilog as the top
instance flow. If the design module of an analog partition does not exist in the
design library, co-simulation stops after the template is generated. Then this
new file must be compiled in order to start co-simulation. If the design module
of an analog partition already exists in the design library, analog_cell will not
generate the module template.

auto_vsrc_warning

Issues warning message if conflict exists between automatically detected
voltage level and voltage level set by set_port_prop command.

Syntax
auto_vrsc_warning <bool>
HSIMplus® Reference Manual 449
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Configuration File Commands
Description
Default for <bool> is 0. When set to 1, a warning message is issued if a
conflict between an automatically detected voltage level and a voltage level set
by the set_port_prop configuration command occurs. Refer to Automatic
Voltage Level Detection on page 463 for information regarding the rules for
setting automatic voltage detection levels.

correct_netlist

Syntax
correct_netlist <bool>

Description
Default for <bool> is 1. If this option is on, and:
■ Verilog module has more ports than subcircuit ports, it will drop port a

connection which is found as a global node, i.e. vdd, vss.
■ Subcircuit has more ports than inst module ports, it will create dummy node

to let simulation go on.

define_print_variable

Defines a print variable used as a reference voltage in the set_port_prop
command.

Syntax
define_print_variable <print variable name> = <expression>

Description
This command defines a print variable used as a reference voltage in the
set_port_prop command. The print variable will be added to nsda_cosim.sp
netlist file with SPICE .print statement.

Note:

The syntax for the print variable in define_print_variable is identical to the
.print statement syntax.
450 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Configuration File Commands
define_strength

Defines a strength table with resistances mapped to Verilog seven strength
levels.

Syntax
define_strength <strength table name> [<double>] [-<strength

option> <double>] [-<strength option> <double>] ...

Description
This command defines a strength table with resistances mapped to Verilog
seven strength levels.

Each -<strength option> is used to map to the corresponding Verilog
strength level and can be any of the following:
■ -supply
■ -strong
■ -pull
■ -weak
■ -large
■ -medium
■ -small

The value inserted after -<strength option> is a strength resistor’s
resistance. If a value does not have an associated -<strength option>, it
will be set as the default value for the remaining strength levels not specified
using the -<strength option>.

<strength table name> is used in the -strength port property of the
set_port_prop command for strength resolution at inout ports. Verilog
inputs will be applied through the resistor with respect to the Verilog strength
level and HSIM resolves contributions of both the Verilog- and SPICE-sides in
order to obtain the final bi-directional net value.

digital_cell

Specifies the SPICE subcircuit to be partitioned to Verilog.

Syntax
digital_cell <sub-circuit name>
HSIMplus® Reference Manual 451
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Configuration File Commands
Description
In SPICE flow, specifies the SPICE subcircuit to be partitioned to Verilog.

digital_cell_inst

Specifies the SPICE instance to be partitioned to Verilog.

Syntax
digital_cell_inst <SPICE instance name>

Description
In SPICE flow, specifies the SPICE instance to be partitioned to Verilog.

dump_interface

Produces a report file showing the mapping result between analog and digital
ports.

Syntax
dump_interface [0|1|2]

Arguments
0

Do not dump the .csintf file.

1

Generates the .csintf that lists all interface nodes and properties.

2

(Default) Generates the .csintf at the end of co-simulation that lists all
interface nodes, properties, and the number of interface events for each
interface node.

Description
This command produces a report file showing the mapping result between
analog and digital ports.

Example
Here is a .csintf file example.
452 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Configuration File Commands

a2d main.out2 xmain.out2 node=out2 vhi=2.1 vlo=0.9
d2a main.out1 xmain.out1 node=out1 logichv=3 logiclv=0 rise=1000
fall=1000 rm_glitch=1000

■ Column two lists the verilog ports.
■ Column three lists the HSIM ports.

dump_port_prop

Dumps port properties associated with matching ports.

Syntax
dump_port_prop <file>

Description
Dumps out what port properties have been associated with the matching ports.

dump_setting

Dumps configuration command settings to HSIM log file.

Syntax
dump_setting <bool>

Description
Dumps configuration command settings to the HSIM log file. Default for
<bool> is 0.

keep_iface_file

Specifies whether to deletes nsda_cosim.sp interface file automatically after
completing simulation.

Syntax
keep_iface_file <bool>

Description
Co-simulation engine generates the nsda_cosim.sp interface file for the analog
blocks in analog view, and it serves as the interface media between Verilog
HSIMplus® Reference Manual 453
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Configuration File Commands
and HSIM simulators. Turning off this flag deletes this file automatically after
simulation is complete. Default for <bool> is 1.

map_subckt_name

Maps module name to correct subcircuit definition in SPICE instantiation.

Syntax
map_subckt_name <module_name> <subckt_name>

Description
If module name is different than the subcircuit name, this command will map it
to the correct subcircuit definition in SPICE instantiation.

map_unfound_port

Maps unfound port to the specified SPICE node name.

Syntax
map_unfound_port [-cell <pattern>] <map_node>

<unfound_port> …

Description
When writing the interface netlist file, if a subcircuit has more ports than inst
module ports, this command will map the unfound port to the specified SPICE
node name.

The search priority is in a top-down order as follow:
■ Exact cell name.
■ Match cell pattern.
■ Match unfound port list for rules without -cell argument.

report_logic_delay

Reports delayed logic output when the signal voltage crosses logic threshold
voltage.

Syntax
report_logic_delay <time>
454 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Configuration File Commands
Description
[default] 2 ns

This command reports delayed logic output when the signal voltage crosses
the logic threshold voltage, if the delayed logic output is greater than a
specified time.

report_port_resistance

Generates a report of path resistances in the hsim.csres file.

Syntax
report_port_resistance {0|1|2}

Arguments
0

no report (default)

1

Report for inout ports only.

2

Report for all interface ports.

Description
This command generates a report of path resistances in the hsim.csres file.
The report contains statistics of resistances of paths from interface nodes to
voltage sources. The resistance values can be used as a reference to set up
strength tables to map Verilog seven strength levels to resistors.

set_args

Passes the regular HSIM command line argument to HSIM.

Syntax
set_args <nsda_args> …

Description
This command passes the regular HSIM command line argument to HSIM. For
example: set_args test.spi asks HSIM to accept test.spi as an input netlist.
HSIMplus® Reference Manual 455
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Configuration File Commands
set_intr_mode

Sets the interactive mode.

Syntax
set_intr_mode <bool>

Description
By default, Ctrl-C stops simulation in the Verilog simulator’s interactive mode.
To move between the interactive modes of the Verilog simulator and HSIM, use
the following commands:
■ call nsda_intr_mode: Leaves the Verilog simulator’s interactive mode

and enters the HSIM interactive mode.
■ quit: Leaves the HSIM interactive mode and returns to the Verilog

simulator’s interactive mode.

If set_intr_mode is set to 1, Ctrl-C stops the simulation in HSIM’s interactive
mode instead of Verilog simulator's interactive mode. HSIM interactive
commands can be applied to debug the simulation. In this case, Verilog’s
interactive mode can not be entered by users. Default for <bool> is 0.

set_fall_step

Specifies the number of stop times to update signal voltages when a rising/
falling slope occurs.

Syntax
set_fall_step <positive number>

Description
This command specifies the number of stop times to update signal voltages
when a rising/falling slope occurs. Default for <positive number> is 10.

set_port_prop

Applies specified properties to matched cells or instances and their ports.

Syntax
set_port_prop [-cell <pattern>|-inst <pattern>] [-port

<pattern>] -<port property1> <value1> -<port property2>
<value2> … [-no_a2d <bool>] [-no_d2a <bool>]
456 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Configuration File Commands
Description
The port properties apply to the matched cells or instances and their ports.
■ -cell is used for cell based port properties.
■ -inst is used for instance based port properties.
■ Port names match Verilog port definitions that are case sensitive.
■ This specified value overrides any default value.
■ If more than one rule is found for a particular property, the last rule is used.
■ Without any cell or port pattern specified, the default value is used.

The options for port properties are listed below:

-alloweddv <double>

[default] HSIMALLOWEDDV

 Set HSIMALLOWEDDV at the interface node.

-logichv <double> | <output variable>

[default] HSIMLOGICHV

Set port logic1 voltage.

Its value can be a double number or an output variable which is a string
identifier starting with an alphabetic letter.

The output variable is defined with a .print statement to represent a voltage
expression. For example:

.print logichv=par('0.7 * v(vdd)')

where logichv is the output variable and '0.7 * v(vdd)' is the voltage
expression.

-logiclv <double>|<output variable>

[default] HSIMLOGICLV

Set port logic0 voltage.

Its value can be a double number or an output variable which is a string
identifier starting with an alphabetic letter.

-logicxv <double>|<output variable>

[default] HSIMLOGIGLV

Set port logic X voltage.
HSIMplus® Reference Manual 457
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Configuration File Commands
Its value can be a double number or an output variable which is a string
identifier starting with an alphabetic letter.

-vhi <double>|<output variable>

[default] HSIMVHTH if specified, otherwise use the following:
(logichv - logiclv) * 0.7

Set port logic1 threshold voltage.

Its value can be a double number or an output variable which is a string
identifier starting with an alphabetic letter.

-vlo <double> <output variable>

[default] HSIMVLTH if specified, otherwise use the following:
(logichv - logiclv) * 0.3

Set port logic0 threshold voltage.

Its value can be a double number or an output variable which is a string
identifier starting with an alphabetic letter.

-timex <time>

[default] No state X report.

Report X when the output port voltage stays between -vlo and -vhi longer
than the timex time.

-slope <time>

HSIMSLOPE

Set port rising & falling time.

-rise <time>

HSIMRISE if specified, otherwise use HSIMSLOPE

Set port rising time.

-fall <time>

HSIMFALL if specified, otherwise use HSIMSLOPE.

Set port falling time.

-delay <time>

[default] 0

Set port delay. This delays the signal output to Verilog.

Only allow positive delay.
458 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Configuration File Commands
-delay1 <time>

[default] 0

Apply port delay to the rising edge only.

-delay0 <time>

[default] 0

Apply port delay to the falling edge only.

-delay_hz2st <time>

[default] 0

Apply port delay to signal changes from a Hi-Z state to a strong state.

-rm_glitch <time>

[default] -slope value

Remove glitches within <time> after Verilog input changes.

Apply to inout port.

-strength <strength name>

[default] no strength

<strength name> is a string identifier defined in define_strength.

Apply to inout port for strength resolution with the resistor specified in
<strength name>.

-vsrc <bool>

[default] 0

Model input as a voltage source. It will be partitioned into a smaller block
and results in a faster simulation runtime.

Only inputs without Hi-Z can use this option, otherwise the simulation may
be incorrect.

-vprint <bool>

[default] 0

Insert .print statement to print voltage value.

-lprint <bool>

[default] 0

Insert .lprint statement to print voltage logic.
HSIMplus® Reference Manual 459
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Configuration File Commands
-no_a2d <bool>

[default] 0

Skips the a2d interface element insertion on the specified interface node.

-no_d2a< bool>

[default] 0

Skips the d2a interface element insertion on the specified interface node.

set_port_prop_warning

Specifies the number of warning messages allowed before simulation stops.

Syntax
set_port_prop_warning <number> [-stop]

Description
Warning messages are issued when set_prop_prop command specifies
mismatched ports. This command specifies the number of warning messages
allowed before simulation stops. If -stop option is specified, simulation stops
whenever there is any mismatched port. The default is 250 warning messages
with -stop option.

set_print_progress

Specifies the time interval to output co-simulation progress.

Syntax
set_print_progress <time>

Description
This command specifies the time interval to output co-simulation progress.

set_rise_step

Specifies the number of stop times to update signal voltages when a rising/
falling slope occurs.

Syntax
set_rise_step <positive number>
460 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Configuration File Commands
Description
This command specifies the number of stop times to update signal voltages
when a rising/falling slope occurs. Default for <positive number> is 10.

set_slope_step

Specifies the number of stop times to update signal voltages when a rising/
falling slope occurs.

Syntax
set_slope_step <positive number>

Description
This command specifies the number of stop times to update signal voltages
when a rising/falling slope occurs. Default for <positive number> is 10.

set_verbose

Sets the level of detail for output messages.

Syntax
set_verbose <level>

Description
This command sets the level of detail for output messages. <level> can be
none, low, high, or detail; default is high.

none

Suppresses any messages generated by the co-simulation interface except
error message.

low

Writes information messages generated by the co-simulation interface.

high

Writes warning messages generated by the co-simulation interface.

detail

Writes suggestion on which D-to-A input should be defined as VSRC to
speedup the simulation time and other messages.
HSIMplus® Reference Manual 461
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Configuration File Commands
set_verilog_supply1

Defines voltage level for Verilog supply1.

Syntax
set_verilog_supply1 <double>

Description
This command defines voltage level for Verilog supply1.

set_verilog_supply0

Defines voltage level for Verilog supply0.

Syntax
set_verilog_supply0 <double>

Description
This command defines voltage level for Verilog supply0.

verilog_file

Specifies Verilog source file containing Verilog module definitions for
digital_cell or digital_cell_inst.

Syntax
verilog_file <Verilog source file name>

Description
In SPICE flow, this command specifies Verilog source file containing Verilog
module definitions for digital_cell or digital_cell_inst. verilog_file can be
applied multiple time for different verilog sources.

Example 75 Configuration File Example
set_args hsim_top.sp
set_rise_step10
set_fall_step6
set_port_prop-cell top -port outport1 outport2 \

outport3 -vhi 2.64 -vlo 0.66
set_port_prop-cell top -port inport* \

-logichv 3.3 -logiclv 0 -slope 100ps
462 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Automatic Voltage Level Detection
Automatic Voltage Level Detection

Co-simulation is able to automatically identify voltage levels at interface nodes
thereby reducing the need for user intervention. The rules described in the
Voltage Setting Rules section have the following precedence: Rule 1, Rule 2,
and Rule 3.

Voltage Setting Rules

Rule 1
The set_port_prop configuration command provides the flexibility to over write
both default and automatically detected voltages.

Rule 2
Search through channel connected voltage sources. The voltage levels of the
voltage sources will be applied to the interface nodes. Warning messages are
given if there is any conflict between detected voltage sources and
configuration commands. By default, Warning messages are suppressed. They
can be turned on using the auto_vsrc_warning configuration command. A
Warning message is given if the interface node is not connected to any voltage
source and HSIMVDD is applied.

Rule 3
HSIMVDD is used as the default voltage if Rule 1 and Rule 2 do not apply. If
any channel connected voltage source is detected with a different voltage than
HSIMVDD, a Warning message is issued and the detected voltage is applied.

Co-Simulation Interactive Mode

The co-simulation interactive commands add to the command set described in
the HSIM Simulation Reference Manual: Chapter 12, Interactive Mode
Debugging. The co-simulation interactive mode allows information to be
obtained on both interface elements and interface activity history. It also
permits watch points to be set on interface node activities to catch a specific
event in the interactive debugging mode.
HSIMplus® Reference Manual 463
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-Simulation Interactive Mode
Co-simulation interactive commands are used with HSIM>, the HSIM
interactive mode prompt. The HSIM Simulation Reference Manual: Chapter 12,
Interactive Mode Debugging provides information on how to get into the HSIM
interactive mode.

To get into HSIM interactive mode from the ncsim>, the NC-Verilog interactive
prompt, use the following command:

call nsda_intr_mode

To continue simulation in NC-Verilog, issue the command cont from the HSIM
interactive mode prompt HSIM> and simulation will continue. If you are
prompted with ncsim> after issuing the cont command at HSIM>, type run and
NC-Verilog will continue.

Note:

Currently only NC-Verilog is supported in co-simulation interactive
debugging.

Table 8 on page 464 lists the commands used in co-simulation interactive
debugging.

Table 8 Co-Simulation Interactive Mode Commands

Command Function

csli List Interface Nodes

csh Print Global Interface History in Time

csnh Print Interface Node History by Node Name

csinh Print Interface Node History by Node Index

csnph Set the Number of Entries Printed by csnh and csinh

csnw Set Watchpoint to Interface Node by Node Name

csinw Set Watchpoint to Interface Node by Node Index

csdnw Delete Watchpoint by Node Name

csdinw Delete Watchpoint by Node Index
464 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-Simulation Interactive Mode
List Interface Nodes

csli
csli <pattern> <-a2d|-d2a|-biput>

csli lists all co-simulation interface nodes if no option is specified. A pattern can
be used to search for certain names. You can choose to list a certain type of
interface node by specifying -a2d, -d2a or -biput.

A typical result of csli command is shown in the following example. Note that
<=> denotes bi-directional ports:

Table 9 List Interface Nodes: csli Syntax Descriptions

Parameter Description

pattern Pattern used to search for certain interface node names.
Pattern matching is based on the Tool Command Language
(TCL) API.

-a2d Lists only a2d (HSIM to Verilog) interface nodes.

-d2a Lists only d2a (Verilog to HSIM) interface nodes.

-biput Lists only bi-directional interface nodes.

Table 10 Example

HSIM > csli Prints all interface nodes.

HSIM > csli *addr* -d2a Prints d2a interface nodes with names matching
the pattern *addr*.
HSIMplus® Reference Manual 465
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-Simulation Interactive Mode
HSIM > csli
cosim interface nodes:

id type node

7 <=>a2d b[3]
6 <=>a2d db[2]
5 <=>a2d db[1]
4 <=>a2d db[0]
10 d2a pch2
12 d2a rd2
15 d2a wr2
7 <=>d2a db[3]
3 d2a addr[2]
6 <=>d2a db[2]
2 d2a addr[1]
5 <=>d2a db[1]
1 d2a addr[0]
4 <=>d2a db[0]
8 d2a en2

Note:

In this example, the bi-directional ports have both a2d and d2a interface
nodes: 7 <=>a2d db[3] and 7 <=>d2a db[3].

Print Global Interface History in Time

csh
csh <number of entries (default is 10)>

csh prints the global interface activity history in chronological order. If no
argument is specified, csh prints the maximum number of entries available up
to a maximum of 10 entries. If the number of entries is specified, csh prints up
to the specified number of entires. The maximum number of global history
entries is set to 10000 by default and can be changed by the max_history
command in co-simulation configuration file as follows:

max_history <max # of global history entires>

Table 11 Example

HSIM > csh Prints 10 global interface activity history entries.
466 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-Simulation Interactive Mode
Print Interface Node History

csnh, csinh
csnh <name>
csinh <id>

csnh and csinh print the activity of a specified interface node if available.
Entries for the specified node stored in the history buffer are printed in
chronological order. Both a2d and d2a history will be printed if available. The
maximum number of entries printed each time by csnh and csinh can be set by
the command csnph. The default is 10.

The id corresponds to the id field in the output of the csli command. This id can
also be used in other HSIM interactive commands.

Set the Number of Entries Printed By csnh and csinh

csnph
csnph <number of entries>

csnph reports the current setting if no argument is given. If an argument is
specified, the number of entries to be printed by csnh and csinh commands are
set. The number is limited between max_history and 0.

HSIM > csh 20 Prints 20 global interface activity history entries.

Table 12 Example

HSIM > csnh db[3] Prints activity history of interface node on db[3].

HSIM > csinh 10 Prints activity history of interface node with index
10.

Table 13 Example

HSIM > csnph Prints current csnph setting.

Table 11 Example
HSIMplus® Reference Manual 467
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-Simulation Interactive Mode
Set Watchpoint to Interface Node

csnw, csinw
csnw <name> <-a2d|-d2a|-hz>
csinw <id> <-a2d|-d2a|-hz>

csnw and csinw set a watch point to the specified interface node. If no
additional option is given, any activity on the interface node will trigger the
watch point and you will enter the HSIM> prompt. Use -a2d|-d2a|-hz to catch a
specific type of interface activity. If no argument is given to csnw and csinw, a
list of current watch points is printed. Previous watch point settings are
overridden by the new setting.

HSIM > csnph 20 Sets the max number of entries to be printed in
each csnh and csinh call to 20.

Table 14 Set watch point to interface node: csnw csinw Syntax Descriptions

Parameter Description

name Interface node name to which the watchpoint is set.

id Interface node id to which the watchpoint is set.

-a2d Watch for a2d (HSIM to Verilog) activity only.

-d2a Watch for d2a (Verilog to HSIM) activity only.

-hz Watch for Hi-Z event only.

Table 15 Example

HSIM > csnw Prints the list of currently set watchpoints.

HSIM > csnw addr[2] Sets watchpoint on interface node addr[2].

HSIM > csinw 5 -hz Sets watchpoint on interface node with id 5 to
watch for high-z events.

Table 13 Example
468 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Verilog System Tasks for Co-Simulation
Delete Watchpoint

csdnw and csdinw delete the watchpoint specified by name or id, or delete all
watchpoints if -a or -all option is used. If no argument is given, csdnw and
csdinw print the list of currently set watchpoints.

csdnw, csdinw
csdnw <name|-a|-all>
csdinw <id|-a|-all>

Verilog System Tasks for Co-Simulation

The following system tasks are available for interactions between Verilog and
SPICE. They are incorporated into Verilog source code to pass data to or
retrieve data from analog blocks. System tasks should be put into the initial
block of a Verilog module.

$nsda_a2d_node (net, “SPICE node name”)

Creates an A-to-D interface element between the Verilog net and SPICE
node. This system task behaves like a continuous assignment from a
SPICE internal node to the Verilog net.

$nsda_add_cap (net, variable)

This system task adds capacitance to the SPICE node connecting to the
interface net. It requires two arguments, one Verilog net and one Verilog
variable, constant, or parameter of real type. The Verilog net has to be an

HSIM > csnw db[0] -d2a Sets watchpoint on d2a part of interface node
db[0].

Table 16 Example

HSIM > csdinw Prints the list of currently set watchpoints.

HSIM > csdnw db[1] Deletes the watchpoint on db[1].

HSIM > csdinw 4 Deletes the watchpoint on node with id 4.

Table 15 Example
HSIMplus® Reference Manual 469
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Verilog System Tasks for Co-Simulation
interface connecting to a SPICE node. The second argument specifies
capacitance in Farad and represents the lumped sum capacitance of
Verilog side components connecting to the SPICE node.

$nsda_d2a_node(net, “SPICE node name”)

Creates a D-to-A interface element between the Verilog net and SPICE
node. This allows Verilog to connect the net directly to a SPICE internal
node, instead of going through port mapping. For example,

• initial $nsda_d2a_node (test, “xi1.xi2.sync”);

• where test is a Verilog net in the module containing this system task and
xi1.xi2.sync is the hierarchical path name to identify a SPICE node.

$nsda_get_volt (net, variable)

Requires two arguments, one Verilog net and one Verilog variable of real
type. The Verilog net has to be an interface connecting to a SPICE node.
This system task retrieves the analog voltage of the SPICE node at current
time and assigns the voltage to the variable.

$nsda_inout_node (net, "SPICE node name")

Creates one D-to-A interface element and one A-to-D interface element
between the Verilog net and SPICE node. This is equivalent to one
$nsda_d2a_node() and one $nsda_a2d_node() combined.

$nsda_module()

Designates the current module to be partitioned into an SPICE subcircuit.
The module body should contain nothing but only one initial block of this
system task.

$nsda_save_waveform(obj1 [, level1], obj2 [, level2], ...)

Allows Verilog object waveforms to be saved to the HSIM waveform file. The
Verilog objects can be net, register, net bit, register bit, and module
instance. The optional level argument is valid only for module instance
objects and specifies all nets under the design hierarchy level. Its default
value is 1. A 0 level means full hierarchy of the given instance.

$nsda_set_volt (net, variable)

Requires two arguments, one Verilog net and one Verilog variable,
constant, or parameter of real type. The Verilog net has to be an interface
connecting to a SPICE node. This system task assigns the value of the
second argument to the SPICE node as an analog voltage at current time.
470 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-Simulation Setup Guidelines
Co-Simulation Setup Guidelines

There are several areas that require special attention during co-simulation
setup in order to help simulation performance and avoid common mistakes.

Map Correct Port Voltages

This is especially true for logicxv: Verilog assigns logic X value to the nets
which are not initialized. For input ports from Verilog to HSIM, HSIM takes port
voltages for DC initialization and simulation. It is important to map a correct
analog voltage for logic X value at input ports. Some circuits require logic X to
have the same analog voltage as logic0, while some circuits require it to be the
middle voltage between logic1 and 0.

Define Clear Port Direction

If a port direction is known to be unidirectional for the SPICE block, its
corresponding co-simulation view Verilog module should clearly define an input
or output port rather than an inout port. This will reduce the number of interface
elements and improve simulation performance.

Set Input Ports As Voltage Sources If Possible

If the input from Verilog to HSIM will never become HiZ, this input can be
treated as a voltage source to the SPICE block. This will improve HSIM
simulation. Use the -vsrc option of set_port_prop configuration command to set
ports as voltage sources.

Define SPICE Netlist Bus Notation

Usually, Verilog defines vector nets at ports. The SPICE netlist only has bit
level port definition. A bus notation is required to map each individual bit level
port back to Verilog vector ports. The default bus notation for SPICE netlist is
square brackets []. Other bus notations can be set by using
HSIMBUSDELIMITER command in the SPICE netlist as shown in the following
example:

.param HSIMBUSDELIMITER=<>

.param HSIMBUSDELIMITER=_
HSIMplus® Reference Manual 471
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Partitioning Guidelines
Handle Bi-Directional Ports

If the analog partition presents Hi-Z states to interface ports, use .param
HSIMHZ=1 in the SPICE deck.

If strength fighting occurs at bi-directional interface ports, use the -strength
option for set_port_prop and define_strength to map verilog strengths to the
proper resistance values.

Partitioning Guidelines

Partition Boundary with Clear Digital Behavior

In co-simulation, digital and analog signals are presented on two sides of a
partition boundary. In order to reduce the loss of accuracy and to maintain
correct functionality, the boundary signals should have clear digital behavior
and should not be voltage sensitive.

Avoid Partitioning at Timing Sensitive Signals

The signal conversion from analog to digital depends on high and low threshold
voltages. If the circuit design is timing sensitive at the interface signals,
functionality errors may occur due to timing shift by a slight change in threshold
voltages. There should be certain timing error margin for the interface signals.
Also, the timing representation in Verilog may not match the exact timing in
SPICE. It is recommended not to partition at timing sensitive signals.

Avoid Reach-in Signals in Analog Partitions

Verilog elaboration will fail when the Verilog netlist contains a reach-in signal
partitioned into an analog partition whose internal objects are not visible to
Verilog elaborator.

Reach-in signals can be replaced with a new Verilog net using either of the
following system tasks; depending on the direction of the original reach-in
signal.

$nsda_a2d_node()
$nsda_d2a_node(),
472 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Strength Table Setup Guidelines
The system task associates the new Verilog net to the SPICE node that is
equivalent to the original reach-in signal.

Avoid Partitioning at Bi-directional Signals Involved Strength
Fighting and Pass Switches

Bi-directional interface signals are supported. However, the signal value set by
VPI at one terminal of a pass switch (the primitive gate tranif0 and tranif1)
cannot be propagated to the other end. A Verilog n-MOSFET gate is added in
between the pass switch and the interface signal to allow signal value passing
through the pass switch. If the bi-directional interface signals involve strength
fighting, the final signal value is resolved by HSIM. A resistor is added to
incorporate the contribution of the digital signal in resolving the final value.
Special attention is required to map the resistance value, specified by
set_port_prop configuration command, to its corresponding digital strength.

Avoid Fine Grain Partitioning

Fine granularity partitioning creates many small analog and digital blocks and
introduces many interface signals which decrease co-simulation performance.
Frequent and unnecessary analog/digital signal conversion may also introduce
functionality errors.

Strength Table Setup Guidelines

Multiple drivers can drive the same net using different values. The final value of
the net depends on the strengths of the drivers. Strength fighting may occur at
bi-directional nets or inout ports of digital/analog partitions. Verilog defines
seven strength levels and rules to resolve strength fights. HSIM models Verilog
strength as a resistor. The Verilog signal input is applied through the resistor
and HSIM resolves both Verilog and SPICE contributions to obtain the final
values of the bi-directional nets.

A strength table defines a set of resistance strength values that are mapped to
Verilog seven strength levels for use in strength resolution at inout ports. If
Verilog-side signals always win during strength fighting or there is no strength
fighting at inout ports, it is not necessary to introduce strength resistors.
HSIMplus® Reference Manual 473
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Strength Table Setup Guidelines
The define_strength configuration command specifies the resistances of
strength resistors to map to the Verilog seven strength levels. The syntax is
shown in the following example.

define_strength strength_tbl -supply 10 -strong 100 \
-pull 1000 -large 10000 -weak 100000 \
-medium 1000000 -small 10000000

The resistance presents a Verilog strength relative to a lumped sum SPICE
impedance at the bi-directional net. The SPICE impedance depends on the
transistor model, technology, and process used in the design. Therefore, a
default strength table will not satisfy the requirement because the relative
resistances are both design-dependent and port-dependent.

Data flow direction must be available in order to select proper resistances. If
the Verilog-side signal wins the strength fight, the strength resistor’s resistance
must be significantly smaller than SPICE-side impedance. Conversely, if the
SPICE-side signal wins the strength fight, the resistance of the strength resistor
must be significantly larger than the SPICE-side impedance. The following two
examples show how this works:

Example 1
Assume the following for this example:
■ Strength fighting occurs at port Y
■ Simulation time is 10 ns
■ The Verilog-side presents a weak logic0
■ The SPICE-side has 3V and logic1 before strength resolution
■ Data flows from the SPICE- to the Verilog-side at the 10 ns mark indicating

that the SPICE-side driving strength is stronger.

In this example, the final value at port Y should be logic1.

If the impedance at the SPICE-side is 1000 Ohms, then the proper resistance
of the strength resistor can be 10000 Ohms; in which case HSIM does the
following:
■ Resolves that the voltage at port Y to be 2.8V
■ Sets port Y to logic1

In this case, the weak Verilog strength is mapped to a 1000 Ohm strength
resistor.
474 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-simulation with VCS
Example 2
■ Later, at simulation time 20 ns
■ The Verilog-side presents a strong logic0 at port Y
■ SPICE-side voltage is 3V with a driving impedance of 1000 Ohms before

strength resolution
■ Data flows from the Verilog- to SPICE-side
■ The final value at port Y should be logic0

The proper resistance of the strength resistor may be 100 Ohms for HSIM to
resolve the strength fight and produce a final value of 0.5V and a logic0.
Therefore, strong Verilog strength is mapped to a 100 Ohm strength resistor.

The above two examples show why it is important to know the data flow
direction in order to select proper resistance values. Designers specify strength
resolution as follows:
■ Full Verilog netlist: Data flow direction is specified by setting different verilog

strength levels that drive the same net.
■ Full SPICE netlist: Data flow direction is determined by different size

transistors connecting to the same net.
■ Co-Simulation netlist: Data flow information is not available. Signal strength

tables are constructed from information provided by designers to determine
data flow directions.

The report_port_resistance configuration command creates a report that
details the SPICE-side resistance or impedance from interface nodes to
voltage sources. Strength tables can be constructed from the data flow
directions in a circuit design and the SPICE-side path resistance.

Note:

The resistance difference between two consecutive Verilog strength levels
can be one (1) order of magnitude such that if 100 Ohms is described a
strong level then the pull level can be 1,000 Ohms.

Co-simulation with VCS

HSIM-VCS co-simulation provides a simulation solution in which HSIM uses
the Verilog Procedural Interface (VPI) or Programming Language Interface
(PLI) 2.0 to interact between VCS and HSIM. During the simulation, VCS
functions as the digital simulator and HSIM functions as the analog simulator.
HSIMplus® Reference Manual 475
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-simulation with VCS
The signal interactions between the two simulators pass through the analog-to-
digital and digital-to-analog interface elements. HSIM inserts the interface
elements after you manually partition the design.

The co-simulation flow supports two verification methodologies::
■ Verilog on top with some lower-level instances in SPICE
■ SPICE on top with some lower-level instances in Verilog

For accurate simulation results and performance, the following basic guidelines
are recommended for co-simulation:
■ Avoid partitioning the design into numerous small analog and digital blocks.
■ If possible, specify SPICE ports as input or output to reduce the number of

interface elements for better performance.
■ Avoid partitioning the digital and analog boundary at timing or voltage

sensitive ports.

HSIM-VCS Co-simulation Usage Flow

For a graphical representation of the HSIM-VCS co-simulation usage flow, see
Figure 1.
476 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-simulation with VCS
Figure 76 Figure 1: HSIM-VCS Co-simulation

Setting up System Environment Variables for Co-simulation

Before running the co-simulation, the system must first be set up by following
these steps:

1. Follow standard HSIM installation and setup described in the Synopsys
Installation Guide.

2. Set the VCS executable path:

setenv VCS_HOME /path/to/vcs_<version>
set path = ($VCS_HOME/bin $path)
HSIMplus® Reference Manual 477
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-simulation with VCS
<version> is the co-simulation qualified version of VCS. If you are
uncertain as to the qualified version of VCS, contact your Application
Consultant for assistance.

3. Add the directory containing the libvcshsim.so file, which is the HSIMplus
installation directory, to LD_LIBRARY_PATH. This is the VPI shared library
and is required for the co-simulation. This library is platform-dependent. See
Platform Support for HSIM/VCS Co-Simulation on page 484.

Running the Designs with Co-simulation

The VPI-based HSIM-VCS co-simulation supports two verification
methodologies:
■ Verilog as the top instance
■ SPICE as the top instance

The steps (and examples) for these two flows are described in the following
sections.

Co-Simulation with Verilog as the Top Instance
To run co-simulation with Verilog as the top-level instance:

1. Create a co-simulation configuration file to specify the SPICE netlist with the
model files, power supply, and print nodes used by the HSIM simulation.
Use the analog_cell command to specify the block(s) to be replaced by
the sub-circuit(s) and simulated by HSIM.

set_args <netlist file> [other HSIM options]
analog_cell <Verilog cell replaced by sub-circuit>

2. Use VCS to compile the Verilog netlists. The co-simulation configuration file
is specified by adding the option “-ad_hsim=<cosim_config_file>”:

% vcs +vpi –ad_hsim=<cosim_config_file> -load
libvcshsim.so:cs_vpi_startup +cli+3 [verilog files and other
vcs options]

Note:

The vcs compile option +cli+3 is required for the co-simulation.
478 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-simulation with VCS
Use the -full64 option of vcs to compile and simulate designs on a
64-bit machine. Make sure your LD_LIBRARY_PATH is pointing to the
path of 64-bit libvcshsim.so library, the HSIM_64 environment
variable for standalone HSIM does not have effect on HSIM shared
library.

The HSIM-VCS link does not require you to manually replace the
original Verilog module content with the $nsda_module() system
task, and the compilation list of the Verilog files remains unchanged,
hence, there is less manual effort for the setup.

The HSIM configuration file hsim.ini is also read during analog netlist
parsing. HSIM options can be specified in the same way as in
standalone HSIM simulation.

3. Start co-simulation by running the simv executable generated by step 2:

% simv +nsda+<cosim configuration file> [other options]

Example 1: This Verilog-top example is located in the HSIM installation
under the tutorial directory:

tutorial/cosim/vcs_vpi_simple/verilog_top

The two (shaded) inverters, inv, are replaced by SPICE for the co-simulation.
See the following schematic:

Figure 77 Schematics for Verilog Instance at Top
HSIMplus® Reference Manual 479
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-simulation with VCS
1. Prepare a co-simulation configuration file, cosim.cfg, to specify the HSIM
netlist file and other configuration requirements. In this example, the HSIM
netlist file is test.spi which includes inv_sub.spi. In cosim.cfg, use
analog_cell to specify the Verilog instance inv to be replaced by sub-
circuit.

cosim.cfg
set_args spice/test.spi
analog_cell inv

2. Use VCS to compile the Verilog source files, using the
-ad_hsim=<cosim_config_file> option to specify the configuration
file:

% vcs +vpi -ad_hsim=cosim.cfg -load
libvcshsim.so:cs_vpi_startup +cli+3 verilog/top.v verilog/
inv.v

Note:

No change is needed on the compilation list of the Verilog files.

Use the -full64 option to compile and simulate designs on a 64-bit
machine.

The default executable file name generated by VCS compilation is
simv, to use other names, use –o <name> option during compilation.

3. Run the simv executable to start the co-simulation:

% simv +nsda+cosim.cfg

Note:

By default, HSIM generates output files in the current directory with the
prefix “hsim”. To specify other paths/names, use the HSIM command-
line option “-o <path/name>” on the set_args line in the co-
simulation configuration file.

Besides the HSIM log file, co-simulation also generates a
hsim.csintf file that contains interface node information.

The default analog waveform file is hsim.fsdb. To use other output
formats, use the HSIM parameter HSIMOUTPUT to override the
default.

The digital waveform file is generated by VCS.
480 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-simulation with VCS
Co-Simulation with SPICE as the Top Instance
The original SPICE as top instance flow can still be used, see Co-Simulation
with SPICE as the Top Instance on page 432. Unlike with third-party Verilog
simulator, the HSIM-VCS link has a simplified flow for the SPICE-top flow that
is described below:

1. In the co-simulation configuration file, use the digital_cell or
digital_cell_inst command to specify the Verilog cell(s) or
instance(s) used to replace SPICE sub-circuit blocks. Use the
verilog_file command to specify the Verilog source file(s). The top-
level Verilog cosim.v file is automatically generated during compilation by
VCS and it is no longer necessary to run hsim –cscfg
<cosim_config_file> to create it. However, this last method can still be
used if you need to manually generate the cosim.v file and modify it before
compiling it using VCS.

set_args <netlist file> [other HSIM options]
digital_cell <sub-circuit replaced by Verilog cell>

or:

digital_cell_inst <instance replaced by Verilog cell>
verilog_file <Verilog source file>

2. Use VCS with the–ad_hsim=<cosim_config_file> option to compile
the Verilog source files:

% vcs +vpi –ad_hsim=<cosim_config_file> -load
libvcshsim.so:cs_vpi_startup +cli+3 [verilog files and other
vcs options]

3. Start co-simulation by running simv generated by step 2:

% simv +nsda+<cosim_config_file>

Note:

After running the simplified flow of SPICE as top instance, a sp2cs.log file
is generated, which represents the log file generated by the hsim –cscfg
<cosim_config_file> command called by VCS to create the top-level
cosim.v file on the fly.

It is recommended to use the simplified flow if you do not need to modify the
cosim.v file.

In the simplified flow, do not include the cosim.v file in the compilation list
for VCS. VCS automatically includes cosim.v after it is generated.
HSIMplus® Reference Manual 481
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-simulation with VCS
For SPICE as top instance flow, the only difference between the simplified
flow and the standard one is the automatic generation and inclusion of the
cosim.v file.

Example 2: This SPICE-top example can be found in your HSIM installation
under the tutorial directory:

tutorial/cosim/vcs_vpi_simple/spice_top

The two shaded inverters are replaced by Verilog modules for the co-
simulation, as shown in the figure below:

Figure 78 Figure 3: Schematics for SPICE Instance at Top

1. Create a cosim.cfg file, the top-level SPICE netlist is specified on the
set_args line as spice/test.spi. The sub-circuit invd is replaced by
the Verilog module defined in Verilog source file verilog/invd.v.

cosim.cfg
set_args spice/test.spi
digital_cell invd
verilog_file verilog/invd.v

2. Compile the Verilog files with –ad_hsim=<cosim_config_file> option:

% vcs –ad_hsim=cosim.cfg +vpi -load
libvcshsim.so:cs_vpi_startup +cli+3 verilog/invd.v

3. Run co-simulation with simv:

% simv +nsda+cosim.cfg
482 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-simulation with VCS
Summary of Commands

For both of the co-simulation flows, Verilog as top instance and SPICE as top
instance, you use similar steps, the difference is in the co-simulation
configuration file, which is specified with the VCS option during compilation:

-ad_hsim=<cosim_config_file>

Additional VCS options required for HSIM-VCS VPI co-simulation are:

+vpi -load libvcshsim.so:cs_vpi_startup +cli+3

The following commands are used in co-simulation configuration file:
■ set_args on page 455
■ analog_cell on page 448
■ digital_cell on page 451
■ digital_cell_inst on page 452
■ verilog_file on page 462

Interactive Mode

All HSIM interactive mode commands are supported. See Co-Simulation
Interactive Mode on page 463 for a complete list of commands.

To invoke HSIM in interactive mode, you have three methods to choose from:
■ Specify the HSIM parameter to let HSIM stop at a certain time and show

HSIM interactive mode prompt:

.param hsimstopat=<time>

OR
■ Press CRTL-C during transient simulation. VCS prompt cli_0> appears:

cli_0> $nsda_intr_mode
HSIM>

OR
■ Add set_intr_mode 1 to the co-simulation configuration file. Press CRTL-C

to enter HSIM interactive mode.

To continue simulation in interactive mode:
HSIMplus® Reference Manual 483
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-simulation with VCS

2

4

OS5
■ At the HSIM prompt, enter cont [time]:

HSIM> cont

■ At the VCS prompt, enter the period character (.)

cli_0> .

To exit co-simulation, type quit at the command-line prompt.

Limitations

Existing limitations of HSIM VPI co-simulation still apply. Currently the following
features are not supported in HSIM VCS VPI co-simulation:
■ Donut partitioning flow
■ VCS GUI
■ Save/restore
■ VHDL

Platform Support for HSIM/VCS Co-Simulation

HSIM/VCS co-simulation supports the following platforms shared by the both of
the releases of HSIM and VCS. The table below shows the platform-dependant
path of libvcshsim to use. LD_LIBRARY_PATH (or SHLIB_PATH on HP-UX)
must be set accordingly:

Platform O/S Path

Linux Red Hat Enterprise Linux WS release 3,
32-bit

$HSIM_HOME/platform/linux

Red Hat Enterprise Linux WS release 3,
64-bit

$HSIM_HOME/platform/amd64

SuSe SUSE LINUX Enterprise Server 9
(x86_64), 32-bit

$HSIM_HOME/platform/suse3

SUSE LINUX Enterprise Server 9
(x86_64), 64-bit

$HSIM_HOME/platform/suse6

Solaris SunOS59, 32-bit $HSIM_HOME/platform/sparc
484 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
Co-Simulation with ModelSim
Co-Simulation with ModelSim

Verilog/VHDL is used with HSIM to co-simulate mixed Verilog/VHDL and
SPICE-based designs that contain both digital and analog partitions. This is
accomplished by using the Verilog/VHDL simulator to simulate the digital
netlist; while HSIM simulates the analog SPICE netlist. When complete, analog
and/or digital simulation results are available for designers to verify their
designs.

In addition to Cadence NCSIM, co-simulation with Mentor Graphics ModelSim
is now supported.

ModelSim/HSIM Integration

The libvpihsim.so co-simulation library supports ModelSim integration with
either of the following:
■ Stand-alone ModelSim
■ In the ADMS environment

In both Verilog and SPICE design partitioning flows, most co-simulation
features and limitations for NC-Verilog/VHDL are applicable to ModelSim.
Since the cell view and Verilog configurations for instance based instantiation
are not available in ModelSim, users need to modify the original Verilog source
files to add the $nsda_module() system task in order to designate analog
partitions.

Note:

save-restart is not supported in ModelSim/HSIM co-simulation.

Running ModelSim/HSIM Co-simulation with Stand-alone
ModelSim

Use the ModelSim commands shown in the following steps to run ModelSim in
a stand-alone ModelSim environment.

1. Create a design library using the following syntax. In this example, the
design library will be named work.

% vlib work

2. Compile the Verilog source code using the following syntax:
HSIMplus® Reference Manual 485
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
HSIM Features Not Supported by Co-simulation
% vlog top.v

3. Use the -pli command line option to link libvpihsim.so into ModelSim for
simulation using the following syntax. In this example, top is the name of the
top design module.

% vsim -c -pli libvpihsim.so +nsda+cosim.cfg top

To enter HSIM interactive mode from ModelSim, press "Ctrl-C" during
simulation to pause at ModelSim interactive prompt, and use the command:

% vsim(paused) nsda_intr_mode

Running ModelSim/HSIM Co-simulation Under the ADMS
Environment

Use the ADMS commands shown the following steps to run ModelSim/HSIM
co-simulation under the ADMS environment.

1. Create a design library using the following syntax. In this example, the
design library will be named work.

% valib work

2. Compile the Verilog source code using the following ModelSim syntax. In
this example, -ms invokes the ModelSim compiler:

% valog top.v -ms

3. Invoke ModelSim to run the simulation using the following syntax. In this
example, top is the name of the top design module.

% vasim top -ms -pli libvpihsim.so

Note:

The -c command line option does not work for co-simulation in batch
mode.

HSIM Features Not Supported by Co-simulation

Co-simulation is designed for transient analysis. The following HSIM features
and parameters are not supported:
■ DC Analysis
■ AC Analysis
486 HSIMplus® Reference Manual
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
HSIM Features Not Supported by Co-simulation
■ Monte Carlo Analysis
■ Parameter Sweeping Analysis
HSIMplus® Reference Manual 487
C-2009.06

Chapter 11: Verilog/VHDL/HSIM Co-Simulation
References
References

[1] NC-Verilog/VHDL is a functional verification tool from Cadence Design
Systems, Inc.

[2] Verilog-XL is functional verification tool from Cadence Design Systems, Inc.
488 HSIMplus® Reference Manual
C-2009.06

12
12Physical Visualization Manager (PVM)

Describes the Physical Visualization Manager (PVM), a graphical user interface
for generating and visualizing violation maps.

The Physical Visualization Manager (PVM) provides a graphical user interface
(GUI) for generating and visualizing violation maps from HSIMplus PWRA and
SIGRA.

PVM Installation

Installation of PVM files is completed during the HSIM installation process. For
PVM to work properly with the Cadence® Virtuoso® Layout Editor, perform the
following tasks:

1. Verify that the following directory is included in the PATH variable:

<install_path>/hsimplus<version>/bin

2. Customize the Cadence system files as necessary using the files that are
installed with PVM. These files have the following meanings:

• pvmProcEnc.il: Contains procedures in SKILL[1], responsible for
communication, and layout navigation.

• pvmBindKeys.il: Example of bind keys mapping to functions from
pvmProcEnc.il.

• hsim.drf: Contains resources for drawing violation maps.
HSIMplus® Reference Manual 489
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
PVM Installation
Installing PVM: No Existing Customized Cadence Tools

If users have not previously developed customized Cadence design tools, the
following steps are required.

1. Copy the .cdsinit file from the <install_path>/hsimplus<version>/etc/pvm
directory to the HOME directory. This will automatically load customization
files.

2. Create a library directory to be used for storing all libraries (cells, views, etc.)
for PVM.

3. Create a cds.lib file in the HOME directory. The file must contain the
following instruction:

INCLUDE <libraries dir>/cds.lib,

where <libraries dir> is the directory for the libraries described in Step 2
above. Make sure you specify full library name.

Note:

An example file can be copied from the following directory:
<install_path>/hsimplus<version>/etc/pvm.

Installing PVM: Existing Custom Cadence Tools

If an account has already been customized for Cadence tools, perform the
following steps.

1. Load pvmProcEnc.il and pvm.drf to the .cdsinit file from <install_path>/
hsimplus<version>/etc/pvm.

2. Perform one of the following operations:

• Copy pvmProcEnc.il from <install_path>/hsimplus<version>/etc/pvm to
the directory, which is within the Skill Search Path.

• Add <install_path>/hsimplus<version>/etc/pvm directory to the Skill
Search Path.

3. If required, change the Bind Key file for Virtuoso Layout Editor and Cadence
Command Interpreter Window (CIW) to make quick calls of PVM functions.

4. Verify that the cds.lib file in the HOME directory contains reference to the
library path to be used with PVM.
490 HSIMplus® Reference Manual
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
Using PVM
Using PVM

To use PVM, perform the following steps:

1. Start Virtuoso using the following command:

unix% layout &

2. Start PVM using the following command:

unix% pvm &

The PVM main window appears as shown in Figure 79.

Figure 79 PVM Main Window

3. Establish a connection between PVM and Virtuoso by either of the following
methods:

• Method 1: Enter pvmStartVrtcli() in the CIW command line.

• Method 2: Press Ctrl-D if the pvmBindKeys.il file was loaded as
described in Installing PVM: No Existing Customized Cadence Tools on
page 490. Virtuoso will open the dialog window shown in Figure 80.
Next, enter the port number in the Enter port number > window.
HSIMplus® Reference Manual 491
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
Using PVM
Note:

The port number must be taken from the text box adjacent to the
CDS Virtuoso screen button located in the PVM main window.
Refer to Figure 79.

Figure 80 Port Setup Dialog Window

If a connection is successfully established the ready indicator at the
bottom of the window shown in will change to green. Refer to Figure 79.

4. Open the reliability analysis (RA) database or the PVM data file using one
of the following menu items:

• File/Open RA database: PVM opens a dialog window to select a file with
a *.radb file extension.

• File/Open: If data from a previous session was stored in the PVM's data
file, open the file using the menu item. PVM opens the RA database and
fills in all fields.

5. Set the working parameters by using the appropriate input fields, list box,
and dialogs as follows:

• Analysis: Analysis selects one of the analyses from the drop-down list.
This list contains only the analyses completed during the second phase
of simulation. If the list is empty, the *.radb file was incorrect or
corrupted.

• Lib name: Lib name specifies a library name (without a path) where the
program should store the generated layout.

• Path: the Path field is only used to create a new library. To create a new
library, click in the Create check box and a.) select an option from the
dialog box or b.) manually enter the path to the new library.

• Time: The Time list automatically populates after actions such as Open
File or Open RA database. The list contains the time points specified in
the RATCL file before reliability analysis was performed. For these time
492 HSIMplus® Reference Manual
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
Using PVM
points, <Product Name> RA either: a) Generates additional information
used to describe the violation map at a selected time point, or; b)
dynamically displays changes in a violation map.

After completing the previous steps, the main window shown in Figure 81
appears.

Figure 81 HSIMplus PVM Window

The following actions can now be accomplished:
■ Generate violation map layouts in GDSII format
■ Load GDSII files into Virtuoso database
■ Open loaded layout views
■ Analyze violation maps

Generating a GDSII File

To generate GDSII files, perform the following tasks:
HSIMplus® Reference Manual 493
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
Using PVM
■ Select an analysis type
■ Use the Settings menu items specify the following:

• Violation map parameters

• Processing mode

• Analysis value thresholds

• Violation map output filters

Action/Generate GDSII Button

■ Select Action/Generate GDSII or push the Action/Generate GDSII tool bar

button. PVM will prepare the control commands and run <Product Name> RA.
■ All diagnostics are placed into the Notes window. Current actions are

displayed in the status bar. The status indicator at the bottom of the window
blinks red. When the indicator stops blinking and turns green, a Ready
message appears and the next action can be performed.

Left & Right Buttons

When the violation map generation process is complete, PVM will load the
ASCII violation map into the analysis results table. The table contains the first
page of the violation map. To navigate through pages, use the Left and Right
buttons. If a violation map page is requested that is outside of the file
boundaries, PVM displays a notification.

Loading a GDSII File

Action/Load GDSII Button

To load a GDSII file into the Virtuoso database, select Action/Load GDSII or
push the Action/Load GDSII toolbar button.
494 HSIMplus® Reference Manual
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
Using PVM
■ PVM prepares control information and runs pipe-in pipe-out (PIPO).
■ All diagnostics are placed in the Notes window.
■ The status indicator at the bottom of the CDS Virtuoso window blinks red.

When the indicator stops blinking and turns green, a Ready message
appears and the process is complete.

To load a violation map into a new library, click on the Create screen button
and type in the full path to new library in the Path field. PVM then sends the
Virtuoso request to create a new library prior to running PIPO.

Opening a View

VM Button

To open the layout view corresponding to the generated violation map, click on
the Action/Open View toolbar button. PVM sends a request to Virtuoso and
opens a new window with the correct view.

Violation Map Analysis: Visualization

Localization and Highlighting
PVM can locate simulation results within a violation map layout.

Action/Open View Button

To find a shape corresponding to a particular IR drop result or EM analysis,
perform the following tasks:

1. Select the desired result from the list.

2. Click on the VM screen button.

PVM sends a request to Virtuoso. In the appropriate view, the requested
shape will be highlighted as shown in Figure 82.
HSIMplus® Reference Manual 495
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
Using PVM
Figure 82 PVM Highlighted View

Zoom Settings
To zoom in or out, click the Right Mouse Button and select the applicable zoom
setting from the menu shown in Figure 83.

Figure 83 Zoom Pop Up Box

If the zoom setting is for a violation map, use the upper part of the menu shown
in Figure 83. Each of these entries begin with VM.

Visibility
Violation map layout visibility can be controlled using the Visibility/Nets&Layers
options shown in Figure 84. PVM opens a dialog window consisting of two lists

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
496 HSIMplus® Reference Manual
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
Using PVM
located side-by-side in the window. Each section contains information relating
to the:
■ Net name
■ Layer name

Each of these net name lists consist of Net name list on the Left side of the
screen and a Layer name list on the Right side of the screen. The two sections
of the screen contain the following elements:
■ Net Name List (Left): A scrolling list of net names and their visibility status.
■ Layer Name List (Right): A scrolling list of layer names and their visibility

status.
■ Both Lists: Radio buttons for selecting whether to select all, none, or some

elements from the list and an is Visible check box to select whether a
specific net or layer is visible; shown in the text box immediately above the
radio button.

Figure 84 Nets and/or Layers Visibility Window

To change the visibility status of all nets or layers, click on the all or none radio
buttons. To change visibility status of a single object, do the following:

1. Click on the some radio button.

2. Perform either of the following operations:
HSIMplus® Reference Manual 497
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
Using PVM
• Select an object from either the Net name or Layer name lists. The
selected object will appear in the is Visible window.

• Double click the Left mouse button within the desired list.

3. Apply the new visibility settings to the layout by clicking on the [Apply]
screen button.

PVM then processes the layout visibility changes specified in the
set_change_visibility window. After the changes are applied, PVM displays
the changes in the analysis.

Note:

The violation levels of invisible results from invisible tables in the GDSII
cellView window will be displayed in Left and Right parenthesis
characters ().

Find Resistor
Find/Resistor Button

To find a resistor by name, select Find/Resistor in the menu or click on the
Find/Resistor tool bar button. The dialog window shown in Figure 85 appears.

Figure 85 find_resistor Pop Up Box

Type the resistor name in the Enter resistor name: text box and click on the OK
screen button. PVM sends a request to Virtuoso to find a shape with a name
property equivalent to the specified resistor.
498 HSIMplus® Reference Manual
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
Using PVM
Dynamic Visualization

HSIMplus RA generates a violation map for the maximum values calculated
during the entire simulation cycle. To view the violation map for a specific time
point, the gdstiming command must be specified in the RATCL file before
performing reliability analysis. HSIMplus RA generates time-specific layout
information for PVM’s use in performing dynamic visualization.

To view the visualization map for a specific time point, perform the following
steps:

1. Select the desired time point from the time list shown in Figure 86.

Figure 86 HSIMplus PVM Window: Time Window and View Button

2. Click on the View button. PVM sends Virtuoso a request to redraw the
visualization map for the selected time point.

3. Select max from the Time list to view a visualization map of maximum
values.

4. Press the View button.

To view the dynamic changes to VM, select all from the time list and press the
View button. Virtuoso sequentially displays violation maps for all time steps.

Original Layout: Localization & Highlighting

PVM will show the position of simulation results within the original layout by
specifying the same information as the original layout including the following:
■ Library name
■ Top cell name
■ Layers used for highlighting

View button
HSIMplus® Reference Manual 499
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
Using PVM
You use the get_orig_libcell window, shown in Figure 87, to specify this
information.

To specify the information, follow these steps:

1. To open the get_orig_libcell window, select Options/Original Layout.

Figure 87 get_orig_libcell Pop Up Box

2. To specify library and cell names, enter the appropriate information in the
Library name and Cell name fields.

3. PVM uses the layers specified in Settings/Violation Map dialog as the
default highlighting specification. To change the default layer and purpose
names:

a. Select the desired violation level from the list

b. Enter the appropriate data in the Layer and Purpose fields.

c. Click on the [Set] screen button. To set the same layer for all levels of
violation click [Set{All] screen button.

4. To highlight the result in the original layout, perform the following:
500 HSIMplus® Reference Manual
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
Using PVM
a. Select the result in the Analysis Results table shown in Figure 88.

b. Click on the [Layout] screen button.

PVM will automatically open the original cellView layout if it is not already
opened. A PVM request is sent to Virtuoso causing a flag to appear in the
location corresponding to the selected violation.

Figure 88 Analysis Results Window

Refer to Zoom Settings on page 496 for information on zooming in or out of a
layout during the localization process.

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
HSIMplus® Reference Manual 501
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
PVM Graphical User Interface (GUI)
PVM Graphical User Interface (GUI)

File Menu

The File menu is used to work with PVM files (*.ldm). containing user specified
parameters and options described in Table 17

Action Menu

The Action menu is used to perform one or all of the following actions:
■ Generate GDSII
■ Load GDSII into Virtuoso database
■ Open the layout view

Table 17 File Menu List

Action Description

Open RA Database Opens the RA database and loads the simulation results.

Open Select File Open from dialog and click on the OK screen
button. All parameters from the file will be used to populate
the appropriate fields. If a parameter is not in the file, the
corresponding field will be empty.

Save Use File Save to save files that are already open. If no files
were opened, PVM uses Save As...

Save As Use File Save As to insert working parameters into a new
PVM file. A dialog box opens to select a directory and specify
a file name. If a file extension is not specified, PVM
automatically adds the appropriate extension.

Exit Use File Exit to exit PVM
502 HSIMplus® Reference Manual
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
PVM Graphical User Interface (GUI)
Table 18 describes the operations contained in the Action menu.

Find Menu

The Find menu performs the search described in Table 19.

Settings Menu

The Settings menu options let you set GDSII generation parameters. The
Settings menu contains the following options:
■ Layers
■ Modes
■ Properties
■ Reference

Table 18 Action Menu List

Action Description

Generate GDSII Use Generate GDSII to generate a violation map layout for a
specified: RA database, analysis type, threshold value, or
other parameters.

Load GDSII Use Load GDSII to load a violation map layout into the
Virtuoso database. The violation map layout will be stored as
a layout view of the cell named <radb name>_<analysis>.

Open View Use Open View to open a pre-loaded layout view.

Make All Use Make All to perform the previous three actions. PVM will
control the sequence of operations as necessary.

Table 19 Find Menu List

Action Description

Find resistor Use Find resistor to search for a resistor's geometry by its
name. PVM sends a request to Virtuoso. If the geometry of
the required resistor is found, Virtuoso displays it as a
selected rectangle in the center of a magnified window.
HSIMplus® Reference Manual 503
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
PVM Graphical User Interface (GUI)
■ Violation Map
■ Thresholds...
■ Filtering...

Layers
The Layers menu option displays the set_layers_info dialog box, shown in
Figure 89 on page 505. You use this dialog box to specify additional
information from the original layers, including:
■ Layer height for interconnect layers
■ Effective area for vias

You can specify independent values for each layer, and set default values for
layers that have no settings.

To set values for a layer, perform the following:

1. Choose Settings > Layers to display the set_layers_info dialog box.

2. Select a layer from the layers list. The layers list contains the following
scrolling menus:

• isVia

• Name

• Value

3. Choose a layer type.

Note:

For a VIA, select the is VIA check box.

4. Fill in the appropriate field(s) and click the Change button.

All changes are immediately reflected in the layers list as shown in Figure 89.
504 HSIMplus® Reference Manual
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
PVM Graphical User Interface (GUI)
Figure 89 set_layers_info Pop Up Box

Modes
The Modes menu option displays the set_modes dialog box, shown in
Figure 90. You use this dialog box to specify the output mode:
■ Electro-Migration Analysis: Select either Current Density or Currents
■ IR Drop Analysis: Select Voltage Drop or Voltage
HSIMplus® Reference Manual 505
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
PVM Graphical User Interface (GUI)
Figure 90 set_modes Pop Up Box

Properties
The Properties menu option displays the set_properties dialog box, shown in
Figure 91. You use this dialog box to specify the information to be dumped to
GDSII as shape properties:
■ Resistor Name: The unique resistor identification name.
■ Original Layer: The original layer in which the register resided.
■ Violation Value: A value obtained from appropriate analysis in accordance

with output mode. For example it may be actual voltage on some node for
IR drop analysis or current density through resistor for EM analysis.

■ Resistance: Total resistance.
■ Time: The time point when the Violation Value occurred.
■ J/Jmax: The ratio of current density to maximum current density for a

specific resistor and original layer.
■ Current: The actual current through a resistor.
506 HSIMplus® Reference Manual
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
PVM Graphical User Interface (GUI)
Figure 91 set_properties Pop Up Box

Reference
The Reference menu option displays the set_ref dialog box, shown in
Figure 92. You use this dialog box to specify the referenced library and cell
names. These names are needed for overlapping a violation map over the
original layout as follows:
■ Referenced Library name: Library name in the original layout.
■ Referenced Cell name: Top cell name in the original layout.

Figure 92 set_ref Pop Up Box
HSIMplus® Reference Manual 507
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
PVM Graphical User Interface (GUI)
Violation Map
This Violation Map menu option displays the set_vm dialog box, shown in
Figure 93. You use this dialog box to specify the general parameters used to
generate a violation map.

Figure 93 set_vm Pop Up Box

The layer numbers specified in the violation map menu are used to generate a
violation map layout. Since PVM merges layer information for different cell
views within the same library, using overlapping layers may cause the
redefinition of a layers display parameters and result in confusing situations.

Caution!

Using only one layer setting for one library is recommended to avoid
misleading results.

To specify the general parameters used to generate a violation map, follow
these steps:

1. Specify whether text labels are to be used by selecting the appropriate
options by clicking on one or more of the three Generate Labels for check
boxes. The labeling criteria are described in the following bullets.

• Pads: Terminals specified in SPF file as *|P

• Pins: Terminals specified in SPF file as *|I
508 HSIMplus® Reference Manual
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
PVM Graphical User Interface (GUI)
• Printed nodes: Node names specified in the PRINTV, PRINTI or
PRINTIPAD commands

2. Coordinate units may be stated in nanometers (nm - default) or micrometers
(Tm) and tells PVM what coordinates units are used in SPF files.

3. The default resistor width is used for resistors having no width information
in the SPF files.

Note:

For EM analysis, default resistor width is not used; it is only used for
visualization purposes.

Threshold
The Threshold menu option lets you specify thresholds for various types of
analysis. All EM analyses use the set_em_threshold dialog box, shown in
Figure 94.

Figure 94 set_em_threshold Dialog Box

The EM analysis dialog box contains the following elements:
HSIMplus® Reference Manual 509
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
PVM Graphical User Interface (GUI)
■ The Default threshold value used for all layers is used for layers having no
specific value. If this value is not set, PVM uses maximum current density
as a threshold.

■ The original layers list is presented in the left-most scrolling list. The data
are extracted from resistor geometry information taken from the SFP files.

■ The Layers text box is the disabled entry field for displaying of selected
layer.

■ Layer value shows the specific threshold value.
■ The Set screen button is used to change the layer specific threshold value.
■ The Width_Value scrolling list shows the width and corresponding

thresholds for the selected layer.
■ The Add, Edit, and Del screen buttons create or modify specific threshold

widths.

Note:

Width-specific thresholds may be used only for non-VIA layers.

Setting Width-Specific Thresholds To set width-specific thresholds, values
for the layer’s upper threshold current and maximum width must be input. This
is accomplished using the following steps:

1. Click on the Add screen button shown in Figure 94. The
set_width_threshold dialog window shown in Figure 95 opens containing
the following fields:

• Width: Width is specified in micrometers (Tm)

• Threshold: Threshold is specified in microamperes (TA) divided by
micrometers (Tm)
510 HSIMplus® Reference Manual
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
PVM Graphical User Interface (GUI)
Figure 95 set_width_threshold Pop Up Box

2. Insert the required values in the Width and Threshold fields

3. Click on the OK screen button.

The new interval is added to the thresholds.

Example of setting width-specific thresholds
In Figure 94, the layer threshold is 400 and there are two widths with the
following thresholds: 10 - 100 and 20 - 200. In this example, layer 6 will have 3
threshold intervals as follows:
■ Widths up to 10 (um) have a 100 (uA/um) threshold
■ Widths between 10 - 20 (um) have a 200 (uA/um) threshold
■ Widths of 20 - max (um) have a 400 (uA/um) threshold

Note:

The width threshold value must be lower than the layer-specific threshold.

IR Drop Threshold The IR Drop threshold may be specified in one of three
methods:
■ Uniform distribution among 10 violation levels
■ Variable voltage distribution
■ Variable resistors distribution

To select the voltage distribution type, click on one the appropriate radio button
on the left side of the window as shown in Figure 96.
HSIMplus® Reference Manual 511
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
PVM Graphical User Interface (GUI)
Figure 96 set_vmax_thershold Pop Up Box

Note:

In the following paragraphs on uniform and variable voltage distribution, the
violation levels being discussed are represented in the ten information
windows to the right of the Variable Resistors radio button in Figure 96
(inactivated) and Figure 97 (activated). When discussing level numbers, the
information windows are counted from left to right.

Uniform Voltage Distribution Figure 96 provides an example of uniform
voltage distribution where the Upper and Lower boundaries can be specified
when generating a violation map. The result of specifying the upper and lower
boundaries in this case is:
■ All nodes with a voltage drop lower than 0.001 V will be placed into the least

violated level.
■ All nodes with voltage drop more than 0.014 V will be in the most violated

level and displayed in blinking red color.
■ All others are uniformly distributed among the other 8 violation levels.

Variable Voltage Distribution Figure 97 shows an example where the
Variable Voltage radio button is activated.
512 HSIMplus® Reference Manual
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
PVM Graphical User Interface (GUI)
Figure 97 set_vmax_thershold Pop Up Box with Variable Voltage Selected

The voltage percentage within each level of violation may be set assuming that
the maximum voltage drop is 100%.

Table 20 Voltage Drop Scale

Level Voltage Drop

10th 98mV - 100mV (Most Violated)

9th 96mV - 98mV

8th 94mV - 96mV

7th 92mV - 94mV

6th 90mV - 92mV;

5th 80mV - 90mV

4th 65mV - 80mV

3rd 50mV - 65mV

2nd 30mV - 50mV

1st 0mV - 30mV (Least Violated)
HSIMplus® Reference Manual 513
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
PVM Graphical User Interface (GUI)
Variable Resistors Distribution Figure 98 provides an example where the
Variable Resistors radio button is selected. This method uses a variable
distribution of resistors to create a violation map showing a clear picture of the
IR drop gradient. In this example, the percentage of resistors within each
violation level are set.

Figure 98 set_vmax_thershold Pop Up Box with Variable Resistors Selected

The Right arrow button (located at the right end of the levels line) is used to
quickly set values. Values for some levels can be set while requesting
recalculation of all other values.

If 5% of all resistors are placed in the 3 most violated levels, all other resistors
may be uniformly distributed among other 7 levels. To accomplish this, perform
the following steps:

1. Enter 5 in the three left-most fields

2. Enter 0 into 4th field.

3. Click on the Right screen button.

The Program will calculate and fill all of the fields as shown in Figure 98.

EM Analysis Filtering EM analyses uses the dialog window shown in
Figure 99in to perform any of the following filter types:
■ Filter by violation value
■ Filter by violation level
■ Filter by layer name
514 HSIMplus® Reference Manual
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
PVM Graphical User Interface (GUI)
Figure 99 set_em_filt Pop Up Box

Violation Value Filtering Figure 99 illustrates filtering a violation value by
performing the following steps:

1. Select the Value radio button.

2. Specify the default value for All layers.

3. Specify values for particular layers.

PVM will put only those resistors in the GDSII file that have violation values
greater than the filtered value. If a resistor belongs to a layer that has no filtered
value, PVM uses the default value for All layers. If neither a layer value nor a
default value are set, the violation map will not be filtered.

Violation Level Filtering Figure 100 illustrates violation level filtering.
HSIMplus® Reference Manual 515
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
PVM Graphical User Interface (GUI)
Figure 100 set_em_filt Pop Up Box with Levels Selected

Clicking on the Y/N screen buttons switches between Y and N to determine
how levels are to be treated. When the Levels radio button is selected, the
levels to be inserted in the GDSII file can be specified. Levels marked with a Y
or N are treated as follows:
■ Y: Placed into the GDSII file.
■ N : Filtered out.

Note:

In Figure 100, only the 6 most violated levels will be output into the
GDSII file.

Layer Name Filtering For both violation value and violation level filtering, the
original layers may also be filtered. This is accomplished by selecting the
desired layer from either the Output Layers or Do NOT output scrolling lists and
click on the Right or Left screen button.
516 HSIMplus® Reference Manual
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
Visibility Menu
To forbid outputting layer 15, click on 15 in Output Layers and click on the Right
screen button. Layer 15 will move to the Do NOT output list.

IR Drop Analysis Filtering IR Drop filtering is accomplished using a dialog
widow similar to EM filtering as shown in Figure 101 on page 517. The only
difference is that there is no layer specific filtering.

Figure 101 set_vmax Pop Up Window with Voltage Selected

Visibility Menu

The Visibility menu list descriptions are shown in Table 21.

Table 21 Visibility Menu List

Action Description

Visibility/Nets&Layers Visibility/Nets&Layers controls the visibility of a violation map
layout. Selecting this menu item opens a dialog window
consisting of two parts: net visibility and layer visibility. Either
of both net(s) and layers may be selected and should be
visible within the violation map layout. Refer to Violation Map
Analysis: Visualization on page 495 for a usage details.
HSIMplus® Reference Manual 517
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
Options Menu
Options Menu

The Options menu list descriptions are shown in Table 22.

Continuation Button

Toolbar

Figure 102 Toolbar

Table 22 Options Menu List

Item Description

Lib&Cell Lib&Cell specifies the library and top cell names of the
original layout. PVM uses these names to open a layout for
localization of violations.

Tools Tools opens a dialog window to specify the tools needed to
generate a violation map and load the map layout into a
Virtuoso database. PVM provides data fields with default
names. To use this feature, select the Continuation screen
button and use the standard dialog to find the location of
tools.

NOTE: The violation map generation tool must be called
through a wrapper. Otherwise there may be problems with
TCL/TK shared libraries.

Results Results specifies the number of violation records to be
shown in the violations list. The number must be between
10 and 10000 records.
518 HSIMplus® Reference Manual
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
Log Notes
The tool bar shown in Figure 102 contains the following screen buttons:

Log Notes

This Log Notes area of application window displays notes generated by PVM
and other programs used by PVM, including:
■ PIPO
■ Virtuoso Layout Editor

PVM notes have the following legend:
■ Inf: Information
■ Wrn: Warning
■ Err: Error

Notes from all other applications, errors, Warnings, and other essential
information from PVM are stored in the pvm.log file.

Status bar

The status bar displays the current PVM status. A status indicator in the top left
corner changes color to indicate the following status conditions:

Button Icon Description

Action/Generate GDSII

Action/Load GDSII

Action/Open View

Action/Make All

Find/Resistor

File/Exit
HSIMplus® Reference Manual 519
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
Status bar
■ Green: PVM is ready for any operation.
■ Blinking Red: PVM is busy and you should wait for the completion of

operation(s).
■ Red: Program stopped. It should be killed.

The status bar also contains textual information about the current operation.
520 HSIMplus® Reference Manual
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
References
References

[1] SKILL is a Cadence extension language.
HSIMplus® Reference Manual 521
C-2009.06

Chapter 12: Physical Visualization Manager (PVM)
References
522 HSIMplus® Reference Manual
C-2009.06

Part: 13 HSIMplus Appendices
HSIMplus® Reference Manual 523
C-2009.06

524 HSIMplus® Reference Manual
C-2009.06

14
14HSIM-Virtuoso Interface Netlist Properties

The appendix provides a list of the HSIM-Virtuoso Interface netlist properties
and provides syntax examples and explanations.

HSIM Netlist Properties

The table below describes the netlist properties associated with HSIM.

Table 23 HSIM Netlist Properties

Primitive Function Default Parameter

res netlistProcedure: HSIMCompPrim

instParameters: r tc1 tc2 scale m dtemp l w

termOrder: PLUS MINUS

propMapping:

componentName: res

namePrefix: R

presistor netlistProcedure: HSIMCompPrim

instParameters: r tc1 tc2 scale m dtemp l w

termOrder PLUS MINUS

propMapping:

componentName: presistor
HSIMplus® Reference Manual 525
C-2009.06

Appendix 14: HSIM-Virtuoso Interface Netlist Properties
HSIM Netlist Properties
namePrefix: R

cap netlistProcedure: HSIMCompPrim

instParameters: c tc1 tc2 scale m dtemp ic l w

termOrder: PLUS MINUS

propMapping: cap

componentName:

namePrefix: C

pcapacitor netlistProcedure: HSIMCompPrim

instParameters: c tc1 tc2 scale m dtemp ic l w

termOrder: PLUS MINUS

propMapping:

componentName: pcapacitor

namePrefix: C

ind netlistProcedure: HSIMCompPrim

instParameters: l tc1 tc2 scale m dtemp ic

termOrder: PLUS MINUS

propMapping:

componentName: ind

namePrefix: L

mind netlistProcedure: HSIMCompPrim

instParameters: k

Table 23 HSIM Netlist Properties (Continued)

Primitive Function Default Parameter
526 HSIMplus® Reference Manual
C-2009.06

Appendix 14: HSIM-Virtuoso Interface Netlist Properties
HSIM Netlist Properties
termOrder:

propMapping:

componentName: mind

namePrefix: K

vdc netlistProcedure: HSIMSrcPrim_vdc

instParameters: vdc

termOrder: PLUS MINUS

propMapping:

componentName: vsrc

namePrefix: V

idc netlistProcedure: HSIMSrcPrim_idc

instParameters: idc m

termOrder: PLUS MINUS

propMapping:

componentName: isrc

namePrefix: I

vpulse netlistProcedure: HSIMSrcPrim_vpulse

instParameters: v1 v2 td tr tf pw per

termOrder: PLUS MINUS

propMapping:

componentName: vsrc

Table 23 HSIM Netlist Properties (Continued)

Primitive Function Default Parameter
HSIMplus® Reference Manual 527
C-2009.06

Appendix 14: HSIM-Virtuoso Interface Netlist Properties
HSIM Netlist Properties
namePrefix: V

ipulse netlistProcedure: HSIMSrcPrim_ipulse

instParameters: i1 i2 td tr tf pw per

termOrder: PLUS MINUS

propMapping:

componentName: isrc

namePrefix: I

vpwl netlistProcedure: HSIMSrcPrim_vpwl

instParameters: rpt td tvpairs t1 v1 t2 v2 t3 v3

termOrder: PLUS MINUS

t4 v4 ... t50 v50

propMapping:

componentName: vsrc

namePrefix: V

ipwl netlistProcedure: HSIMSrcPrim_ipwl

instParameters: rpt td tvpairs t1 i1 t2 i2 t3 i3

t4 i4 ... t50 v50

termOrder: PLUS MINUS

propMapping:

componentName: isrc

namePrefix: I

Table 23 HSIM Netlist Properties (Continued)

Primitive Function Default Parameter
528 HSIMplus® Reference Manual
C-2009.06

Appendix 14: HSIM-Virtuoso Interface Netlist Properties
HSIM Netlist Properties
vsin netlistProcedure: HSIMSrcPrim_vsin

instParameters: vo va freq td theta

termOrder: PLUS MINUS

propMapping:

componentName: vsrc

namePrefix: V

isin netlistProcedure: HSIMSrcPrim_isin

instParameters: io ia freq td theta

termOrder: PLUS MINUS

propMapping:

componentName: isrc

namePrefix: I

vexp netlistProcedure: HSIMSrcPrim_vexp

instParameters: v1 v2 td1 td2 tau1 tau2

termOrder: PLUS MINUS

propMapping:

componentName: vsrc

namePrefix: V

iexp netlistProcedure: HSIMSrcPrim_iexp

instParameters: i1 i2 td1 td2 tau1 tau2

Table 23 HSIM Netlist Properties (Continued)

Primitive Function Default Parameter
HSIMplus® Reference Manual 529
C-2009.06

Appendix 14: HSIM-Virtuoso Interface Netlist Properties
HSIM Netlist Properties
termOrder: PLUS MINUS

propMapping:

componentName: isrc

namePrefix: I

vcvs netlistProcedure: HSIMCompPrimRef

instParameters: csType hegain maxv minv

delta htd xypairs

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

 x11 x12 x13 x14 x15 x16 x17 x18 x18 x20

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

y11 y12 y13 y14 y15 y16 y17 y18 y18 y20

termOrder: PLUS MINUS

refTermOrder: NC+ NC-

propMapping: nil max maxv min minv td htd

componentName: vcvs

namePrefix: E

vccs netlistProcedure: HSIMCompPrimRef

instParameters: csType hggain maxi mini delta xypairs

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x11 x12 x13 x14 x15 x16 x17 x18 x18 x20

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

Table 23 HSIM Netlist Properties (Continued)

Primitive Function Default Parameter
530 HSIMplus® Reference Manual
C-2009.06

Appendix 14: HSIM-Virtuoso Interface Netlist Properties
HSIM Netlist Properties
y11 y12 y13 y14 y15 y16 y17 y18 y18 y20

termOrder: PLUS MINUS

refTermOrder: NC+ NC-

propMapping: nil max maxi min mini

componentName: vccs

namePrefix: G

ccvs netlistProcedure: HSIMCompPrimRef

instParameters: csType hhgain vref maxv minv

delta xypairs

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x11 x12 x13 x14 x15 x16 x17 x18 x18 x20

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

y11 y12 y13 y14 y15 y16 y17 y18 y18 y20

termOrder: PLUS MINUS

propMapping: nil max maxv min minv

componentName: ccvs

namePrefix: H

cccs netlistProcedure:

instParameters: HSIMCompPrimRef

delta xypairs

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Table 23 HSIM Netlist Properties (Continued)

Primitive Function Default Parameter
HSIMplus® Reference Manual 531
C-2009.06

Appendix 14: HSIM-Virtuoso Interface Netlist Properties
HSIM Netlist Properties
x11 x12 x13 x14 x15 x16 x17 x18 x18 x20

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

y11 y12 y13 y14 y15 y16 y17 y18 y18 y20

termOrder: PLUS MINUS

propMapping: nil max maxi min mini

componentName: cccs

namePrefix: F

tline netlistProcedure: HSIMCompPrim

instParameters: z0 td len f nl

termOrder: IN+ IN- OUT+ OUT-

propMapping: nil l len

componentName: tline

namePrefix: T

diode netlistProcedure: HSIMDevPrim

instParameters: area w l pj m ic

termOrder: PLUS MINUS

propMapping:

componentName: diode

namePrefix: D

pdiode netlistProcedure: HSIMDevPrim

instParameters: area w l pj m ic

Table 23 HSIM Netlist Properties (Continued)

Primitive Function Default Parameter
532 HSIMplus® Reference Manual
C-2009.06

Appendix 14: HSIM-Virtuoso Interface Netlist Properties
HSIM Netlist Properties
termOrder: PLUS MINUS

propMapping:

componentName: diode

namePrefix: D

zener netlistProcedure: HSIMDevPrim

instParameters: area w l pj m ic

termOrder: PLUS MINUS

propMapping:

componentName: diode

namePrefix: D

schottky netlistProcedure: HSIMDevPrim

instParameters: area w l pj m ic

termOrder: PLUS MINUS

propMapping: nil vd Vd

componentName: diode

namePrefix: D

npn netlistProcedure: HSIMDevPrim

instParameters: area areab areac m

termOrder: C B E

propMapping:

componentName: npn

Table 23 HSIM Netlist Properties (Continued)

Primitive Function Default Parameter
HSIMplus® Reference Manual 533
C-2009.06

Appendix 14: HSIM-Virtuoso Interface Netlist Properties
HSIM Netlist Properties
namePrefix: Q

pnp netlistProcedure: HSIMDevPrim

instParameters: area areab areac m

termOrder: C B E

propMapping:

componentName: npn

namePrefix: Q

njfet netlistProcedure: HSIMDevPrim

instParameters: area l w m dtemp

termOrder: D G S progn(bn)

propMapping: nil vds Vds vgs Vgs vgbs Vgbs

componentName: njfet

namePrefix: J

pjfet netlistProcedure: HSIMDevPrim

instParameters: area l w m dtemp

termOrder: D G S progn(bn)

propMapping: nil vds Vds vgs Vgs vgbs Vgbs

componentName: njfet

namePrefix: J

nmos netlistProcedure: HSIMDevPrim

instParameters: l w ad as pd ps nrd nrs m geo rdc rsc delvto
dtemp

Table 23 HSIM Netlist Properties (Continued)

Primitive Function Default Parameter
534 HSIMplus® Reference Manual
C-2009.06

Appendix 14: HSIM-Virtuoso Interface Netlist Properties
HSIM Netlist Properties
termOrder: D G S progn(bn)

propMapping:

componentName: mosfet

namePrefix: M

pmos netlistProcedure: HSIMDevPrim

instParameters: l w ad as pd ps nrd nrs m geo rdc rsc delvto
dtemp

termOrder: D G S progn(bn)

propMapping:

componentName: mosfet

namePrefix: M

nmos4 netlistProcedure: HSIMDevPrim

instParameters: l w ad as pd ps nrd nrs m geo rdc rsc delvto
dtemp

termOrder: D G S B

propMapping:

componentName: mosfet

namePrefix: M

pmos4 netlistProcedure: HSIMDevPrim

instParameters: l w ad as pd ps nrd nrs m geo rdc rsc delvto
dtemp

termOrder: D G S B

propMapping:

Table 23 HSIM Netlist Properties (Continued)

Primitive Function Default Parameter
HSIMplus® Reference Manual 535
C-2009.06

Appendix 14: HSIM-Virtuoso Interface Netlist Properties
HSIM Netlist Properties
componentName: mosfet

namePrefix: M

nbsim netlistProcedure: HSIMDevPrim

instParameters: l w ad as pd ps nrd nrs m geo rdc rsc delvto
dtemp

 termOrder: D G S progn(bn)

propMapping:

componentName: mosfet

namePrefix: M

pbsim netlistProcedure: HSIMDevPrim

instParameters: l w ad as pd ps nrd nrs m geo rdc rsc delvto
dtemp

termOrder: D G S progn(bn)

propMapping:

componentName: mosfet

namePrefix: M

nbsim4 netlistProcedure: HSIMDevPrim

instParameters: l w ad as pd ps nrd nrs m geo rdc rsc delvto
dtemp

 termOrder: D G S B

propMapping:

componentName: mosfet

namePrefix: M

Table 23 HSIM Netlist Properties (Continued)

Primitive Function Default Parameter
536 HSIMplus® Reference Manual
C-2009.06

Appendix 14: HSIM-Virtuoso Interface Netlist Properties
HSIM Netlist Properties
pbsim4 netlistProcedure: HSIMDevPrim

instParameters: l w ad as pd ps nrd nrs m geo rdc rsc delvto
dtemp

termOrder: D G S B

propMapping:

componentName: mosfet

namePrefix: M

bcs netlistProcedure: HSIMCompPrim

instParameters: cur

termOrder: PLUS MINUS

propMapping:

componentName: bcs

namePrefix: G

bvs netlistProcedure: HSIMCompPrim

instParameters: vol

termOrder: PLUS MINUS

propMapping:

componentName: bvs

namePrefix: E

vcres netlistProcedure: HSIMCompPrimRef

Table 23 HSIM Netlist Properties (Continued)

Primitive Function Default Parameter
HSIMplus® Reference Manual 537
C-2009.06

Appendix 14: HSIM-Virtuoso Interface Netlist Properties
HSIM Netlist Properties
instParameters: csType transfactor delta xypairs

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x11 x12 x13 x14 x15 x16 x17 x18 x18 x20

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

y11 y12 y13 y14 y15 y16 y17 y18 y18 y20

termOrder: n+ n-

refTermOrder: in+ in-

propMapping:

componentName: vcres

namePrefix: G

vccap netlistProcedure: HSIMCompPrimRef

instParameters: csType tc1 tc2 scale delta xypairs

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x11 x12 x13 x14 x15 x16 x17 x18 x18 x20

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

y11 y12 y13 y14 y15 y16 y17 y18 y18 y20

termOrder: n+ n-

refTermOrder: in+ in-

propMapping:

componentName: vccap

namePrefix: G

Table 23 HSIM Netlist Properties (Continued)

Primitive Function Default Parameter
538 HSIMplus® Reference Manual
C-2009.06

Appendix 14: HSIM-Virtuoso Interface Netlist Properties
HSIMD Netlist Properties
HSIMD Netlist Properties

The table below describes the netlist properties associated with HSIMD.

Table 24 HSIMD Netlist Properties

Primitive Function Default Parameter

res netlistProcedure:

instParameters: r l w m scale dtemp tc1 tc2

otherParameters: model

componentName: resistor

termOrder PLUS MINUS

proMapping nil dtemp trise

namePrefix: R

termMapping (nil PLUS \:1 MINUS “(FUNCTION
minus(root(\”PLUS\”)))”)

presistor netlistProcedure:

instParameters: r l w m scale dtemp tc1 tc2

otherParameters: model

componentName: resistor

termOrder PLUS MINUS

proMapping nil dtemp trise

namePrefix: R

termMapping (nil PLUS \:1 MINUS “(FUNCTION
minus(root(\”PLUS\”)))”)

cap netlistProcedure:

instParameters: c l w m scale dtemp ic tc1 tc2
HSIMplus® Reference Manual 539
C-2009.06

Appendix 14: HSIM-Virtuoso Interface Netlist Properties
HSIMD Netlist Properties
otherParameters: model

componentName: capacitor

termOrder PLUS MINUS

proMapping nil dtemp trise

namePrefix: C

termMapping (nil PLUS \:1 MINUS “(FUNCTION
minus(root(\”PLUS\”)))”)

pcapacitor netlistProcedure:

instParameters: c l w m scale dtemp ic tc1 tc2

otherParameters: model

componentName: capacitor

termOrder PLUS MINUS

proMapping nil dtemp trise

namePrefix: C

termMapping (nil PLUS \:1 MINUS “(FUNCTION
minus(root(\”PLUS\”)))”)

ind netlistProcedure:

instParameters: l m dtemp ic

otherParameters: model

componentName: inductor

termOrder PLUS MINUS

proMapping nil dtemp trise

Table 24 HSIMD Netlist Properties (Continued)

Primitive Function Default Parameter
540 HSIMplus® Reference Manual
C-2009.06

Appendix 14: HSIM-Virtuoso Interface Netlist Properties
HSIMD Netlist Properties
namePrefix: L

termMapping (nil PLUS \:1 MINUS “(FUNCTION
minus(root(\”PLUS\”)))”)

mind netlistProcedure: hsimDMindPrim

instParameters: coupling

otherParameters: ind1 ind2

componentName: mutual_inductor

termOrder

proMapping nil coupling k

namePrefix: K

termMapping

vdc netlistProcedure: hsimDSrcPrim

instParameters: dc mag phase type

otherParameters: noisefile FNpairs F1 N1 F2 N2 F3 N3 F4 N4
F5 N5 F6 N6 F7 N7 F8 N8 F9 N9 F10 N10

componentName: vsource

termOrder PLUS MINUS

proMapping nil dc vdc mag acm phase acptype srcType

namePrefix: V

termMapping (nil PLUS \:P MINUS “(FUNCTION
minus(root(\”PLUS\”)))”)

idc netlistProcedure: hsimDSrcPrim

instParameters: dc mag phase type

Table 24 HSIMD Netlist Properties (Continued)

Primitive Function Default Parameter
HSIMplus® Reference Manual 541
C-2009.06

Appendix 14: HSIM-Virtuoso Interface Netlist Properties
HSIMD Netlist Properties
otherParameters: noisefile FNpairs F1 N1 F2 N2 F3 N3 F4 N4
F5 N5 F6 N6 F7 N7 F8 N8 F9 N9 F10 N10

componentName: isource

termOrder PLUS MINUS

proMapping nil dc idc mag acm phase acp type srcType

namePrefix: I

termMapping (nil PLUS \:sink MINUS “(FUNCTION
minus(root(\”PLUS\”)))”)

vpulse netlistProcedure: hsimDSrcPrim

instParameters: dc mag phase type va10 val1 period delay rise
fall width

otherParameters: fundname noisefile FNpairs F1 N1 F2 N2 F3
N3 F4 N4 F5 N5 F6 N6 F7 N7 F8 N8 F9 N9
F10 N10

componentName: vsource

termOrder PLUS MINUS

proMappin nil dc vdc mag acm phase acp va10 v1 val1 v2
period per delay td rise tr fall tf width pw type
srcType

namePrefix: V

termMapping (nil PLUS \:P MINUS “(FUNCTION
minus(root(\”PLUS\”)))”)

ipulse netlistProcedure: hsimDSrcPrim

instParameters: dc mag phase type va10 val1 period delay rise
fall width

Table 24 HSIMD Netlist Properties (Continued)

Primitive Function Default Parameter
542 HSIMplus® Reference Manual
C-2009.06

Appendix 14: HSIM-Virtuoso Interface Netlist Properties
HSIMD Netlist Properties
otherParameters:

componentName: isource

termOrder PLUS MINUS

proMapping (nil dc vdc mag acm phase acp va10 v1 val1
v2 period per delay td rise tr fall tf width pw
type srcType

namePrefix: I

termMapping (nil PLUS \:sink MINUS “(FUNCTION
minus(root(\”PLUS\”)))”)

vpwl netlistProcedure: hsimDPwlsrcPrim

instParameters: dc type mag phase delay offset scale stretch
pwlperiod twidth

otherParameters: tvpairs t1 v1 t2 v2 t3 v3 t4 v4 t5 v5 t6 v6 t7 v7
t8 v8 t9 v9 t10 v10 t11 v11 t12 v12 t13 v13 t14
v14 t15 v15 t16 v16 t17 v17 t18 v18 t19 v19
t20 v20 t21 v21 t22 v22 t23 v23 t24 v24 t25
v25 t26 v26 t27 v27 t28 v28 t29 v29 t30 v30
t31 v31 t32 v32 t33 v33 t34 v34 t35 v35 t36
v36 t37 v37 t38 v38 t39 v39 t40 v40 t41 v41
t42 v42 t43 v43 t44 v44 t45 435 t46 v46 t47
v47 t48 v48 t49 v49 t50 v50 noisefile FNpairs
F1 N1 F2 N2 F3 N3 F4 N4 F5 N5 F6 N6 F7 N7
F8 N8 F9 N9 F10 N10

componentName: vsource

termOrder PLUS MINUS

proMapping nil dc vdc mag acm phase acp delay td offset
vo type srcType

namePrefix: V

Table 24 HSIMD Netlist Properties (Continued)

Primitive Function Default Parameter
HSIMplus® Reference Manual 543
C-2009.06

Appendix 14: HSIM-Virtuoso Interface Netlist Properties
HSIMD Netlist Properties
termMapping (nil PLUS \:P MINUS “(FUNCTION
minus(root(\”PLUS\”)))”)

ipwl netlistProcedure: hsimDPwlsrcPrim

instParameters: dc type mag phase delay offset scale stretch
pwlperiod twidth

otherParameters: tipairs t1 i1 t2 i2 t3 i3 t4 i4 t5 i5 t6 i6 t7 i7 t8 i8
t9 i9 t10 i10 t11 i11 t12 i12 t13 i13 t14 i14 t15
i15 t16 i16 t17 i17 t18 i18 t19 i19 t20 i20 t21
i21 t22 i22 t23 i23 t24 i24 t25 i25 t26 i26 t27
i27 t28 i28 t29 i29 t30 i30 t31 i31 t32 i32 t33
i33 t34 i34 t35 i35 t36 i36 t37 i37 t38 i38 t39
i39 t40 i40 t41 i41 t42 i42 t43 i43 t44 i44 t45
435 t46 i46 t47 i47 t48 i48 t49 i49 t50 i50
noisefile FNpairs F1 N1 F2 N2 F3 N3 F4 N4
F5 N5 F6 N6 F7 N7 F8 N8 F9 N9 F10 N10

componentName: isource

termOrder PLUS MINUS

proMapping nil dc idc mag acm phase acp delay td offset
io type srcType

namePrefix: V

termMapping (nil PLUS \:sink MINUS “(FUNCTION
minus(root(\”PLUS\”)))”)

vsin netlistProcedure: hsimDSrcPrim

instParameters: dc mag phase type delay sinedc ampl
sinephase freq damp

otherParameters:

componentName: vsource

termOrder PLUS MINUS

Table 24 HSIMD Netlist Properties (Continued)

Primitive Function Default Parameter
544 HSIMplus® Reference Manual
C-2009.06

Appendix 14: HSIM-Virtuoso Interface Netlist Properties
HSIMD Netlist Properties
proMapping nil dc vdc mag acm phase acp delay td sinedc
vo amp1 damp theta type srcType

namePrefix: V

termMapping (nil PLUS \:P MINUS “(FUNCTION
minus(root(\”PLUS\”)))”)

isin netlistProcedure: hsimDSrcPrim

instParameters: dc mag phase type delay sinedc amp1
sinephase freq damp

otherParameters: fundname fundname2 noisefile FNpairs F1 N1
F2 N2 F3 N3 F4 N4 F5 N5 F6 N6 F7 N7 F8 N8
F9 N9 F10 N10

componentName: isource

termOrder PLUS MINUS

proMapping nil dc vdc mag acm phase acp delay td sinedc
vo ampl damp theta type srcType

namePrefix: I

termMapping (nil PLUS \:sink MINUS “(FUNCTION
minus(root(\”PLUS\”)))”)

vexp netlistProcedure: hsimDSrcPrim

instParameters: dc mag phase type delay val0 val1 td1 tau1
td2 tau2

otherParameters:

componentName: vsource

termOrder PLUS MINUS

Table 24 HSIMD Netlist Properties (Continued)

Primitive Function Default Parameter
HSIMplus® Reference Manual 545
C-2009.06

Appendix 14: HSIM-Virtuoso Interface Netlist Properties
HSIMD Netlist Properties
proMapping nil dc vdc mag acm phase acp delay td val0 v1
val1 v2 type srcType

namePrefix: V

termMapping (nil PLUS \:P MINUS “(FUNCTION
minus(root(\”PLUS\”)))”)

ixep netlistProcedure: hsimDSrcPrim

instParameters: dc mag phase type delay val0 val1 td1 tau1
td2 tau2

otherParameters:

componentName: isource

termOrder PLUS MINUS

proMapping nil dc vdc mag acm phase acp delay td val0 v1
val1 v2 type srcType

namePrefix: I

termMapping (nil PLUS \:sink MINUS “(FUNCTION
minus(root(\”PLUS\”)))”)

vcvs netlistProcedure: hsimDVCPrim

instParameters: gain

otherParameters:

componentName: vcvs

termOrder PLUS MINUS NC\+ NC\-

proMapping nil gain egain

namePrefix: E

Table 24 HSIMD Netlist Properties (Continued)

Primitive Function Default Parameter
546 HSIMplus® Reference Manual
C-2009.06

Appendix 14: HSIM-Virtuoso Interface Netlist Properties
HSIMD Netlist Properties
termMapping (nil PLUS \:sink MINUS “(FUNCTION
minus(root(\”PLUS\”)))” NC\+ “(FUNCTION
zero(root(\”PLUS\”)))” NC\- “(FUNCTION
zero(root(\”PLUS\”)))”)

vccs netlistProcedure: hsimDVCPrim

instParameters: gm m

otherParameters:

componentName: vccs

termOrder PLUS MINUS NC\+ NC\-

proMapping nil gm ggain

namePrefix: G

termMapping (nil PLUS \:sink MINUS “(FUNCTION
minus(root(\”PLUS\”)))” NC\+ “(FUNCTION
zero(root(\”PLUS\”)))” NC\- “(FUNCTION
zero(root(\”PLUS\”)))”)

ccvs netlistProcedure: hsimDCCPrim

instParameters: rm

otherParameters: vref

componentName: ccvs

termOrder PLUS MINUS

proMapping nil rm hgain probe vref

namePrefix: H

termMapping (nil PLUS \:p MINUS “(FUNCTION
minus(root(\”PLUS\”)))”)

cccs netlistProcedure: hsimDCCPrim

Table 24 HSIMD Netlist Properties (Continued)

Primitive Function Default Parameter
HSIMplus® Reference Manual 547
C-2009.06

Appendix 14: HSIM-Virtuoso Interface Netlist Properties
HSIMD Netlist Properties
instParameters: gain m

otherParameters: vref

componentName: cccs

termOrder PLUS MINUS

proMapping nil gain fgain probe vref

namePrefix: F

termMapping (nil PLUS \:sink MINUS “(FUNCTION
minus(root(\”PLUS\”)))”)

tline netlistProcedure:

instParameters: z0 td f nl vel len m

otherParameters: model

componentName: tline

termOrder IN\+ IN\- OUT\+ OUT\-

proMapping ni1 z0 zo f freq

namePrefix: T

termMapping (nil IN\+ \:t1 IN\- \:b1 OUT\+ \:t2 OUT\- \:b2)

diode netlistProcedure:

instParameters: area perim 1 w m scale trise region

otherParameters: model

componentName:

termOrder PLUS MINUS

proMapping

Table 24 HSIMD Netlist Properties (Continued)

Primitive Function Default Parameter
548 HSIMplus® Reference Manual
C-2009.06

Appendix 14: HSIM-Virtuoso Interface Netlist Properties
HSIMD Netlist Properties
namePrefix: D

termMapping (nil PLUS \:a MINUS “(FUNCTION
minus(root(\”PLUS\”)))”)

pdiode netlistProcedure:

instParameters: area perim 1 w m scale trise region

otherParameters: model

componentName:

termOrder PLUS MINUS

proMapping

namePrefix: D

termMapping (nil PLUS \:a MINUS “(FUNCTION
minus(root(\”PLUS\”)))”)

zener netlistProcedure:

instParameters: area perim 1 w m scale trise region

otherParameters: model

componentName:

termOrder PLUS MINUS

proMapping

namePrefix: D

termMapping (nil PLUS \:a MINUS “(FUNCTION
minus(root(\”PLUS\”)))”)

schottky netlistProcedure:

instParameters: area perim 1 w m scale trise region

Table 24 HSIMD Netlist Properties (Continued)

Primitive Function Default Parameter
HSIMplus® Reference Manual 549
C-2009.06

Appendix 14: HSIM-Virtuoso Interface Netlist Properties
HSIMD Netlist Properties
otherParameters: model

componentName:

termOrder PLUS MINUS

proMapping

namePrefix: D

termMapping (nil PLUS \:a MINUS “(FUNCTION
minus(root(\”PLUS\”)))”)

npn netlistProcedure:

instParameters: area m trise region

otherParameters: model

componentName:

termOrder C B E S

proMapping

namePrefix: Q

termMapping (nil C \:c B \:b E \:e S \:s)

pnp netlistProcedure:

instParameters: area m trise region

otherParameters: model

componentName:

termOrder C B E S

proMapping

namePrefix: Q

Table 24 HSIMD Netlist Properties (Continued)

Primitive Function Default Parameter
550 HSIMplus® Reference Manual
C-2009.06

Appendix 14: HSIM-Virtuoso Interface Netlist Properties
HSIMD Netlist Properties
termMapping (nil C \:c B \:b E \:e S \:s)

njfet netlistProcedure:

instParameters: area m region

otherParameters: model

componentName:

termOrder D G S B

proMapping

namePrefix: J

termMapping (nil D \:d G \:g S \:s B \:b)

pjfet netlistProcedure:

instParameters: area m region

otherParameters: model

componentName:

termOrder D G S B

proMapping

namePrefix: J

termMapping (nil D \:d G \:g S \:s B \:b)

nmos netlistProcedure:

instParameters: w l as ad ps pd nrd nrs ld ls m trise region

otherParameters: model

componentName:

Table 24 HSIMD Netlist Properties (Continued)

Primitive Function Default Parameter
HSIMplus® Reference Manual 551
C-2009.06

Appendix 14: HSIM-Virtuoso Interface Netlist Properties
HSIMD Netlist Properties
termOrder D G S B

proMapping

namePrefix: M

termMapping (nil D \:d G \:g S \:s B \:b)

pmos netlistProcedure:

instParameters: w l as ad ps pd nrd nrs ld ls m trise region

otherParameters: model

componentName:

termOrder D G S B

proMapping

namePrefix: M

termMapping (nil D \:d G \:g S \:s B \:b)

nmos4 netlistProcedure:

instParameters: w l as ad ps pd nrd nrs ld ls m trise region

otherParameters: model

componentName:

termOrder D G S B

proMapping

namePrefix: M

termMapping (nil D \:d G \:g S \:s B \:b)

pmos4 netlistProcedure:

Table 24 HSIMD Netlist Properties (Continued)

Primitive Function Default Parameter
552 HSIMplus® Reference Manual
C-2009.06

Appendix 14: HSIM-Virtuoso Interface Netlist Properties
HSIMD Netlist Properties
instParameters: w l as ad ps pd nrd nrs ld ls m trise region

otherParameters: model

componentName:

termOrder D G S B

proMapping

namePrefix: M

termMapping (nil D \:d G \:g S \:s B \:b)

nbsim netlistProcedure:

instParameters: w l as ad ps pd nrd nrs ld ls m trise region

otherParameters: model

componentName:

termOrder D G S B

proMapping

namePrefix: S

termMapping (nil D \:d G \:g S \:s B \:b)

pbsim netlistProcedure:

instParameters: w l as ad ps pd nrd nrs ld ls m trise region

otherParameters: model

componentName:

termOrder D G S B

proMapping

Table 24 HSIMD Netlist Properties (Continued)

Primitive Function Default Parameter
HSIMplus® Reference Manual 553
C-2009.06

Appendix 14: HSIM-Virtuoso Interface Netlist Properties
HSIMD Netlist Properties
namePrefix: S

termMapping (nil D \:d G \:g S \:s B \:b)

nbsim4 netlistProcedure:

instParameters: w l as ad ps pd nrd nrs ld ls m trise region

otherParameters: model

componentName:

termOrder D G S B

proMapping

namePrefix: S

termMapping (nil D \:d G \:g S \:s B \:b)

pbsim4 netlistProcedure:

instParameters: w l as ad ps pd nrd nrs ld ls m trise region

otherParameters: model

componentName:

termOrder D G S B

proMapping

namePrefix: S

termMapping (nil D \:d G \:g S \:s B \:b)

Table 24 HSIMD Netlist Properties (Continued)

Primitive Function Default Parameter
554 HSIMplus® Reference Manual
C-2009.06

15
15HSIM-Virtuoso Interface Advanced Topics

Provides information on creating an hsim/hsimD view as a stop view for the
Cadence® database traversing scheme. It details the hsim/hsimD SimInfo
requirements for providing information for the netlister from primitive cells
required by Cadence software.

Generating hsim/hsimD View and SimInfo

An hsim/hsimD view can be created as a stop view for Cadence's database
traversing scheme. hsim/hsimD view is required to indicate the stop point of
database traversing for the hsim/hsimD netlister. Cadence software requires
this name to ensure proper database traversing during netlisting. hsim/hsimD
SimInfo is required for primitive cells to provide cell information for the hsim/
hsimD netlister.

Three functions can be used to create an hsim/hsimD view and hsim/hsimD
SimInfo:

nsdCreateView(l_libnames @optional(target “hsim”)(sources nil))
nsdCreateSimInfo(l_libnames @optional(target “hsim”)(sources
nil))
nsdCreateSimInfoAndView(l_libnames @optional(target
“hsim”)(sources nil))

Note:

An optional argument in Skill function provides users the ability to either
ignore the argument or explicitly give the value of the argument to override
its default value.

The following example creates hsim view for the analogLib where the value of
the original target is hsim:

nsdCreateView(“analogLib”)
HSIMplus® Reference Manual 555
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Modifying hsim/hsimD SimInfo
The following example creates hsimD view for the libraries lib1 and lib2 that
contain the value of target that are overridden to hsimD.

nsdCreateView('(“lib1” “lib2”) “hsimD”))

Note:

The value of target can be either hsim or hsimD as described in the
following:

■ If the value is hsim, it copies from the hspiceS view if sources is not
specified.

■ If the value is hsimD, it copies from the Spectre® view if sources is not
specified.

Examples
nsdCreateView(“liba”)

Creates hsim view for liba from the HSPICE view.

nsdCreateView('(“liba” “libb”))

Creates hsim view for liba and libb from HSPICES view.

nsdCreateView(“liba” “hsimD” (“Spectre” “SpectreS” “hspiceS”))

Creates hsimD view for liba from Spectre, SpectreS, and HSPICES, with
priority in the same order in which they are listed.

nsdCreateSimInfo(“liba” “hsimD”)

Creates hsimD simInfo for liba from Spectre siminfo.

nsdCreateSimInfoAndView(“mylib”)

Creates hsim view and simInfo for mylib.

Modifying hsim/hsimD SimInfo

The Interface relies on the Component Description Format hsim/hsimD SimInfo
fields for netlisting. The Component Description Format editor is used to modify
the fields. To use this editor, launch icms from a shell prompt. In the graphic
environment, select the following in order:

Tools->CDF->Edit
556 HSIMplus® Reference Manual
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Modifying hsim/hsimD SimInfo
Cells and libraries can be browsed and edited using the editor. User's can
select from four alternatives for working with an analog component primitive:
■ Component Parameters
■ Simulation Information
■ Interpreted Labels Information
■ Other Information

After successfully installing the HSIM-Virtuoso Interface, an [hsim/hsimD]
screen button appears in the Choose Simulator field as shown in Figure 103 on
page 558.
HSIMplus® Reference Manual 557
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Modifying hsim/hsimD SimInfo
Figure 103 Edit Simulation Information Window

To edit simulation information, complete the following steps:

1. Select the [Edit] screen button under Simulation Information menu bar. The
Edit Simulation Information window is displayed as shown in Figure 104 on
page 559.

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
558 HSIMplus® Reference Manual
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Modifying hsim/hsimD SimInfo
2. Select the [hsim/hsimD] screen button in the Edit Simulation Information
Window. The hsim/hsimD simulation information will be displayed in the
form as shown in Figure 104 on page 559.

Figure 104 Edit Simulation Information Window

The form fields and their HSIM-specific descriptions are shown in Table 25
on page 560. There are several fields required for the interface, including:

• netlistProcedure

• instParameters

• componentName

• termOrder

• propMapping

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
HSIMplus® Reference Manual 559
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Modifying hsim/hsimD SimInfo
• namePrefix

3. Using the Simulator cyclic button, select HSIM.

4. For netlist to traverse the design database, the following must be set:

Table 25 Form Field Names and Descriptions

Field Name Description

netlistProcedure The HSIM-Virtuoso Interface provides a set of netlist
subroutines for hsim/ hsimD. Refer to Table 26 on page 562
for details.

otherParameters No specific meaning for HSIM.

instParameters List of parameters which will be included in the netlist file
associated with HSIM.

modelArguments No specific meaning for HSIM.

macroArguments No specific meaning for HSIM.

componentName The type of component created.

termOrder List of terminals that defines the net order for the
component. Programmable nodes are supported.

refTermOrder Reference term order. It is only used by netlist procedures
for controlled sources, i.e. HSIMCompPrimRef.

termMapping No specific meaning for HSIM.

propMapping List which defines the map of users own Component
Description Format parameter name and the name HSIM
recognizes. The fields have to be in a format as shown
below:

nil <hsim parameter name 1> <user's component
description format name 1> <hsim parameter name 2>
<user's CDF name 2> <hsim parameter name 3> <user's
CDF name 3> ...

namePrefix The prefix for the device in the netlist file.

current No specific meaning for HSIM.
560 HSIMplus® Reference Manual
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Removing hsim/hsimD SimInfo
• stopViewList

• switchViewList

In icms, select the following

• Setup

• Environment

The following features are described below:

• stopViewList: A list of cellview names that specifies the leaf cells

• switchViewLis: A list of cellview names that binds the netlist procedures
in the design hierarchy

Typical setting is as follows:

stopViewList=hsim hspiceS
switchViewList=hsim hspiceS schematic

Removing hsim/hsimD SimInfo

Commands for removing hsim/hsimD SimInfo fields from the database of
primitives are also provided. They are:

nsdRemoveSimInfo(libName @ Optional (target “hsim”))

The argument target in the procedure is optional where hsim is the default. If
another argument replaces hsim, it will be used instead.

The following command removes hsimD SimInfo from the libName library:

nsdRemoveSimInfo(“libName” “hsimD”)

The following command removes hsim SimInfo for the liba library:

nsdRemoveSimInfo(“liba”)

Netlist Procedures for Component Primitives

The netlistProcedure field defines which netlist procedure to call for the
primitive. The HSIM-Virtuoso Interface supplies the five classes of netlist
HSIMplus® Reference Manual 561
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Netlist Procedures for Component Primitives
procedures for component primitives that use fields in the hsim/hsimD SimInfo
section of each of the primitives shown in Table 26 on page 562.

Table 26 HSIM Netlist Primitives

Class Netlist Primitive Explanation

I. HSIMCompPrim For components which a device model is not
necessary; such as, resistors, capacitors, and
inductors.

II. HSIMDevPrim For components which requires a device model,
such as bjt, diode, MOSFET etc. Warning
messages are printed if no correspondent models
found in the design.

III. HSIMCompPrimRef For controlled source components, that is, vccs,
vcvs, cccs, ccvs, vcres and vccap.
562 HSIMplus® Reference Manual
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Netlist Procedures for Component Primitives
IV. HSIMSrcPrim_XXX This is a set of procedures for independent sources,
where XXX is the name of the source.

Examples:

The netlist procedure for a DC current source (idc)
is HSIMSrcComp_idc. The HSIM-Virtuoso Interface
supports the following independent sources:

HSIMSrcPrim_idc

HSIMSrcPrim_ipulse

HSIMSrcPrim_isin

HSIMSrcPrim_isffm

HSIMSrcPrim_iam

HSIMSrcPrim_iexp

HSIMSrcPrim_ipwl

HSIMSrcPrim_ipwlf

HSIMSrcPrim_vdc

HSIMSrcPrim_vpulse

HSIMSrcPrim_vsin

HSIMSrcPrim_vsffm

HSIMSrcPrim_vam

HSIMSrcPrim_vexp

HSIMSrcPrim_vpwl

HSIMSrcPrim_vpwlf

HSIMSrcPrim_vpwlz

HSIMSrcPrim (for vsource & isource)

V. HSIMSubcktCall For netlist macro primitives. The primitive is defined
as a user-supplied netlist. The namePrefix and
componentName should be set as X and sub-
circuit. The name of the correspondent macro is
defined in the CDF parameter macro of the
primitive.

Table 26 HSIM Netlist Primitives (Continued)

Class Netlist Primitive Explanation
HSIMplus® Reference Manual 563
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Netlist Procedures for Component Primitives
Note:

In Table 26 on page 562, refer to the supported component primitives and
their default parameters listed in Appendix 14, HSIM-Virtuoso Interface
Netlist Properties.

The procedure selected depends on the primitive characteristics to be netlisted
as described in the table.

HSIMD Netlist Procedures for Component Primitives

Unlike the socket interface, most primitives do not need to be assigned with a
netlist procedure, except primitives shown in Table 27 on page 564.

instParameters Field

The instParameters field is a list of parameters that are included in the netlist
with the primitive. The parameter name in the list is the Component Description
Format name used by the primitive. It is not necessarily the name recognized
by HSIM. If it is not the same name, additional information must be added to
map the unrecognized name to the one that HSIM recognizes in propMapping.
Refer to propMapping Field below.

componentName Field

The netlister refers to the componentName field for the type of component
specified.

Table 27 HSIMD Netlist Primitives

Lib Cell HSIMD Netlist Procedure

analogLib vcss, vccs hsimDVCPrim

ccvs, cccs hsimDCCPrim

dc, pulse, sin, exp hsimDSrcPrim

pwl hsimDPwlSrcPrim
564 HSIMplus® Reference Manual
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Netlist Procedures for Component Primitives
termOrder Field

The termOrder field is a list of terminals that define the terminal order of the
primitive being netlisted. Terminal names are defined in the symbol view of the
primitive.

propMapping Field

The propMapping field records the map between the Component Description
Format parameter name and the HSIM recognized name. It has the form of:

nil <hsim parameter name 1> <user's CDF name1>
<hsim parameter name 2> <user's CDF name2>
<hsim parameter name 3> <user's CDF name3>...

The netlister uses this map to translate Cadence parameters to HSIM
parameters.

namePrefix Field

The namePrefix field defines the netlist primitive prefix. HSIM uses this to
determine which component type is in the netlist file.

Setting up hsim SimInfo fields for a user defined component:
In this example, a capacitor named ucap is built. Assume that ucap has
Cadence parameter Cap, TC_1, TC_2 where the following occur:

Cap

Capacitance

TC_1

Temperature coefficient 1

TC_2

Temperature coefficient 2 ucap has two terminals: plus (+) and minus (-).

Refer to the Virtuoso Analog Design Environment user documentation for
additional component setup details.

Since the device model for a capacitor is optional in HSIM, HSIMCompPrim is
selected as the netlistProcedure. It is assumed that only c and tc_1 must be
included in the netlist therefore, instParameters are c and tc_1.
HSIMplus® Reference Manual 565
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Netlist Procedures for Component Primitives
Since ucap is a capacitor so the componentName is cap. Plus is the leading
terminal for this component hence, termOrder (Terminal Order) is Plus Minus.
Since Cap and TC_1 are not the parameter names that HSIM recognizes, a
propMapping field is required. The translation pair for the parameters are
Cap<->c and TC_1<->tc1, therefore, propMapping is nil c Cap tc1 TC_1.

Finally, this component is netlisted using namePrefix C as it is a capacitor to
HSIM. The hsim SimInfo fields for this component are shown in Table 28 on
page 566.

For hsimD, keep netlistProcedure empty since hsimD uses the default netlist
procedures provided by Cadence for primitive elements like capacitor, resistor,
etc.

namePrefix Field

A set of component primitives is supported by the interface and installed into
the default Cadence analogLib library. The installation script generates the
necessary hsim/hsimD SimInfo field for them. A detailed description of the
supported primitives is displayed in Appendix 14, HSIM-Virtuoso Interface
Netlist Properties.

Table 28 Example HSIM SimInfo Fields

netlist name hsim/hsimD SimInfo name

netlistProcedure HSIMCompPrim

instParameters c tc_1

componentName cap

termOrder Plus Minus

propMapping nil c Cap tc1 TC_1

namePrefix C
566 HSIMplus® Reference Manual
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Models, Macros, and Include Files
Models, Macros, and Include Files

Models

Device models in a design are specified in individual files and appended to the
final netlist. For hsim, the netlist procedures will search these files accordingly
in a user-defined list of model paths. For hsimD, the netlister will search the
definition of models in a user-defined list of model libraries. hsim (socket)
specifies the model paths by adding the paths where these models are located.
To set the model path, select Setup-> Model Path from the screen shown in the
HSIM-Virtuoso Interface banner menu.

Figure 105 Set Model Path Window

Using this approach, each model file can contain only one device model. The
file name uses a fixed naming convention that adds a .m to the end of the
models name.

A model n-MOSFET is named nmos.m. A model file is a plain text file that can
be edited by a common editor such as UNIX vi. To edit a model file, select the
following in order:

Setup -> Simulation Files -> Edit Model File

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
HSIMplus® Reference Manual 567
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Models, Macros, and Include Files
The file is written in native HSIM model syntax with minor modifications as
shown in the following syntax example:

*
* The comments start with an *
*
.model &1 NMOS $After '$' is an in-line component
+Level=49 $which will be dropped in the final netlist
+Tnom=27.0& $An & at the end of a line is for line continuation
+Nch=2.498+E17 & $$An & at the end of a line is for line continuation
+Tox-9E-09 $A + at the beginning of a line is
+Lint=9.36e-8 $continuation from the previous.
+Vth0= .6322 K1=.756 K2=-3.83e-2 K3=-2.612
+Dvt0= 2.812 Dvt1=0.462 Dvt2=-9.17e-2
+Nlx=3.523E-08 $The rest are omitted from this example

In this example, comments and line continuation syntax are remarked. To
avoid model name clashes in a design hierarchy during netlisting, the model
name is replaced with the special tag &1.

hsimD (Direct)

Instead of specifying the paths to where model files are located, the model
libraries to be used for designs should be specified. To specify a model library,
complete the following steps:

1. Select Setup > Model Libraries from the Banner Menu.

2. Set Model Library Window.

3. In the Model Library Window, specify the library files and the section to be
used for a design.

Macros

Macros are user-supplied sub-circuit definitions for component primitives in
socket flow. Macros are not used by the direct flow of hsimD. The netlist
procedure for these primitives are HSIMSubcktCall.

The macro definitions to be included in the final netlist. HSIMSubcktCall
gathers the name of the macro definition from the Component Description
Format parameter macro of the primitive being netlisted. The procedure
searches for the definition file in the same paths specified for model files. For
the details setting up the path, refer to n in Figure 105 on page 567.
568 HSIMplus® Reference Manual
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Models, Macros, and Include Files
Each model file can contain only one macro or sub-circuit definition. The file
name uses a fixed naming convention that adds a .s to the end of the models
name such that a model nmoscap is named nmoscap.s. A model file is plain
text file that can be edited by common editor such as vi in Solaris.

The file is written in native HSIM netlist syntax with minor modifications as
shown in Example 76. Attention is drawn to the replacement macro name with
the special tag &1. This is to avoid macro name clashes in a design hierarchy
during netlisting.

Example 76 Macro Definition
* This is an example of a macro definition
* This subcircuit is called nmoscap.s
* This macro simulates a capacitor using an nmos.
.subckt &1 PLUS MINUS B
.param w='20u' l='20u' as='5p' ad='5p' ps='15u'
+ pd='15u'
*declaration of the parameters is for parameter override.
MC0 MINUL PLUS MINUL B nch w='w' l='l' as='as'
+ ad='ad' ps='ps' pd='pd'
.ends &1
**CAUTION* The model name for devices in macro definition
*will not be manipulated
* Macro/subcircuit definition shares the same line
* continuation and comments style as model files.

Include File

The include file is only used by hsim. Apart from giving individual definitions for
models and sub-circuits, all predefined definitions can be lumped into a single
include file. Users must confirm that the name of the models and sub-circuits
are cross referenced in both the include file and design schematics. A graphical
file browser is provided to make inputting the include file list as described in
Environment Setup on page 383.

Net Name Conversion Macro

The interface attempts to keep the following user-defined names as identical as
possible in both the schematic drawing and netlist.
■ Net names
■ Instance names
■ Model names
HSIMplus® Reference Manual 569
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Assigning HSIM Parameters
In some circumstances, the names MUST be changed due to ambiguities.
These changes are referred to as name mapping. If the names are specified in
both the macro and include files, correct connection may be lost. When this
occurs, a name conversion macro is required to ensure correct name mapping.
The net to be mapped in the macro and include files must be bracketed as
shown in the following example:

[# and]

The macro then has a specific [#netname] format that forces the interface net
netname to be filtered by the name mapping procedure.

Expansion of pPar, iPar

Expansion of pPar and iPar is accomplished as follows:

pPar(x)

Refers to the value of the parameter from the parent instance of the current
instance. To ensure that the resulting netlist is well ordered, the HSIM-
Virtuoso Interface utilizes the HSIM parser parameter override mechanism
so that after checking the x parameter exists in the parent instance, x
replaces pPar(x).

iPar(x)

Is evaluated as the parameter x value of for the instance being netlisted. the
HSIM-Virtuoso Interface replaces the iPar(x) function with the value of x.

Assigning HSIM Parameters

HSIM parameters can be assigned using any of following methods:
■ Sub-circuit
■ Instance
■ To instance whose sub-circuit has been assigned with same HSIM

parameter in CDF.

Assigning HSIM Parameters for Subcircuit

Assigning HSIM parameters for a sub-circuit is accomplished through the
Component Description Format as shown in the figure below.
570 HSIMplus® Reference Manual
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Assigning HSIM Parameters
Figure 106 Component Description Format Window

To assign HSIM parameters for a subcircuit, follow these steps:

1. In CIW, select Tools -> CDF -> Edit to bring up the Edit Component CDF
window.

2. Select one of the following to specify where the HSIM parameter is to be
assigned in the same window for the target sub-circuit cell:

• Library

• Cell

3. Select the CDF Type to specify the following information:

• Effective: The change is effective for this instance only.

• User: The change will be effective for one user only.

• Base: The change will be effective for all users.

4. In the same window, select Add for component parameters. An Add CDF
Parameter window appears.

For example, if HSIMSPEED=5 is assigned for this specific sub-circuit, the
following changes should be made:

• paramType: is changed to int

• name: is changed to HSIMSPEED

• defValue: is changed to 5

5. Click [OK] or [Apply] for both windows. The netlist is displayed as follows:

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
HSIMplus® Reference Manual 571
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Assigning HSIM Parameters
.subckt[Subckt Name] <port> HSIMSPEED=5

.....

.ends

Assigning an HSIM Instance Parameter

Assigning an HSIM parameter for an instance must be done using the Virtuoso
Schematic Editor. For the example illustrated in Figure 107, the ClockTop
design in the InhConn library is used.

Figure 107 Virtuoso Schematic Editor Window

Figure 107 on page 572, shows the ClockTop design in the Virtuoso Schematic
Editor. I3 of the dflop will be assigned to the parameter described later in this
section. This is located on the LEFT of the ClockTop cell.

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
572 HSIMplus® Reference Manual
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Assigning HSIM Parameters
To assign an HSIM instance parameter, follow these steps:

1. Select I3 using the LEFT mouse button.

2. Either click the [Property] button in Equalizer shape cell or select the
following in the order shown:

Edit -> Properties -> Objects...

An Edit Object Properties window appears.

3. In the Edit Object Properties window, select Add to display the Add Property
window.

4. In the Add Property window, enter the HSIM parameter to be added.

For example, if HSIMABMOS=1 is to be added, enter the following in the
Add Property window:

• Name HSIMABMOS

• Type int

• Value 1

• [OK] or [Apply] For both Add Property and Edit Object Property windows

The netlist will be displayed as follows:

Xname <portlist> <subcktname> HSIMABMOS=1

Assigning an HSIM Parameter to an Instance with a Subcircuit
(Cell) Assigned the Same HSIM Parameter in Component
Description Format

This method is similar to the method described in Assigning an HSIM Instance
Parameter on page 572 for an instance shown above however, a parameter
does not need to be added. The parameter already exists when the Edit Object
Properties window appears. This window is shown in Figure 108.
HSIMplus® Reference Manual 573
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Naming Conventions
Figure 108 Edit Object Properties Window

The properties for I0 (nand2) in I7 (dflop) of the top cell. Its defValue of
HSIMSPEED=5, as set in Step 4 in Assigning HSIM Parameters for Subcircuit
on page 570. The value can be changed to any other value through the
instance base Edit Object Properties window.

Naming Conventions

The following naming limitations apply to nets and elements:

1. The net name can not be 0 (zero). This is to avoid ambiguity with the
nomenclature for a ground. The HSIM-Virtuoso Interface maps zero as
follows:

Net_Named_0

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
574 HSIMplus® Reference Manual
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Naming Conventions
It will not be treated as ground in HSIM. Specify the ground net using the
following SPICE command:

vxx ground_net gnd 0

2. When the first character of a net name is unacceptable to HSIM, it is
mapped to another character. For example, ’+’ is mapped to ’n’. In
Table 29 on page 575, first characters of net names are mapped to ’n’.

3. If the first character of an element name is one of those shown in Table 30
on page 575, it is automatically mapped to ’x’:

4. If the first character of a net names is an asterisk (*), it is removed.

5. If the first character of an element is an underline (_) symbol, it is
automatically mapped to x_.

Table 29 First Characters of Net Names Mapped to ‘n’

Character Definition Character Definition

+ Plus sign $ Dollar sign

, Comma . Period

(Open parenthesis) Close parenthesis

[Open bracket] Close bracket

Table 30 First Characters of Element Names Mapped to ‘x’

Character Definition Character Definition

+ Plus sign $ Dollar sign

, Comma . Period

(Open parenthesis) Close parenthesis

[Open bracket] Close bracket

< Open (left) angle bracket > Close (right) angle bracket

! Exclamation mark
HSIMplus® Reference Manual 575
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Naming Conventions
6. The characters shown in Table 31 on page 576 are not allowed in either a
net or element name. If they appear they will be mapped to ““.

7. If an element/net name has a pipe (|) or number/pound (#) character, it is
mapped to the underscore (_) character.

8. If the first character of a model name is one of those shown in Table 32 on
page 576, it is automatically mapped to ’m’:

Table 31 Characters Not Allowed in Net or Element Names Mapped to " "

Character Definition Character Definition

, Comma $ Dollar sign

(Open parenthesis) Close parenthesis

[Open bracket] Close bracket

< Open (left) angle bracket > Close (right) angle bracket

! Exclamation mark * Asterisk

. Period : Colon

Table 32 First Characters in Model Names Mapped to ‘m’

Character Definition Character Definition

+ Plus sign $ Dollar sign

, Comma . Period

(Open parenthesis) Close parenthesis

[Open bracket] Close bracket

< Open (left) angle bracket > Close (right) angle bracket

! Exclamation mark
576 HSIMplus® Reference Manual
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
HSIM-Virtuoso Interface Ocean Script Command Usage
9. If the first character of a model name is one of those shown in Table 33 on
page 577, it is automatically added as the second character of the model
name with ’m’ as the first character: for example, 1model would become
m1model.

10. All uppercase letters will be mapped to lowercase letters in the model name.

11. The characters shown in Table 34 on page 577, will be mapped to " " if they
appear in the model name.

HSIM-Virtuoso Interface Ocean Script Command Usage

The “HSIMOcean” package can be applied to all integration approaches such
as “hsim”, “hsimD”, “aanni” and “aaCosim”. To enable HISMOcean, specify the
HSIM-Virtuoso Interface initialization setup in your local .oceanrc file as
follows:

path = getShellEnvVar("NASSDA_ARTISTIF")
nsdaAAIMPkgList='("aanni")
load("$NASSDA_ARTISTIF/install/nsdaAAIMInvoker.il")

Table 33 First Characters Added as the First Character of a Model Name

Character Definition Character Definition

_ Underscore 1 ... 9 Numerals 1 through 9

0 Zero

Table 34 Model Name Characters Mapped to " "

Character Definition Character Definition

+ Plus sign ! Exclamation mark

, Comma $ Dollar sign

(Open parenthesis) Close parenthesis

[Open bracket] Close bracket

< Open (left) angle bracket > Close (right) angle bracket
HSIMplus® Reference Manual 577
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
HSIM-Virtuoso Interface Ocean Script Command Usage
 Public APIs for “HSIMOcean” package

There are seven Application Interface (API) functions available for public use:

Note:

The order of these functions in the ocean script file is important. Please
issue these API functions in the same order as they are listed below.

1. nsdOcnEnvSetup()

This function performs the following environment setup tasks:

a. checks out an AANNI license,

b. initializes the HSIM environment variables, and

c. initialize the HSIM parameters.

2. nsdOcnSetHsimParam(symName value)

This function sets user-defined values for HSIM parameters and
environment variables. All of the HSIM parameters in the existing Interface
GUI and the following HSIM environment variables are supported in this
API:

• netlistSyntax

• hsimOutputFileNamePrefix

• isHsimCaseSensitive

• hsimCommandLinePrefix

• hsimCommandOptions

• hsimUsing64Bit

• hsimCktCheck

• hsimDeviceV

If an HSIM parameter is set to a value different than its default value, then
HSIMOcean writes it out as part of the Ocean script.

3. nsdOcnCreateHostNetlist()

This function determines if host netlist exists and tries to create it if it is
missing.

4. nsdOcnCreateTopNetlist()

This function creates a top level netlist (hsim.netlist) for HSIM
according to the setup of the HSIM parameters and environment variables.
578 HSIMplus® Reference Manual
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
HSIM-Virtuoso Interface Ocean Script Command Usage
Note:

The host netlist is included in this top level netlist file

5. nsdOcnCreateNetlist()

This is a group function that consists of nsdOcnCreateHostNetlist()
and nsdOcnCreateTopNetlist(). If you want to perform both of these
functions at the same time, use nsdOcnCreateNetlist().

6. nsdOcnRunHsim()

 This function creates and executes the simulation run file, runHsim.

7. nsdOcnFinishing()

This function finishes up after simulation by checking-in the AANNI license.

Ocean Script Example

A complete example of HSIMOcean script is shown in Example 77.

Note:

The ocean script is modified from the default script generated by CDS.
Some of CDS function calls have been replaced with nsdOcn- function calls.
HSIMplus® Reference Manual 579
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
HSIM-Virtuoso Interface Ocean Script Command Usage
Example 77 HSIMOcean Script
ocnWaveformTool('wavescan)
;<<<----- Choose Host Simulator ----->>>
simulator('spectreVerilog)

;<<<----- Setup Design/Analysis/ResultsDir/etc ----->>>
design("/remote/us01home4/jeffhu/simulation/top/
spectreVerilog/configSpectreVerilog/netlist/analog/netlist")
resultsDir("/remote/us01home4/jeffhu/simulation/top/
spectreVerilog/configSpectreVerilog")
modelFile(
 '("/remote/us01home4/jeffhu/Jason/aacosim_demo/models/
spectre/pll.scs" "")
)

analysis('tran ?stop "5u")
desVar("c1" 100p)
desVar("c2" 85f)
desVar("r1" 47K)
desVar("r2" 4.7K)
desVar("wgain" 40u)
option('temp "27.0")

;<<<----- Save results ----->>>
save('v "/load")
temp(27.0)

;<<<----- Setup AANNI environment ----->>>
nsdOcnEnvSetup()

;<<<----- Setting up Hsim parameters/Env. variables ----->>>
nsdOcnSetHsimParam('hsimresultdir "/remote/us01home4/jeffhu/
simulation/top/spectreVerilog/configSpectreVerilog/psf/")
nsdOcnSetHsimParam('hostsimulator "spectreVerilog")
nsdOcnSetHsimParam('plotitemtable '(("/load" net)))
nsdOcnSetHsimParam('digitalsimulator "NC-Sim")
nsdOcnSetHsimParam('ishsimcasesensitive "no")
nsdOcnSetHsimParam('hsimoutput "psfbin")

;<<<----- Create Host/Top Netlist ----->>>
nsdOcnCreateNetlist()

;<<<----- Start simulation ----->>>
nsdOcnRunHsim()

;<<<----- Open results ----->>>
openResults("/remote/us01home4/jeffhu/simulation/top/
spectreVerilog/configSpectreVerilog/psf")
580 HSIMplus® Reference Manual
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Socket (HSIM) and Direct (HSIMD) Integration
;<<<----- Select results ----->>>
selectResult('tran)

;<<<----- Plot results ----->>>
plot(nsdGetData("/load"))

;<<<----- Finishing up ----->>>
nsdOcnFinishing()

Socket (HSIM) and Direct (HSIMD) Integration

This section describes the installation and usage of HSIM socket and HSIMD
direct integration, which are the traditional ways to integrate HSIM with
Cadence’s Virtuoso Analog Design Environment. The interface is developed on
Cadence Design Framework II 4.4.5. and has been tested on the following
versions:
■ 4.4.5
■ 4.4.6
■ 5.0.0
■ 5.1.41

Note:

Only the major elements of HSIM and HSIMD installation and usage are
described in this section. Refer to Appendix 15, HSIM-Virtuoso Interface
Advanced Topics for detailed information.

Installing Socket (HSIM) and Direct (HSIMD) Interfaces

The installation process requires that the HSIM/HSIMD Simulation Information
(SimInfo) fields be added. Site administrators are advised to make backups of
the Cadence Software hierarchy before proceeding. Customers must have the
appropriate write permissions to modify the Cadence environment.

As with the Native Netlist Integration installation, you must first obtain the AAIM
package and complete the following steps:

1. Ensure the HSIM executable and Cadence software are in the search path.

2. Set HSIM_HOME environment to the root of HSIM release tree.

3. Set the HSIM_ARTISTIF environment to the root of the AAIM release tree.
HSIMplus® Reference Manual 581
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Socket (HSIM) and Direct (HSIMD) Integration
4. Add hsim and/or hsimd into the list nsdaAAIMPkgList in .cdsinit file, as in
this example:

nsdaAAIMPkgList=’(“hsim” “hsimd” “aanni” …)

5. Create the menus directory. It can be either of the following:

• <user_home_directory>/menus

• <user_working_directory>/menus

6. Copy menus from the following to the directory created in Step 4:

For HSIM Socket:

cp <AAIM-Install-Tree-Root>/menus/hsim.menu

For hsimD Direct:

cp <AAIM-Install-Tree-Root>/menus/hsimD.menu

7. Create hsim/hsimD view and Component Description Format hsim/hsimD
SimInfo for the primitive libraries.

hsim/hsimD SimInfo is required for each primitive in order to perform design
netlisting in the HSIM-Virtuoso Interface. Refer to Modifying hsim/hsimD
SimInfo in Appendix 15, HSIM-Virtuoso Interface Advanced Topics, for
instructions on generating the information required for individual primitives.

Note:

It is recommended that the menu files and .cdsenv for hsim/hsimD can
be placed in your CDS tree. Menu files should be placed under
<CadenceDir>/etc/tools/menus and .cdsenv should be placed
under either <CadenceDir>/etc/tools/hsim or <CadenceDir>/
etc/tools/hsimD. Both files are included in the AAIM installation
package.

8. Confirm that installation is successful.

Successful installation can be confirmed through Cadence log. A log
window is displayed upon successfully registering the Interface as shown in
Figure 109.
582 HSIMplus® Reference Manual
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Socket (HSIM) and Direct (HSIMD) Integration
Figure 109 Registration Confirmation Window

Porting Existing Design

The outline for exporting existing design hierarchy to the HSIM-Virtuoso
Interface is described below. Refer to Appendix 15, HSIM-Virtuoso Interface
Advanced Topics, for detailed procedures.

To export an existing design, use the following steps:

1. Collect all primitives for the design including, but not limited to, the following
components:

• Resistors
HSIMplus® Reference Manual 583
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Socket (HSIM) and Direct (HSIMD) Integration
• MOSFETs

• BJTs

• Voltage sources (controlled)

• Current sources (controlled)

2. Verify that hsim/hsimD view exists for primitives listed above. If not, create
the view by using the nsdCreateView procedure. Refer to Generating hsim/
hsimD View and SimInfo in Appendix 15, HSIM-Virtuoso Interface
Advanced Topics for information using nsdCreateView.

Note:

Simulator views from other vendors can also be specified using the AAI
switch/stop view feature.

3. Edit the hsim/hsimD SimInfo fields for these primitives. Refer to Appendix
15, HSIM-Virtuoso Interface Advanced Topics for information on editing
hsim/hsimD SimInfo.

4. Verify the netlist.

Netlist and Simulation

For using HSIM socket and direct interface to run simulation, you must
generate a netlist from the schematic design. Data preparation procedures
need to be conducted for each primitive device to have required simInfo, such
as netlistProcedure, ready for the netlisting process.

The Interface adopts the default Cadence schema as closely as possible.
Refer to Cadence's Virtuoso Analog Design Environment user documentation
for information on the schema.

Starting the GUI and Selecting HSIM
To start the GUI, follow these steps:

1. Select the following in order as shown in Figure 110:

Tools -> Analog Environment -> Simulation

2. Select one of the following:

• hsim: as the simulator for socket integration.

• hsimD: as the simulator for direct integration.
584 HSIMplus® Reference Manual
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Socket (HSIM) and Direct (HSIMD) Integration
Figure 110 Choosing Simulation Directory Host Window

Specifying a Host Machine
The HSIM-Virtuoso Interface permits selection of a local or remote host to run
HSIM. Special attention should be used if the remote mode is selected. The
following issues must be considered when choosing to run under a remote
host:
■ The remote machine must be setup to grant permissions from the local

machine without authentication. For example: .rhosts
■ The remote machine must see an identical file hierarchy under the directory

path entered in it's Remote Directory as the local machine sees under it's
Project Directory.

Setup Environment
To display the Environment Options window, select the following in order:

Setup -> Environment

The GUIs shown in Figure 111 and Figure 112 is used to set up the Interface
environment for HSIM and HSIMD respectively.

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
HSIMplus® Reference Manual 585
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Socket (HSIM) and Direct (HSIMD) Integration
Figure 111 Environment Options Window for HSIM Socket

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
586 HSIMplus® Reference Manual
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Socket (HSIM) and Direct (HSIMD) Integration
Figure 112 Environment Options Window for HSIM Direct

Netlister Settings
For the netlister to traverse the design database correctly, it is important that
the following options be correctly set:
■ Stop View List: A list of cellview names that specify the leaf cells.
■ Switch View List: A list of cellview names that bind the netlist procedures in

the design hierarchy.

Typical HSIM socket settings include the following:

Stop View List: hsim hspiceS
Switch View List: hsim hspiceS schematic

In Figure 111, the Include/Stimulus File Syntax field setting specifies the syntax
of the include stimulus, macro, and model files. The Interface’s netlister
performs a syntax check if target simulator is chosen. Special attention should
be paid if cdsSpice is selected because the syntax check is handled by
cdsSpice and is should conform with the cdsSpice rules.

Files listed in both the Include and Stimulus files are treated equally. They are
inserted line-by-line into the final netlist and the net name macro is expanded.

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
HSIMplus® Reference Manual 587
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Socket (HSIM) and Direct (HSIMD) Integration
Refer to Appendix 15, HSIM-Virtuoso Interface Advanced Topics, Net Name
Conversion Macro on page 569.

Select the [Browse Include Files] button and a graphical file browser is
displayed as shown in Figure 113. The files to be included can be browsed and
selected from this window.

Figure 113 Selecting Include Files Window

Note:

Different result directories and output file names for multiple simulations can
be set up. They are specified in the following parts of the Environment
Options form:

■ Simulation Results directory
■ Simulation output file name fields

The Results Browser can be used to inspect the results of different
simulations. The associate netlist is also backed up in the Simulation
Results directory.

Graphically Editing Stimulus Files
Stimulus files can be graphically edited using the GUI shown in Figure 114.
Signals for Stimulus are automatically extracted when the radio button in the
Edit Stimulus File window is activated.

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
588 HSIMplus® Reference Manual
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Socket (HSIM) and Direct (HSIMD) Integration
Figure 114 Edit Stimulus File Window

To display the Setup Analog Stimuli window, select the following in order:

Setup -> Stimulus -> Edit Analog

The available signals are listed in the Graphical Stimulus editor shown in the
figure below.

Figure 115 Setup Analog Stimuli Window

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
HSIMplus® Reference Manual 589
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Socket (HSIM) and Direct (HSIMD) Integration
Stimulus functions can be changed using the cyclic button of Function. The
following Stimulus functions are not supported:
■ pwlf
■ sffm

Analysis
hsim/hsimD supports AC, DC, and Transient analysis. Selecting the desired
analysis process is accomplished by selecting the analysis type in the Virtuoso
Analog Design Environment window shown in Figure 116.

Figure 116 Choosing Analysis - Virtuoso Analog Design Environment Window

To select transient analysis, perform the following steps:

1. Navigate to the appropriate page by choosing Analysis > Choose > .

2. Click on the tran radio button.

3. Specify the simulation end time in the To field.

4. Specify the simulation time step in the By field.

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
590 HSIMplus® Reference Manual
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Socket (HSIM) and Direct (HSIMD) Integration
Design Variables
Design variables are defined in the Component Description Format parameters
through the design hierarchy. Design variables can be specified for each
simulator run. Design variables are obtained using the GUI shown in
Figure 117.

Figure 117 Virtuoso Analog Design Environment(1) Window

Perform the following steps:

1. Select Variables.

2. Copy from Cellview: Existing design variables are displayed in the Design
Variables list box.

3. Select any variable: A new pop-up window will be displayed as shown in
Figure 118.

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
HSIMplus® Reference Manual 591
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Socket (HSIM) and Direct (HSIMD) Integration
Figure 118 Editing Design Variables Window

4. Set the desired design variable values

Simulator Options
The simulator options are mostly HSPICE compatible. Setup the Interface
options using the GUI shown in Figure 119.

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
592 HSIMplus® Reference Manual
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Socket (HSIM) and Direct (HSIMD) Integration
Figure 119 Simulator Options Window

To set up options, perform the following steps:

1. Navigate to: Simulation -> Options -> Analog...; a popup form is displayed.
HSIMplus® Reference Manual 593
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Socket (HSIM) and Direct (HSIMD) Integration
2. Enter the desired values. The filled (filled or (filled-in or entered)) options are
netlisted as .option statements in the final netlist.

3. Save or load option settings using the Save State Simulator Options/Load
State option in the Session menu.

HSIM Parameters
The HSIM-Virtuoso Interface provides a large set of HSIM-specific parameters
to fine tune HSIM performance. For efficiency and user convenience, the HSIM
parameters are separated into two groups:
■ Basic HSIM Parameters contain only the most frequently used commands.
■ Advanced HSIM Parameters include the rest of the commands and are

categorized by functionality.
594 HSIMplus® Reference Manual
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Socket (HSIM) and Direct (HSIMD) Integration
Figure 120 Basic and Advanced HSIM Parameters Forms

To set up set parameters, select the following in order:

1. Navigate to: Simulation -> HSIM Parameters -> Basic; for basic HSIM
parameters or, Simulation -> HSIM Parameters -> Advanced; for advanced
HSIM parameters.

2. Enter the desired parameters The parameters are netlisted as .param
statements in the final netlist.
HSIMplus® Reference Manual 595
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Socket (HSIM) and Direct (HSIMD) Integration
The GUI in Figure 120 only sets HSIM parameters for the top cell. It is
possible to specify parameters in the sub-hierarchy using the netlisting
Component Description Format parameters associated with sub-circuits.
Refer to Appendix 15, HSIM-Virtuoso Interface Advanced Topics for details.

3. Save or load HSIM specific parameter settings using the Save State
Simulator Parameters/Load State option in the Session menu.

Selecting Data to Save or Plot
Refer to the Cadence Virtuoso Analog Design Environment user
documentation for details of this operation.

To select data to save or plot, perform the following steps:

1. Navigate to either of the following to display the Virtuoso Schematic Editor
window:

• Outputs -> To Be Saved -> On schematic

• Outputs -> To Be Plotted -> On schematic

The Virtuoso Schematic Editor window is displayed.

2. Use the LEFT mouse button to select the desired nets or nodes The signals
selected to be plotted will be displayed automatically when the simulation is
completed.

3. View saved signals using the Tools menu in the Results Browser.

Timing and Power Checks
To set timing and power checks, choose Select Outputs -> Timing Checks or
Power Checks. Depending on which option is selected, one of the GUI's
described in the following figures is displayed:
■ Figure 121
■ Figure 122
596 HSIMplus® Reference Manual
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Socket (HSIM) and Direct (HSIMD) Integration
Figure 121 Editing Timing Checks Window

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
HSIMplus® Reference Manual 597
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Socket (HSIM) and Direct (HSIMD) Integration
Figure 122 Editing Power Checks Window

Power and timing check settings can be saved for future use or loaded from the
previous session using load/save state facilities. Refer to Load and Save
Sessions on page 602.

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
598 HSIMplus® Reference Manual
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Socket (HSIM) and Direct (HSIMD) Integration
Generating Netlists
To generate a netlist, follow these steps:

1. Select Simulation -> Netlist.

2. Select one of the following:

• Re-Netlist: Performs the entire netlisting procedure.

• Create Netlist: Updates the netlist result incrementally based on
environment or parameter changes.

• Display Netlist: Displays the netlist.

The netlist will be displayed in the window shown in Figure 123.

Figure 123 Netlist Result Window
HSIMplus® Reference Manual 599
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Socket (HSIM) and Direct (HSIMD) Integration
Running Simulations
The GUI shown in Figure 124 is used to invoke simulation.

Figure 124 Running Simulations Window

To invoke a simulation, select either of the following:
■ GO

■ (Green) traffic light to run the simulation.
■ Simulation -> Run

An xterm window is displayed where simulation status can be monitored as
shown in Figure 125. From this window, the HSIM simulation process can be
interrupted using [Ctrl] [C], which enters the interactive mode.

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
600 HSIMplus® Reference Manual
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Socket (HSIM) and Direct (HSIMD) Integration
Figure 125 XTERM Status Window

Simulation can be aborted by selecting either of the following:
■ STOP

■ (Red) traffic light to Stop the simulation.
■ Simulation -> Stop

Viewing Results

Refer to the Cadence Virtuoso Analog Design Environment user
documentation for details of this operation.

Waveforms
Waveform results are automatically displayed in a pop-up window for signals
saved as plotted when a simulation finishes. Saved signals can also be viewed
by the Results Browser under the Tools menu to check waveforms for signals
marked as saved. The HSIM-Virtuoso Interface saves results from multiple
simulations. The Results Browser can also be used to switch among the
multiple results.
HSIMplus® Reference Manual 601
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Socket (HSIM) and Direct (HSIMD) Integration
Annotation
Simulation results can be annotated to schematics. Refer to Cadence user
documentation for details on annotating simulation results.

Note:

Annotation is only possible for the most recent simulation results.

Load and Save Sessions

The HSIM-Virtuoso Interface permits a session to be saved for future reference
using the GUI shown in Figure 126.

Figure 126 Save a Session Window

To save a session, choose Session -> Save State. Sessions can be loaded
using the GUI shown in Figure 127.

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
602 HSIMplus® Reference Manual
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Monte Carlo Analysis
Figure 127 Load a Session Window

To load a session, choose Session -> Load State.

Monte Carlo Analysis

HSIM’s Monte Carlo Analysis function is currently supported only using direct
integration (HsimD).

To use Monte Carlo analysis, perform the following steps:

1. Select HsimD as the simulator.

2. Select Tools->Monte Carlo, as shown in Figure 128.

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
HSIMplus® Reference Manual 603
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Monte Carlo Analysis
Figure 128 Virtuoso Analog Design Environment Window

This displays the Virtuoso Statistical Analysis form. Usages and setups on
this form are inherited from the generic Cadence form shown in Figure 129.

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
604 HSIMplus® Reference Manual
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Monte Carlo Analysis
Figure 129 Virtuoso Analog Statistical Analysis Window

3. Invoke simulation using Statistical Analysis->Simulation->Run. A shell
console will pop up as shown in Figure 130.

4. Once simulation completes, the selected output data is displayed as shown
in Figure 131.

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
HSIMplus® Reference Manual 605
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Monte Carlo Analysis
Figure 130 Simulation Window

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
606 HSIMplus® Reference Manual
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Monte Carlo Analysis
Figure 131 Waveform Output Window for Monte Carlo Analysis

© 2007, Cadence Design Systems, Inc. All rights reserved worldwide.
Printed with permission.
HSIMplus® Reference Manual 607
C-2009.06

Appendix 15: HSIM-Virtuoso Interface Advanced Topics
Monte Carlo Analysis
608 HSIMplus® Reference Manual
C-2009.06

16
16MOSRA Stressed Model Application

Provides information on the MOSFET Reliability Analysis Option’s
StressedModel API functions.

MOSFET reliability analysis (MOSRA) uses the following stressed model APIs:
■ stressedModelConfig API on page 609
■ stressedModelInit API on page 610
■ stressedModelParamNameList API on page 612
■ stressedModelParamNameAndVal API on page 613
■ stressedModelParamVal API on page 614

stressedModelConfig API

Syntax
int stressedModelConfig(char *config_name, double

config_value);

Description
stressedModellConfig is the initialization API for the Stressed Model Equation
Library and the API passes the values of configuration parameters to the
library. This API is called only once.

Arguments
config_name

Configuration command names. The possible configuration parameters are:

• hci_eage_threshold

• nbti_eage_threshold
HSIMplus® Reference Manual 609
C-2009.06

Appendix 16: MOSRA Stressed Model Application
stressedModelInit API
• hci_eage_sampling

• nbti_eage_sampling

config_value

Configuration parameter values

Returns
0

Success

1

Error

Example
stressedModelConfig(config_name, config_value)
char *config_name;
double config_value;
{
/* get the threshold and sampling values from hsim */
if (!strcmp(config_name,”hci_eage_threshold”))

hci_eage_threshold=config_value;
else
if (!strcmp(config_name,”hci_eage_threshold”))

nbti_eage_threshold=config_value;
else if (!strcmp(config_name,”hci_eage_sampling”))

hci_eage_sampling=config_value;
else if (!strcmp(config_name,”nbti_eage_sampling”))

nbti_eage_sampling=config_value;
return 0;
}
/* end stressedModelConfig */

stressedModelInit API

Syntax
int stressedModelInit(char *orig_model_name, double

a_transistor_W, double a_transistor_L, double
a_transistor_nbti_eage, double a_transistor_hci_eage,
char **new_model_name);

Description
stressedModelInit will be called for each transistor. The original model name,
the transistor geometries (W and L) and the transistor HCI and NBTI eage are
610 HSIMplus® Reference Manual
C-2009.06

Appendix 16: MOSRA Stressed Model Application
stressedModelInit API
passed to the Stressed Model Equation Library through this API. The Stressed
Model Equation Library should use HCI and NBTI threshold values from
stressedModelConfig to decide if a new model needs to be created. If a new
model needs to be created, then the Stressed Model Equation Library uses the
HCI and NBTI sampling values from stressedModelConfig to sample and to
decide which new model. The new model name will be created and be stored in
new_model_name.

Arguments
orig_model_name

Original model name

a_transistor_W

Current transistor width

a_transistor_L

Current transistor length

a_transistor_hci_eage

Current transistor HCI electron age

a_transistor_nbti_eage

Current transistor NBTI electron age

new_model_name

New model name

Returns
1

If a new model needs to be created and the new model name is stored in
new_model_name argument.

0

Do not create a new model.
HSIMplus® Reference Manual 611
C-2009.06

Appendix 16: MOSRA Stressed Model Application
stressedModelParamNameList API
Example
stressedModelInit(orig_model_name, a_transistor_w,
a_transistor_l, a_transistor_nbti, a_transistor_hci,
new_model_name)
char *orig_model_name, **new_model_name;
double a_transistor_w, a_transistor_l, a_transistor_nbti,
a_transistor_hci;
{

int count=0;
int ret=0; /*no new model*/
if (a_transistor_hci>hci_eage_threshold) ||

(a_transistor_nbti>nbti_eage_threshold)) {
/* test if we need to create a new model*/
ret=1; /*a new model needs to be created*/
/* computes a unique new model number (depending

on L, W
and the hci and nbti values */
count=(int) fmod(a_transistor_w * 1e9 +

a_transistor_l*
1e9 + a_transistor_nbti*3e30+ a_transistor_hci

*5e30,
10001);
sprintf(mycsm_new_model_name,

“%s_stressed_model_%d”,
orig_model_name, count);
*new_model_name=mycsm_new_model_name;

return ret;
} /* end stressedModelInit */

stressedModelParamNameList API

Syntax
int stressedModelParamNameList(char *orig_model_name,char

*new_model_name, char** model_param_name_list);

Description
The stressedModelParamNameList API makes the Stressed Model Equation
Library return a list of model parameter names for the specified original model
name and the new model name. These model parameter names will be used in
the stressedModelParamVal API. These model parameter names are
separated by comma in the model_param_name_list, e.g. vth0,xyz.
612 HSIMplus® Reference Manual
C-2009.06

Appendix 16: MOSRA Stressed Model Application
stressedModelParamNameAndVal API
Arguments
orig_model_name

Original model name.

new_model_name

stressedModelInit model name

model_param_name_list

Comma separated model parameter name list; for example: vth0,xyz.

Returns
1

If there is a list of model parameter names in model_param_name_list.

0

NO change.

Example
extern int stressedModelParamNameList (orig_model_name,
new_model_name, model_param_name_list)
char *orig_model_name, *new_model_name, **model_param_name_list;
{
 int ret=1;
 /* Customer specific models modified parameters */
 sprintf(mycsm_model_name_list, “vth0”);
 *model_param_name_list=mycsm_model_name_list;
 return ret;
} /* end stressedModelParamNameList */

stressedModelParamNameAndVal API

Syntax
int stressedModelParamNameAndVal(char *orig_model_name,

char *new_model_name, char *model_param_name,
double model_param_val);

Description
The stressedModelParamNamAndVal API passes model parameter values to
the Stressed Model Equation Library.
HSIMplus® Reference Manual 613
C-2009.06

Appendix 16: MOSRA Stressed Model Application
stressedModelParamVal API
Arguments
orig_model_name

Original model name

new_model_name

Model name from stressedModelInit

model_param_name

Model parameter name

model_param_value

Model parameter value

Returns
1

OK

0

Not OK

Example
extern int stressedModelParamNameAndVal (orig_model_name,
new_model_name, model_param_name, model_param_val)
char *orig_model_name, *new_model_name, *model_param_name;
double model_param_val;
{

int ret=1;
/* Customer specific models modified parameters */
fprintf(stdout,”\norig_model_name=%s\n”, orig_model_name);
fprintf(stdout,”new_model_name=%s\n”, new_model_name);
fprintf(stdout,”%s=%g\n”,model_param_name,
model_param_value);
return ret;

} /* end stressedModelParamNameAndVal*/

stressedModelParamVal API

Syntax
int stressedModelParamVal(char *orig_model_name, char

new_model_name, char model_param_name, double
orig_model_param_value, double *new_model_param_value);
614 HSIMplus® Reference Manual
C-2009.06

Appendix 16: MOSRA Stressed Model Application
stressedModelParamVal API
Description
The stressedModelParamVal API calls the Stressed Model Equation Library to
obtain the new value of a specified parameter by using the following data:
■ Original model name
■ New model name
■ Original value of the model parameter
■ Transistor Geometries (W and L) from stressedModelInit
■ Transistor HCI and NBTI eage from stressedModelInit

This API should be called for either of the following conditions:
■ If stressedModelInit returns a 1
■ For each model parameters of the given model name

The new value of the model parameter will be stored in
new_model_param_value.

Arguments
orig_model_name

Original model name.

new_model_name

Model name from stressedModelInit

model_param_name

Model name parameter.

original_model_param_value

Original value of the specified model parameter

new_model_param_value

New model parameter value

Returns
1

If there is a new value for the specified model parameter

0

NO change
HSIMplus® Reference Manual 615
C-2009.06

Appendix 16: MOSRA Stressed Model Application
stressedModelParamVal API
Example
extern int stressedModelParamVal(orig_model_name,
new_model_name, model_param_name,
orig_model_param_value, new_model_param_value)
char *orig_model_name, *new_model_name, *model_param_name;
double orig_model_param_value, *new_model_param_value;
{
 static int count=1;
 /* Customer specific equations */
 if (!strcmp(model_param_name,”vth0”))
*new_model_param_value=orig_model_param_value * .8;
 count++;
 return 1;
} /* end stressedModelParamVal */
616 HSIMplus® Reference Manual
C-2009.06

17
17User Reliability Interface

Provides information on how HSIM permits user-specified reliability interface
(URI) models in addition to hot carrier injection (HCI) and negative bias
temperature instability (NBTI).

URI Model

The URI model is a dynamic library implemented in the C language and the
application procedure interface (API) provided by Synopsys. In the example
used in this section, uri.so is built from the following files:
■ URI.h
■ URI.c
■ b3uri.h
■ b3urimain.c
■ b3uriread.c
■ b3uriset.c
■ b3urild.c

The files are described in the following sections.

Dynamic Library

This section describes how to build the dynamic library. The buildfmod file,
located in $HSIM_HOME/bin, can be used to compile the URI source code.
The one line command to compile the URI follows:

buildmod uri.so URI.c b3urimain.c b3uriread.c b3uriset.c
b3urild.c
HSIMplus® Reference Manual 617
C-2009.06

Appendix 17: User Reliability Interface
User Files
This command compiles the C files into the dynamic library file uri.so.

HSIMURILIB
To perform a simulation run with an URI model, add the following line in the
input netlist:

.param HSIMURILIB="./uri.so"

In the above code, uri.so is the name holder for the dynamic library.

User Files

URI Header File (URI.h)

Caution!

Do not alter the file URI.h.

The URI.h header file shown in Example 78 on page 621 defines the
communication protocol between HSIM and the dynamic library uri.so. The
initialize() function is first called by HSIM.

The URI_VAR user reliability interface variable structure defines the variables
for the device instance. The tnom element is the nominal temperature and
temp is the simulation temperature. The variables vds, vgs, … igb are specific
to the device instance that are passed from the HSIM simulator to the dynamic
library.

Reliability Parameters
The reliability input parameters that are used for the standard HSIM simulator
are specified in the following:
■ relmoslevel
■ hcih
■ hcim
■ na
■ nhv
■ nga
618 HSIMplus® Reference Manual
C-2009.06

Appendix 17: User Reliability Interface
User Files
Reliability Variables
The following are examples of reliability effects that are calculated in this
custom URI model. These reliability modes are returned from the URI routines
to the HSIM simulator:
■ isub: Substrate current
■ hci_stress: User calculated HCI stress value
■ nbti_stress: User calculated NBTI stress value

The following reliability variables should be set to 1 if they are calculated with
URI. If any of the variables are set to 0, the standard HSIM equation will be
used for the variable.

Note:

The following NBTI equations are NOT implemented in HSIM.
■ subGiven
■ hci_stressGiven
■ nbti_stressGiven

Additional Stress Variables
There are five additional user-specified stress variables that can be used to
perform additional calculations. These variables are declared as
stress_value[5]. If any of the variables are to be calculated in this custom
implementation, the corresponding variables in the stress_valueGiven array
should be set to 1.

Note:

These stress variables are not needed to calculate isub, hci_stress or
nbti_stress.

The UserRelDef structure contains information to assist HSIM to allocate an
adequate amount of memory space. It also contains function names for HSIM
to call. The pModel address helps link the model structure specified in the
dynamic library uri.so back to HSIM. The value modelsize notifies HSIM about
the required memory size for the particular model structure.

Other Functions
In addition to initialize() function, HSIM calls other functions such as:
HSIMplus® Reference Manual 619
C-2009.06

Appendix 17: User Reliability Interface
User Files
■ initial_mode()
■ read_model()
■ set_model()
■ model_load()
■ start() (Note: This function is optional.)
■ conclude() (Note: This function is optional.)

URI.h should be kept intact without any modification because a copy exists
inside HSIM to facilitate data communication between HSIM and the dynamic
library uri.so. The content of the URI.h file is shown in Example 78.

Note:

Contact a Synopsys application engineer for updates to the content of the
URI.h file.
620 HSIMplus® Reference Manual
C-2009.06

Appendix 17: User Reliability Interface
User Files
Example 78 URI.h file example
#ifndef URI_H
#define URI_H
/***
 **** CAUTION! ATTENTION! CAUTION!!
 **** Do no change this headers file.
 **** Obtain notice from Synopsys first
 **** before make any change
***/
#if defined(WIN32)
__declspec(dllexport) char * initialize();
#else
char * Initialize();
#endif
/* user reliability interface functions */
typedef struct UserRelDef {
#ifdef __STDC__

char ModelName[80];
char *pModel;
int modelsize;
void (*initial_model)(char*, int);
void (*read_model)(char*, char*, double, int

*);
void (*set_model)(char*, char *);
void (*model_load)(char*, char*);
void (*start)(); /* Optional */
void (*conclude)(); /* Optional */

#else
char ModelName[80];
char *pModel;
int modelsize;
void (*initial_model)();
void (*read_model)();
void (*set_model)();
void (*model_load)();
void (*start)(); /* Optional */
void (*conclude)(); /* Optional */

#endif
} UserRelDef;
/* User Reliability Interface (URI) variables */
typedef struct URI_VAR {

/* Convention;
"HSIM:" means the value is sent from HSIM

simulator to
dynamic library.

"USER:" means the value is returned from
dynamic

library to HSIM
HSIMplus® Reference Manual 621
C-2009.06

Appendix 17: User Reliability Interface
User Files
*/
 /* simulation constants */
double tnom; /* HSIM: model
norm temperature, in

degree-K */
double temp; /* HSIM:
simulation temperature, in

degree-K */
/* variables */
double vds; /*HSIM: vds
bias */
double vgs; /*HSIM: vgs
bias */
double vbs; /*HSIM: vbs
bias */
double w; /*HSIM:
transistor width in meter unit */
double l; /*HSIM:
transistor length in meter unit */
double leff; /*HSIM:
effective channel length in meter

unit */
double weff; /*HSIM:
effective channel width in meter

unit */
double alpha0; /*HSIM: 1st
parameter for impact

ionization */
double alpha1; /*HSIM: Isub
parameter for length

scaling */
double beta0; /*HSIM: 2nd
parameter for impact

ionization */
double vth0; /*HSIM: zero-
biased threshold voltage */
double u0; /*HSIM:
transistor mobility */
double rds; /*HSIM:
parasitic resistance in ohm */
double vth; /*HSIM:
threshold voltage (i.e., turn-on

voltage) */
double vdsat; /*HSIM:
saturation drain voltage */
double vdseff; /*HSIM:
effective vds */
double va; /*HSIM: total
Early voltage */
double idsa; /*HSIM:
intermediate value for channel
622 HSIMplus® Reference Manual
C-2009.06

Appendix 17: User Reliability Interface
User Files
current */
double ids; /*HSIM: drain
(channel) current (not

include isub)
*/
double gds; /*HSIM: output
conductance (dIds/dVds) */
double gm; /*HSIM: trans-
conductance (dIds/dVgs) */
/* not available for BSIM3 */
double igd; /*HSIM: gate-
to-drain static current */
double igs; /*HSIM: gate-
to-source static current */
double igb; /*HSIM: gate-
to-bulk static current */
/* reliability parameters */
double relmoslevel; /*HSIM: action
selector */
double hcih; /*HSIM: HCI
pre-factor coefficient */
double hcim; /*HSIM:
exponent for isub to ids ratio */
double na; /*HSIM: NBTI
pre-factor coefficient */
double nhv; /*HSIM: NBTI
activation energy per

electron
charge */
double nga; /*HSIM: NBTI
coefficient for gate

biasing */
double simulate_time; /*HSIM:
present simulation time for

the particular
device */
/* user constant flags, set by you */
unsigned int isubGiven :1;
/* USER: this flag shall be set by you if user-

calculated isub is to be used at HSIM */
unsigned int hci_stressGiven :1;
/* USER: this flag shall be set by you if user-

calculated hci_stress is to be used at HSIM */
unsigned int nbti_stressGiven :1;
/* USER: this flag shall be set by you if user-

calculated nbti_stree is to be used at HSIM */
/* return data */
/* Non-Negative, i.e. POSITIVE value or ZERO returned

from user */
double isub; /*USER: drain-
HSIMplus® Reference Manual 623
C-2009.06

Appendix 17: User Reliability Interface
User Files
to-bulk static current for
hot-carrier

purpose only */
double hci_stress; /*USER:
OPTIONAL user-calculated stress

value for HCI
*/
double nbti_stress; /*USER:
OPTIONAL user-calculated stress

value for NBCI
*/
/* user constant flags, set by you */
int stress_valueGiven[5];
double stress_value[5];
} URI_VAR;
#ifndef NULL
#define NULL 0
#endif
#define EXP_THRESHOLD 34.0
#define MIN_EXP 1.713908431e-15
#endif /* URI_H */

URI Interface File (URI.c)

The interface file URI.c contains one interface function initialize(). It is the first
function inside the dynamic library uri.so that is called by HSIM. HSIM sends
the type of the device (1 for n_MOSFET and -1 for p_MOSFET). URI.c returns
the address of the device model and also calls the initial_model() function to
grab the memory space for the model. An example of the URI.c is listed
Example 79.
624 HSIMplus® Reference Manual
C-2009.06

Appendix 17: User Reliability Interface
User Files
Example 79 URI.c file example.
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "URI.h"
extern UserRelDef *p_b3uri;
char *
#ifdef __STDC__
initialize(
int type,
char *name)
#else
initialize(type, name)
int type;
char *name;
#endif
{
int length;
char *pDevice= NULL;
/*
** select model level **
*/
pDevice = (char *)p_b3uri;
length = strlen(name);
if (length < 79)
strcpy(((UserRelDef*)pDevice)->ModelName, name);
else {
strncpy(((UserRelDef*)pDevice)->ModelName, name, 79);
((UserRelDef*)pDevice)->ModelName[79] = (char)NULL;
}
((UserRelDef*)pDevice)->initial_model(((UserRelDef*)pDevice)-
>pModel,type);
return pDevice;
}

User-Defined Header File (b3uri.h)

The b3uri.h user-defined header file contains the struct definitions for your
defined reliability model. The variables are additional model parameters that
you specify through the model card. In the example, thirteen model parameters
are defined. As each of each parameter is read from the model card defined in
Example 80, variables such as simsublevel are assigned the value and the
corresponding Given variable such as stmisublevelGiven is set. An example of
the b3uri.h is shown in Example 80.
HSIMplus® Reference Manual 625
C-2009.06

Appendix 17: User Reliability Interface
User Files
Example 80 b3uri.h file example.
#ifndef B3URI_H
#define B3URI_H
typedef struct URImodel
{
int type;
int stmisublevel;
double stmler;
double stmwer;
double stma1r;
double stmsta1;
double stmsla1;
double stmswa1;
double stma2r;
double stmsla2;
double stmswa2;
double stma3r;
double stmsla3;
double stmswa3;
unsigned int typeGiven :1;
unsigned int stmisublevelGiven :1;
unsigned int stmlerGiven :1;
unsigned int stmwerGiven :1;
unsigned int stma1rGiven :1;
unsigned int stmsta1Given :1;
unsigned int stmsla1Given :1;
unsigned int stmswa1Given :1;
unsigned int stma2rGiven :1;
unsigned int stmsla2Given :1;
unsigned int stmswa2Given :1;
unsigned int stma3rGiven :1;
unsigned int stmsla3Given :1;
unsigned int stmswa3Given :1;
} URImodel;
#define LN_MINDOUBLE -800
#endif /* B3URI */

Primary Model File (b3urimain.c)

This is the primary source file for your reliability model. It contains the actual
implementation of the b3uri_initialmodel() function that corresponds to the
initial_model() function described in URI.h header file. The optional
b3uri_start() function that corresponds to the start() function and the optional
b3uri_conclude() function that corresponds to the conclude() function. The
3urimain.c file contents are shown in Example 81.
626 HSIMplus® Reference Manual
C-2009.06

Appendix 17: User Reliability Interface
User Files
Example 81 b3urimain.c file example.
/* Module : b3urimain.c
*/
/* Last Update : May 2003
*/
/* Description : Main
interface function for BSIM3v3.2

reliability
interface */
#include <stdio.h>
#include <string.h>
#include <memory.h>
#include "URI.h"
#include "b3uri.h"
#ifdef __STDC__
void b3uri_initialmodel(char*,int);
void b3uri_read_model(char*, char*, double, int *);
void b3uri_set_model(char*, char*);
void b3uri_model_load(char*, char*);
void b3uri_start();
void b3uri_conclude();
extern void b3uri_read(URImodel*, char*, double, int *);
extern void b3uri_set(URI_VAR *, URImodel*);
extern void b3uri_load(URI_VAR *, URImodel*);
#else
void b3uri_initialmodel();
void b3uri_read_model();
void b3uri_set_model();
void b3uri_model_load();
void b3uri_start();
void b3uri_conclude();
extern void b3uri_read();
extern void b3uri_set();
extern void b3uri_load();
#endif
/* local */
static URImodel _B3URIModel;
static UserRelDef b3uridef = {
"",
(char*)&_B3URIModel,
sizeof(URImodel),
b3uri_initialmodel,
b3uri_read_model,
b3uri_set_model,
b3uri_model_load,
b3uri_start, /* Optional,
replace with NULL if

not used */
HSIMplus® Reference Manual 627
C-2009.06

Appendix 17: User Reliability Interface
User Files
b3uri_conclude, /* Optional,
replace with NULL if

not used */
};
UserRelDef *p_b3uri = &b3uridef;
/*** PARTICULAR MODEL INTERFACE SUBROUTINE ***/
void
#ifdef __STDC__
b3uri_initialmodel(
char *urimodel,
int type)
#else
b3uri_initialmodel(urimodel, type)
char *urimodel;
int type;
#endif
{
/* initialization */
(void)memset(urimodel, 0, sizeof(URImodel));
if(type == -1) {
((URImodel*)urimodel)->type = -1;
((URImodel*)urimodel)->typeGiven = 1;
}
else {
((URImodel*)urimodel)->type = 1;
}
return;
}
void
#ifdef __STDC__
b3uri_read_model(
char *urimodel,
char *name,
double value,
int *notfound)
#else
b3uri_read_model(urimodel, name, value, notfound)
char *urimodel;
char *name;
double value;
int *notfound;
#endif
{
b3uri_read((URImodel*)urimodel, name, value, notfound);
return;
}
void
#ifdef __STDC__
628 HSIMplus® Reference Manual
C-2009.06

Appendix 17: User Reliability Interface
User Files
b3uri_set_model(
char *urivar,
char *urimodel)
#else
b3uri_set_model(urivar, urimodel)
char *urivar;
char *urimodel;
#endif
{
b3uri_set((URI_VAR*)urivar, (URImodel*)urimodel);
return;
}
void
#ifdef __STDC__
b3uri_model_load(
char *urivar,
char *urimodel)
#else
b3uri_model_load(urivar, urimodel)
char *urivar;
char *urimodel;
#endif
{
b3uri_load((URI_VAR*)urivar, (URImodel*)urimodel);
return;
}
void
#ifdef __STDC__
b3uri_start()
#else
b3uri_start()
#endif
{
/* Use of this function is optional */
printf("Start: Use of this function is optional.\n");
return;
}
void
#ifdef __STDC__
b3uri_conclude()
#else
b3uri_conclude()
#endif
{
/* Use of this function is optional */
printf("Conclusion for URI: Use of this function is optional.\n");
return;
}

HSIMplus® Reference Manual 629
C-2009.06

Appendix 17: User Reliability Interface
User Files
Model Parameter Processing File (b3uriread.c)

This file contains the b3uri_read_model() function which corresponds to the
read_model() function. For each pair of the model parameter and its associated
value, HSIM call this function once. If the model parameter is recognized by
this function, the value is stored. Otherwise, this function prints a Warning
message. An example is listed below.
630 HSIMplus® Reference Manual
C-2009.06

Appendix 17: User Reliability Interface
User Files
Example 82 b3uriread.c file example.
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "b3uri.h"
void
#ifdef __STDC__
b3uri_read(
URImodel *urimodel,
char *pname,
double value,
int *notfound)
#else
b3uri_read(urimodel, pname, value, notfound)
URImodel *urimodel;
char *pname;
double value;
int *notfound;
#endif
{
/* all in lower case */
if(strcmp(pname,"stmisublevel") == 0) {
urimodel->stmisublevel = (int)value;
urimodel->stmisublevelGiven = 1;
}
else if(strcmp(pname,"stma1r") == 0) {
urimodel->stma1r = (double)value;
urimodel->stma1rGiven = 1;
}
else if(strcmp(pname,"stmsta1") == 0) {
urimodel->stmsta1 = (double)value;
urimodel->stmsta1Given = 1;
}
else if(strcmp(pname,"stmsla1") == 0) {
urimodel->stmsla1 = (double)value;
urimodel->stmsla1Given = 1;
}
else if(strcmp(pname,"stmswa1") == 0) {
urimodel->stmswa1 = (double)value;
urimodel->stmswa1Given = 1;
}
else if(strcmp(pname,"stma2r") == 0) {
urimodel->stma2r = (double)value;
urimodel->stma2rGiven = 1;
}
else if(strcmp(pname,"stmsla2") == 0) {
urimodel->stmsla2 = (double)value;
urimodel->stmsla2Given = 1;
HSIMplus® Reference Manual 631
C-2009.06

Appendix 17: User Reliability Interface
User Files
}
else if(strcmp(pname,"stmswa2") == 0) {
urimodel->stmswa2 = (double)value;
urimodel->stmswa2Given = 1;
}
else if(strcmp(pname,"stma3r") == 0) {
urimodel->stma3r = (double)value;
urimodel->stma3rGiven = 1;
}
else if(strcmp(pname,"stmsla3") == 0) {
urimodel->stmsla3 = (double)value;
urimodel->stmsla3Given = 1;
}
else if(strcmp(pname,"stmswa3") == 0) {
urimodel->stmswa3 = (double)value;
urimodel->stmswa3Given = 1;
}
else if(strcmp(pname,"stmler") == 0) {
urimodel->stmler = (double)value;
urimodel->stmlerGiven = 1;
}
else if(strcmp(pname,"stmwer") == 0) {
urimodel->stmwer = (double)value;
urimodel->stmwerGiven = 1;
}
else {
*notfound = 1;
}
return;
}

Model Default Setting File (b3uriset.c)

This file contains the b3uri_set_model() function which corresponds to the
set_model() function in the URI.h header file. HSIM calls this function to assign
the default value to a model parameter if you do not provide an input value for
that particular model parameter. An example is listed below.
632 HSIMplus® Reference Manual
C-2009.06

Appendix 17: User Reliability Interface
User Files
Example 83 b3uriset.c file example.
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "URI.h"
#include "b3uri.h"
void
#ifdef __STDC__
b3uri_set(
URI_VAR *urivar,
URImodel *urimodel)
#else
b3uri_set(urivar, urimodel)
URI_VAR *urivar;
URImodel *urimodel;
#endif
{
/* set some flags */
urivar->isubGiven = 1;
/* this flag shall be set by the user if isub calculated by
user is to be used instead of the default calculation inside HSIM */
urivar->hci_stressGiven = 0;
/* this flag shall be set by the user if hci_stress calculated
by user is to be used instead of the default calculation inside
HSIM */
urivar->nbti_stressGiven = 1;
/* this flag shall be set by the user if nbti_stress calculated
by user is to be used instead of the default calculation inside
HSIM */
/* this flag shall be set by the user in order to handle any
additional stress value */
urivar->stress_valueGiven[0] = 1; /* used */
urivar->stress_valueGiven[1] = 1;
urivar->stress_valueGiven[2] = 0; /* not used */
urivar->stress_valueGiven[3] = 0;
urivar->stress_valueGiven[4] = 0;
/* example to illustrate MOS11 weak-avalanche substrate current */
if (!urimodel->stmisublevelGiven)urimodel->stmisublevel=1;
if (!urimodel->stmlerGiven) urimodel-
>stmler =1.0e-6;
if (!urimodel->stmwerGiven) urimodel-
>stmwer =1.0e-5;
if (!urimodel->stma1rGiven) urimodel-
>stma1r =6.0;
if (!urimodel->stmsta1Given) urimodel-
>stmsta1 =0.0;
if (!urimodel->stmsla1Given) urimodel-
>stmsla1 =0.0;
if (!urimodel->stmswa1Given) urimodel-
HSIMplus® Reference Manual 633
C-2009.06

Appendix 17: User Reliability Interface
User Files
>stmswa1 =0.0;
if (!urimodel->stma2rGiven) urimodel-
>stma2r =38.0;
if (!urimodel->stmsla2Given) urimodel-
>stmsla2 =0.0;
if (!urimodel->stmswa2Given) urimodel-
>stmswa2 =0.0;
if (!urimodel->stma3rGiven) urimodel-
>stma3r =1.0;
if (!urimodel->stmsla3Given) urimodel-
>stmsla3 =0.0;
if (!urimodel->stmswa3Given) urimodel-
>stmswa3 =0.0;
return;
}

Model Evaluation and Load File (b3urild.c)

This file contains the b3uri_model_load() function which corresponds to the
model_load() function in the URI.h header file. Refer to URI Header File
(URI.h) on page 618 for additional information. The calculation of the substrate
current Isub is included in the example. The hci_stress and nbti_stress are
assigned the value of 0 in Example 84. You should implement the custom
calculation of hci_stress and nbti_stress in this function. The stress_value[0]
and stress_value[1] are assigned value in the example since
stress_valueGiven[0] and stress_valueGiven[1] were set in b3urist.c.
634 HSIMplus® Reference Manual
C-2009.06

Appendix 17: User Reliability Interface
User Files
Example 84 b3urild.c file example.
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "URI.h"
#include "b3uri.h"

#undef CHECK_SIM_TIME
void
#ifdef __STDC__
b3uri_load(
URI_VAR *urivar,
URImodel *urimodel)
#else
b3uri_load(urivar, urimodel)
URI_VAR *urivar;
URImodel *urimodel;
#endif
{
/* MOS11 example */
double scl, scw, delta_tk, a1, a2, a3;
double x, f;
/* BSIM3 example */
double tmp, diffVds;
double T0, T1, T2, T3;
/* common */
double sim_time;
double Isub;
sim_time = urivar->simulate_time;
#if defined(CHECK_SIM_TIME)
{
printf("sim_time = %g\n", sim_time);
}
#endif
/* Substrate current begins */
if (urimodel->stmisublevel == 1) {
/* temperature updating */
scl = 1.0/urivar->leff - 1.0/urimodel->stmler;
scw = 1.0/urivar->weff - 1.0/urimodel->stmwer;
delta_tk = urivar->temp - urivar->tnom;
a1 = (urimodel->stma1r + scl * urimodel->stmsla1 + scw *

urimodel->stmswa1)(1.0 + delta_tk * urimodel-
>stmsta1);

a2 = urimodel->stma2r + scl * urimodel->stmsla2 + scw *
urimodel->stmswa2;

a3 = urimodel->stma3r + scl * urimodel-
>stmsla3 + scw *

urimodel->stmswa3;
HSIMplus® Reference Manual 635
C-2009.06

Appendix 17: User Reliability Interface
User Files
/* substrate current calculation */
x = urivar->vds - a3 * urivar->vdsat;
if ((x <= - a2/LN_MINDOUBLE) || (a1 == 0.0)) {
Isub = 0.0;
}
else {
f = a1 * exp (- a2/x);
Isub = urivar->ids * f;
}
} /* MOS11 weak avalanche current example */
else {
/* BSIM3 static substrate current example */
diffVds = urivar->vds - urivar->vdseff;
tmp = urivar->alpha0 + urivar->alpha1 * urivar->leff;
if ((tmp <= 0.0) || (urivar->beta0 <= 0.0)) {
Isub = 0.0;
}
else {
T2 = tmp / urivar->leff;
if (diffVds > urivar->beta0 / EXP_THRESHOLD) {
T0 = - urivar->beta0 / diffVds;
T1 = T2 * diffVds * exp(T0);
T3 = T1 / diffVds * (T0 - 1.0);
}
else {
T3 = T2 * MIN_EXP;
T1 = T3 * diffVds;
}
Isub = T1 * urivar->idsa;
}
} /* BSIM3 static substrate current example */
if (Isub < 0.0)
Isub = 0.0; /* safe-guard */
/* return non-negative value to HSIM */
urivar->isub = Isub;
/* if hci_stress is calculated by user, then return the value to
HSIM */
#if 0
urivar->hci_stress = 0.0;
#endif
/* if nbti_stress is calculated by user, then return the value
to HSIM */
#if 0
urivar->nbti_stress = 0.0;
#endif
/* if stress_value[0] and stress_value[1] are used, then return the
suitable values to HSIM */
urivar->stress_value[0] = 1e-5;
636 HSIMplus® Reference Manual
C-2009.06

Appendix 17: User Reliability Interface
User Files
urivar->stress_value[1] = 1e-8;
return;
} /* end, b3uriload() */
HSIMplus® Reference Manual 637
C-2009.06

Appendix 17: User Reliability Interface
User Files
638 HSIMplus® Reference Manual
C-2009.06

Index

Symbols
$monitor 423
/$HSIM_HOME/tutorial/logic 275

A
AANNI - Native Netlist Integration 404
absolute upper bound 172
AC 4
AC analysis 4
active circuit debugger (ACD) 337
active element drivers 5
active loading elements 5
A-D signal conversion 472
ADMS (ADvanced Mixed-signal Simulator) 3, 357
ADMS command line 369
ADMS commands

% valib work 486
ADMS dommand file 368
ADMS environment 485
ADMS environment setup 358
ADMS Language modules 360
ADMS options 362
ADMS simulation

interactive debugging 370
ADMS software tree 358
ADvanced Mixed-signal Simulator (ADMS) 3, 357
AMS-on-Top 361
analog blocks 417, 473
analog/digital partitioning flows 417
analysis commands

 361
.AC 361
.tran 361

-anan 26
appending waveforms 448
appendmodel 132, 133
application procedure interface (API) 617
asciicols 57

asciicolsort 57
asciimapi 88
asciimapvmx 88
A-to-D interface element 469, 470
auto 449
avgviagrp 97

B
BID (bi-directional) 348
bi-directional (BID) 348
bi-directional interface nodes 465
bi-directional interface signals 473
bi-directional net value 451
bi-directional nets 473
bi-directional port 427, 465
binning model approach 139
binning parameters 133
bipolar transistors 4
bit level port definition 471
bjt 303
bjtv 303
black box communications 359
block-level simulations 7
bottom-up design verification 357
boundary elements 369
boundary signals 472
bus notation 471

C
Cadence

Design Framework II 581
Virtuoso Analog Design Environment 357, 417,

435, 581
Cadence NCSIM 485
Cadence ncsim 426
Cadence NC-Verilog 420
capacitor, static vlolage check 190
639

Index
C

CCK 159, 160, 170, 171, 172, 206, 224, 225,
263, 264, 265, 266, 267, 280, 285, 291,
293, 324, 334, 339

CCK’s absolute upper boundary 170
CCK’s soft upper boundary 170
cckCapV 190
cckDioV 190
cckdiov report 196, 197, 198
cckDlySkipNode 285
cckExiPath 208, 209
cckFloatGateIsrc 353
cckMatchSub 207
cckMosV 182, 189, 190
cckMosv 188
cckNodeMaxRF 282, 283
cckPatternMatch 207
cckStaticDCPath 337
cckStaticHZNode 335
cckToggleCount 267, 268
cell name 454
cell pattern 454
channel connected voltage sources 463
check commands 6
circuit debugging environment 5
circuit simulators 6
circuit timing sensitivity 472
circuit transistor direction 347
circuit usage length 131
CircuitCheck 269
CircuitCheck Command

cckNmosNodeToVdd 223
CircuitCheck Commands

cckCapV 190
cckDiode 203, 205
cckDioV 191, 206
cckDlyAtNode 284, 285
cckDlySkipElem 284, 344
cckElemI 206, 207
cckESDMatchSub 207
cckFloatGateIsrc 209, 210, 211
cckLatchInElem 263, 264
cckLatchSkipElem 264
cckLatchUnInit 263
cckLimitRisePmosFallNmos 285, 286, 290
cckMaxPmosToGnd 279
cckMaxStackUpNmos 265

cckMaxStackUpPmos 265
cckMaxStaticLeak 324
cckMaxStuckAt0 266
cckMaxStuckAt1 266
cckMosV 182
cckNmosB_gt_DS 211
cckNmosG_gt_DS 216, 221
cckNodeVoltage 224, 225, 226
cckNoSimu 345
cckOffLeakI 325, 326, 329, 332
cckParam 170, 177, 179
cckPaternMatch 343
cckPathToVsrc 226, 228, 229
cckPatternMatch 347
cckPmosB_lt_DS 230
cckPmosG_lt_DS 236, 240, 242
cckRCDlyPath 284, 290
cckRCFallDelay 285, 290
cckRCRiseDelay 285, 290
cckResV 190, 191
cckSetMosDir 285, 287, 290
cckTgPair 344, 347
cckXtalkByRC 321
cckXtalkFallTimeConst 321
cckXtalkFallVolt 321
cckXtalkFloatingCap 321
cckXtalkRiseTimeConst 321
cckXtalkRiseVolt 321
cckXtalkSkipElem 344
tgPair 347

CircuitCheck commands
cckParam 170

Cnode (node capacitance) 283
Comparing DC Results, cckCompareOp 339
configuration file

HSIM 152
IVEC 152

co-simuation
digital and analog partitions 485

co-simulation
Verilog/VHDL and SPICE-based designs 485

Co-Simulation Configuration Commands

set_fall_step 456
analog_cell 448, 449
auto_vrsc_warning 449
correct_netlist 450
define_strength 450, 451
digital_cell 451
640

Index
D

digital_cell_inst 452
dump_interface 452
dump_port_prop 453
dump_setting 453
keep_iface_file 453
map_subckt_name 454
map_unfound_port 454
report_logic_delay 454
report_port_resistance 455
set_args 455
set_intr_mode 456
set_port_prop 456

-alloweddv 457
-delay 458
-delay_hz2st 459
-delay0 459
-delay1 459
-fall 458
-logichv 457
-logiclv 457
-logicxv 457
-lprint 459, 460
-rise 458
-rm_glitch 459
-slope 458
-strength 459
-timex 458
-vhi 458
-vlo 458
-vprint 459
-vsrc 459

set_port_prop_warning 460
set_print_progress 460
set_rise_step 460
set_slope_step 461
set_verbose 461
set_verilog_supply0 462
set_verilog_supply1 462
verilog_file 462

co-simulation engine 453
co-simulation interactive debugging 464
co-simulation interactive mode 463
Co-Simulation Interactive Mode Command

csdinw 464, 469
csdnw 464, 469
csh 464, 466
csinh 464, 467
csinw 464, 468

csli 464, 465
csnh 464, 467
csnph 464, 467
csnw 464, 468

co-simulation interface 461
co-simulation interface nodes 465
co-simulation setup 471
co-simulation system variable setup 417
co-simulation time interval 460
coupling capacitance 6
cross-coupling 7
crosstalk analysis 307
cross-talk noise simulation 6
current limit check, dynamic 206
current, excessive check 208

D
D2S (drain-to-source) 348
data flow direction 474
DC analysis 4, 254, 255, 263
Debugging Command 269
default strength table 474
degraded model card 134
delayed logic output 454, 455
design elaboration 359
design parameter list

.param 361
device list file (DLF) 152
digital blocks 417, 473
digital/analog partitions 473
diode forward bias 256
diode, forward bias check 203
diode, static vlolage check 191
dirN 347
DLF file 152
donut partition with Verilog on top 436
donut partitioning with a Verilog top 437
donut partitioning with SPICE top 444
drain-to-source (D2S) 348
DRAM 5
drLoadDrf 61
DSP 5
D-to-A interface element 470
dump configuration command 453
dynamic crosstalk analysis 307
641

Index
E

E
EAge (electron age) 128
.eage file 128
eage file 136
.eageba back-annotation file 128
.eageba file 131, 136
EEPROM 5
electron age (EAge) 128
element branch current waveforms 6
element capacitance 5
element conductance 5
element current 5
element name 576
element terminal nodes 5
EPROM 5
ESD Match 207
excessive current checks 5

F
fan-in 5
fan-out 5
fanout elements 332
fanout transistors 332
farad 470
file syntax

IVEC CFG 156
files

ocean.rc 577
fine granularity partitioning 473
Flash Memory 260
flash memory 5
floating gate check 209
floating point number 448
-fpost 26
fresh simulation 127, 128
fresh simulation definition 128
fromNode 348
FSDB 269, 270, 272, 273, 275
full-chip designs 7
functionality errors 473

G
gdslabels 60
glitches 459

global interface activity history 466

H
HCI (hot-carrier injection) 127
HCI/NBTI effects 132
HCMAX 134
HCMIN 134
hierarchical technology 6
high-level co-simulation 419
high-speed analog circuit simulation 6
high-speed nanometer circuits 7
history buffer 467
HiZ 471
hot-carrier injection (HCI) 127
HSIM 4
HSIM black box subcircuit definitions 360
HSIM CFG file 152
HSIM environment setup 358
HSIM interactive mode 456, 464
HSIM options 362
HSIM Plus Prime Rail Interface 149
HSIM software tree 358
HSIM waveform file 470
HSIM-ADMS 3, 357
HSIM-ADMS command file options 361
HSIM-ADMS partitioning

 366
#ENDHSIMBB 367
#HSIMBB 367
#HSIMBB, ENDHSIMBB 366, 368
.bbinclude 366, 367
boundary elements 366
control options 366
.HSIMBB 366
.part 366, 368
partitioning commands 366

HSIM-ADMS partitioning commands
placement 361
specifying blocks 361

HSIMAGINGINST 129, 136, 144
HSIMAGINGSTART 129
HSIMAGINGSTOP 129
HSIMANALOG 369
HSIMBSMI3ISUB 140
hsim.cckcapv 190
642

Index
I

hsim.cckexipath 209
hsim.cckmosv file 182
hsim.cckmosv_tag file 185, 204
hsim.ccktoggle file 267
HSIMCKTCHECK 160, 326, 351
HSIMCOILIB 131
HSIMDEVICEV 294, 306, 307, 351
HSIMFALL 458
hsim.fsdb 276
HSIMHCIAGEREFINST 129
HSIMHCIEAGESAMPLING 130
HSIMHCIEAGETHRESHOLD 130
HSIMLOGICHV 457
HSIMLOGICLV 457
HSIMLOGIGLV 457
hsimMosDir 348
HSIMMOSRASIM 130
HSIMNBTIAGEREFINST 129
HSIMOcean 577
HSIMOcean API 578

nsdOcnCreateHostNetlist() 578
nsdOcnCreateNetlist() 579
nsdOcnCreateTopNetlist() 578
nsdOcnEnvSetup() 578
nsdOcnFinishing() 579
nsdOcnRunHsim() 579
nsdOcnSetHSIMParam() 578

HSIMOUTPUT 55
HSIMPRIMERAIL 150
HSIMPRIMERAILTCL 150
HSIMPWRA 45, 111
HSIMPWTRACERL 98
HSIMRADUMP 46, 47, 48, 112, 113
HSIMRANET 119, 120, 121
HSIMRARMIN 47, 113
HSIMRATAU 46, 52, 112
HSIMRATCL 46, 112
HSIMRELMODE 130
HSIMRELTOTALTIME 131
HSIMRISE 458
hsimrmax 172
HSIMSBAHIERID 23
HSIMSBAMSGLEVEL 22
HSIMSBAMSGLIMIT 22
HSIMSBAPFX 23

HSIMSBASFX 23
HSIMSIGRA 120
HSIMSKIPRANET 121
HSIMSLOPE 458
HSIMSPF 42, 45, 111
HSIMSPFMERGEPIN 43
HSIMSPFNETIPIN 43
HSIMSPFNETPIN 39
HSIMSPFPWNET 37, 45, 111
HSIMSPFPWRMIN 39, 47, 113
HSIMSPFTLV 40
HSIMTAU 158
HSIMTAUMAX 369
HSIMTMPDIR 40
HSIMURILIB 131
HSIMVHTH 458
HSIMVLTH 458

I
ids 274
IEEE Standard, IEEE 1364-2001 424
inout ports 473
input netlist 170
instance based instantiation 424
interactive circuit analysis 5
interactive circuit diagnosis 5
interactive debugging

ADMS simulation 370
interactive debugging mode 463
interface activity history 463
interface elements 471
interface netlist file 454
interface node activity history 467
interface nodes 465
interface signal timing error margin 472
interface signals 472, 473
interface to Prime Rail 149
inter-process communication (IPC) 418
intrig 274
inverter chain 433
Invoking CircuitCheck 351
IP cores 5
IPC (inter-process communication) 418
IR drop 7
643

Index
J

isomorphic matching techniques 7
IVEC CFG file 152

syntax 156
IVEC TCL tau 158

J
junction field-effect transistors 4

L
Language-0n-Top 361
large circuit blocks 7
large interacting circuit blocks 7
layer_map 106
layerea 87
layerh 57
leaf inverter 433
limitMos 182, 183, 188, 189, 190, 191, 192, 199

M
macro primitives

bcs 537
bvs 537
cap 526
cccs 531
ccvs 531
diode 532
idc 527
iexp 529
ipwl 528
isin 529
mind 526
nbsim 536
nbsim4 536
njfet 534
nmos 534
nmos4 535
npn 533
pbsim 536
pbsim4 537
pcapacitor 526
pdiode 532
pjfet 534
pmos 535
pmos4 535
pnp 534
presistor 525

res 525, 539
schottky 533
tline 532
vccap 538
vccs 530
vcres 537
vdc 527
vpulse 527
vpwl 528
zener 533

macro primitives/ind 526
macro primitives/ipulse 528
macro primitives/vcvs 530
macro primitives/vexp 529
macro primitives/vsin 529
Mentor Graphics AMS SoC design flow 357
Mentor Graphics ModelSim 417, 485
microprocessor 5
mismatched port 460
mixed-signal circuit simulation 6
mixed-signal designs 3
model

BJT model 225
diode model 225
Elmore Delay model 289
MOSFET model 225

model name 576, 577
ModelSim command

% valog top.v -ms 486
% vasim top -ms -pli libvpihsim.so 486
% vlib work 485
% vlog top.v 485
% vsim -c -pli libvpihsim.so +nsda+cosim.cfg top

486
modulated steady state simulation 357
Monte Carlo analysis 4
MOSFET drain parameter 174
MOSFET Reliability Analysis (MOSRA) 3
MOSFET reliability simulation inverter chain 140
MOSFET source area 173
MOSFET source parameter 174
MOSFETdrain area 173
MPEG 5

N
NAND gate 270
644

Index
O

nanometer effects 7
Native Netlist Integration (AANNI) 404
ncsim interactive mode 447
NC-Verilog 417, 464
NC-Verilog 5.1 424
NC-Verilog library 418
NC-Verilog/VHDL executables path 418
net name 575, 576
net resistance calculator commands

addnetpin 104
file 103
gds 105
gdslayer0 105
gdsthresh 105
ipin 106
layer0ohm 106
layerfactor 106
net 103
netdeletepad 104
netinclude 104
png 107
rmin 106
sortby 107
subnode 107

n-MOSFET model cards 131
nodal analog voltage waveforms 6
nodal digital logic-state waveforms 6
node capacitance 5
node capacitance (Cnode) 283
node voltage 5
node’s first state change 270
nsda_cosim.sp interface file 453
nWave 6, 272, 273

O
Ocean script 577
.oceanrc file 577
out_file.cckfall 293
outfiltres 80
outlayers 60
output format

FSDB 269, 270, 272, 273, 275
Output Sorting 301
output.cck file 283
output.cckcapv 190
output.cckmosv file 182

output.ccktoggle file 267

P
package modeling commands

HSIMSPFMERGEPIN 43
HSIMSPFNETIPIN 41, 43
HSIMSPFNETPPIN 44

.param 294, 351

.param statements 369
partition boundary 472
pass gate transistors 263
pass switch 473
Path Delay checking 280
path resistance report 455
phase I control parameters

HSIMOUTPUT 48, 114
HSIMPWRA 45, 111
HSIMRADUMP 46, 47, 111, 113
HSIMRAIRMIN 49, 114, 115
HSIMRARMIN 47, 113
HSIMRATAU 46, 48, 112, 113
HSIMRATCL 46, 48, 112, 114
HSIMSPF 45, 111
HSIMSPFPWNET 45, 111
HSIMSPFPWRMIN 47, 113

phase II output files
ASCII 55, 56
DRF 54
FSDB 55
OUT 55
RADB 52
RAGDS 53, 54
RALOG 51, 52
RAOUT 52
TECH 54
WDF 55

pipe-in pipe-out (PIPO) 495
PIPO (pipe-in pipe-out) 495
port delay 459
port falling time 458
port mapping 470
port rising & falling time 458
port rising time 458
positive delay 458
post processing commands 361

 361
.meas 361
645

Index
R

.plot 361

.probe 361
Post-Layout Acceleration (PLX) 2
post-layout parasitics 5
post-stress simulation 127
post-stress simulation definition 128
-posttop 26
power characterization 5
power net IR drop 6
Prime Rail 149

interface 149
primitive gate 473
print voltage logic 459
print voltage value 459
programming language interface (PLI) 417

R
raformat 60
ragds 59
ralayers 59
.ratcl commands for phase II control

alterpad 78
asciicols 89
asciicolsort 90
coordunit 64
deflayer 94
emlmaxim 75
emlmaxiv 75
gdsdatatype 93
gdsdefrw 93
gdsfilechsymb 93
gdslabels 78
gdsmag 82
gdsmapi 81
gdsmapvmax 80
gdsoutmode 81
gdsprops 91
gdstiming 92
jjmaxlog 76
layerh 86
layermap 87
outlayers 79
printi 77
printipad 78
printv 77
printvmode 77

ra val 62
raformat 76
ragds 76
ralayers 76
ralayout 63
raout 63
rarve 94
raviewer 94
redia 68
rediabsa 69
rediabsw 68
rediac 95
rediavga 69
rediavgw 68
redimaxa 68
redimaxw 68
redirmsa 68
redirmsw 68
rediw 66
redj 69
redtrms 96
redv 64
skiplayers 79
swin 83
tau 86
tstart 83
tstop 83
twin 86

.ratcl commands forphase II control
asciimapi 88
asciimapvmax 88
layerea 87
outlayers 79
ralayout 63
redv 64, 65, 66

reach-in signal 472
reach-in signals 472
real type Verilog variable 470
reliability model parameters 128
reliability simulations 131
report file 108
report generation commands

hsim -rout 108
report 108

report generation options
-gds 109
-gdslayer0 109
-gdslobnd 109
646

Index
S

-gdsmag 109
-gdsunits 109
-gdsupbnd 109
-layer n 109
-maxr 108
-minr 108
-nr 108
-pattern 109
-png x_size_in_pixels 109
-xmin xmin 109
-ymin ymin 109

reports
functionality 6
power analysis 6
timing 6

resistance value 473
resistor, static vlolage check 191
risePmosFallNmos 182, 185, 188, 189, 194, 201
Rmax (effective resistance) 283
ROM 5
routcols 102
rptTrace 241, 242

S
S2D (source-to-drain) 348
scripts

HSIMOcean 577
ocean 577

Signal Edges 310
Signal Net Reliability Analysis (SIGRA) 2
Signal, Falling Slope 310
Signal, Rising Slope 310
simulation control options

 368
accuracy 368
netlist format 368
simulation speed 368
vector files 368

simulation engines
 357
Eldo 357
Eldo-RF 357
HSIM 357
ModelSim 357

SimWave 6
skipInst 182, 183, 188, 189, 192, 199, 212, 217,

231, 237

skipNode 282
SoC (System-on-Chip) 357
soft-upper bound 172
sorting keys

 301
el_name 301
err_v 301
node1 301
node2 301
t1 301
tag 301

source-to-drain (S2D) 348
special supply converter 370
SPICE impedance 474
SPICE intermediate netlist 360
SPICE internal node 470
SPICE node 470
SPICE sub-circuit 470
SPICE-on-Top 361
SPICE-on-top donut partitioning 443
SPICE-to-DSPF (SP2DSPF) 3
SRAM 5
src_mod_name source model card 132
Static Power Net Resistance (SPRES) 2
static resistance calculation

 101
static resistance calculation commands

hsim -r 101
hsim -rout 102
routcols 102

stop times 456, 460, 461
strength fighting 473
strength levels 473
strength resistors 473
strength resolution 473
strength table 473
strength tables 455
stressed model library 130, 131
string identifier 457, 458, 459
strong state 459
subcircuit definition file 367
subcircuit-based partitioning 366
subckt 285, 298
subckt cmd 297
substrate forward bias 256
substrate forward bias check 256
647

Index
T

sub-threshold slope (S) 127
S-V-S partitioning 443
System-on-Chip (SoC) 357

T
tau

HSIMTAU 158
IVEC TCL 158

TCL (tool command language) 418
tgPair 347
tgPair (transfer gate pair) 347
threshold voltage (Vth) 127
threshold voltages 472
time wheel event 256
timing characterization 5
timing shift 472
tool command language (TCL) 418
top-down design verification 357
total reliability time 131
trans-conductance value (gm) 127
transfer gate 347
transfer gate pair (tgPair) 347
transient simulation 256
transistor gate direction 347
translating signal values 417

U
unfound port list 454
unidirectional port direction 471
URI (user-specified reliability interface) 131
user-specified reliability interface (URI) 131
user-specified reliability models 133

V
vector nets 471
Verilog elaboration 472
Verilog elaborator 472
Verilog interactive mode 456
Verilog interface file 432
Verilog module 426
Verilog module definition file 462
Verilog net 472
Verilog object waveforms 470
Verilog Procedural Interface 417

Verilog strength map 455
Verilog vector ports 471
Verilog voltage level specification 462
Verilog wrapper 435
Verilog/SPICE system tasks

$nsda_a2d_node 469
$nsda_add_cap 469
$nsda_d2a_node 470
$nsda_get_volt 470
$nsda_inout_node 470
$nsda_module 470
$nsda_save_waveform 470
$nsda_set_volt 470

Verilog/VHDL/HSIM co-simulation 417
configuration commands 417
partitioning guidelines 417

Verilog-AMS-on-Top 361
Verilog-on-Top 361
Verilog-side signals 473
Verilog-XL 417, 418, 436
very large MOSFET width 171
VHDL on top co-simulation 427
VHDL-on-Top 361
violation map 57
Virtuoso Analog Design Environment 357, 417,

435, 581
vlth 211
vmx run script 436
vnth 211
voltage check for diode, static 191
voltage check for resistor, static 191
voltage check, static 181
voltage expression 457
voltage pair condition keywords

lvbc 303
lvbe 303
lvbs 304
lvce 303
lvcs 303
lves 304
uvbc 303
uvbe 303
uvbs 304
uvce 303
uvcs 303
uves 304

voltage sensitivity 472
648

Index
W

voltage-pair condition keywords
 304
lvac 304
uvac 304

VPI 473
VPI (Verilog Procedural Interface) 417
VPI code 418
VPI function call 418
VPI shared library 418
vpth 212
VSRC 461
V-S-V partitioning 436
vt 211

W
watchpoint 468, 469
watchpoints 463
waveform appending 448
waveform viewers 6

nWave 6, 272, 273
SimWave 6
Waveview 6

Waveview 6

X

X instances 361
649

Index
X

650

	Contents
	Audience
	Related Publications
	Conventions
	Customer Support
	1 Introduction
	HSIMplus
	HSIMplus Features

	HSIM
	Interactive Circuit Analysis
	Applications
	Input/Output Data
	Hierarchical Simulation Technology
	Limitations and Recommendations

	2 Post-Layout Acceleration (PLX) and SP2DSPF Utility
	Back-Annotation Without Post-Layout Acceleration
	HSIMplus Back-Annotation with Post-Layout Acceleration
	HSIMPFPLX

	HSIMplus Structural Back-Annotation (SBA)
	Invoking SBA
	SBA Parameters
	HSIMSBA
	HSIMSBANTL
	HSIMSBAPARAM
	HSIMSBAMSGLEVEL
	HSIMSBAMSGLIMIT
	HSIMSBAHIERID
	HSIMSBASFX
	HSIMSBAPFX

	SP2DSPF Utility
	Generating a DSPF File From the Flat Extracted Netlist
	Running SP2DSPF
	SP2DSPF Utility Parameters
	-pre
	-fpre
	-pretop
	-post
	-fpost
	-posttop
	-an
	-anan
	-out
	-dpf
	-outdpf
	-dspf
	-outdspf
	-pinports
	-ms
	-mm
	-opt outnf
	-opt outprefc
	-opt outhierc
	-opt outsubc
	-opt serial
	-opt capnet
	-opt dupcc
	-opt rpref
	-opt ccpref, -opt gcpref
	-opt vsr

	References

	3 Power Net Reliability Analysis (PWRA)
	Power Net Reduction
	Specifics of Power Net Back-Annotation
	HSIMPOSTL
	HSIMSPFPWNET
	HSIMPWNAME
	HSIMSPFPWRMIN
	HSIMSPFNETPIN
	HSIMTMPDIR
	HSIMSPFPWFLAT
	HSIMSPFTLV

	Package Modeling
	HSIMSPFNETIPIN
	HSIMSPFMERGEPIN
	HSIMSPFNETPPIN

	Power Net IR Drop and EM Analysis Flow
	Phase I
	Phase II
	Phase I Control Parameters
	HSIMSPF
	HSIMSPFPWNET
	HSIMPWRA
	HSIMRAP2AUTO
	HSIMRAKEEPSERIESR
	HSIMRATAU
	HSIMRATCL
	HSIMRARMIN
	HSIMSPFPWRMIN
	HSIMRAP2AUTO
	HSIMRATAU
	HSIMRATCL
	HSIMOUTPUT
	HSIMRAIRMIN

	Phase II Control Parameters
	Defining Net Pins by Specifying X/Y Coordinates

	Output Files
	Violation Map Visualization
	Generating a Violation Map
	Generating Multiple GDSII Files with One Command
	Generating GDSII for All Analyses
	Generating a Violation Map over the Original Layout
	Displaying a Map Legend
	User-Specified Layer Numbers
	Layer Filtering
	Names Inserted into Geometry
	Generating Layout Formats
	Automatically Generating Violation Maps

	Loading GDSII Files into the Cadence Virtuoso Layout Editor
	Loading the IR Drop/EM Violation Map Only
	Loading a Violation Map Over the Original Layout
	.ratcl File Commands for Phase II Control
	ra val
	raout
	ralayout
	coordunit
	redv
	rediw
	redimaxw, redirmsw, rediabsw, rediavgw
	redia
	redimaxa, redirmsa, rediabsa, rediavga
	redj
	emthreshproc, emldlayers
	emlmaxiv, emlmaxim
	jjmaxlog
	ragds
	raformat
	ralayers
	printi
	printv
	printvmode
	printipad
	alterpad
	gdslabels
	outlayers
	skiplayers
	outfiltres
	gdsmapvmax
	gdsmapi
	gdsoutmode
	gdsmag
	tstart
	tstop
	swin
	twin
	tau
	layerh
	layerea
	layermap
	rvemapvmax
	rvemapi
	asciimapvmax
	asciimapi
	asciicols
	asciicolsort
	gdsprops
	gdstiming
	gdsdefrw
	gdsdatatype
	gdsfilechsymb
	deflayer
	rarve
	raviewer
	rediac
	redirmst
	redtrms
	avgviagrp

	Internal Power Nets
	References

	4 Static Power Net Resistance (SPRES)
	Power Net Resistance Calculator
	hsim -r
	hsim -rout
	routcols

	Net Resistance Calculator Commands
	file
	net
	addnetpin
	netdeletepad
	netinclude
	gds
	gdslayer0
	gdsthresh
	ipin
	layer0ohm
	layerfactor
	rmin
	png
	subnode
	sortby

	Report Generation Commands and Options
	Method 1: TCL File Command
	report

	Method 2: Command Line Execution
	hsim -rout

	Report File Generation Options

	Power Net IR Drop and EM Analysis Flow
	Phase I
	Phase II
	Phase I Control Parameters
	HSIMSPF
	HSIMSPFPWNET
	HSIMPWRA
	HSIMRAP2AUTO
	HSIMRATAU
	HSIMRATCL
	HSIMRARMIN
	HSIMSPFPWRMIN
	HSIMRAP2AUTO
	HSIMRATAU
	HSIMRATCL
	HSIMOUTPUT
	HSIMRAIRMIN

	Phase II Control Parameters
	Defining Net Pins by Specifiying X/Y Coordinates

	5 Signal Net Reliability Analysis (SIGRA)
	Overview
	Phase I Control Parameters
	HSIMSIGRA
	HSIMRASIGCONLY
	HSIMRANET
	HSIMSKIPRANET

	Phase II Control - .ractl File Commands
	iavmin val
	nnetmax num
	selectsignets

	Vectorless Signal Net Reliability Analysis (VSIGRA)
	VSIGRA Flow
	HSIMVSIGRA
	HSIMVSIGRATCL
	VSIGRA CFG TCL File

	6 MOSFET Reliability Analysis (MOSRA)
	Overview of MOSFET Reliability Analysis (MOSRA)
	Fresh Simulation
	Post-Stress Simulation
	User Reliability Interface (URI)
	Simulation Control Parameters
	HSIMAGINGINST
	HSIMAGINGSTART, HSIMAGINGSTOP
	HSIMHCIEAGEREFINST
	HSIMHCIEAGETHRESHOLD
	HSIMHCIEAGESAMPLING
	HSIMMOSRASIM
	HSIMRELMODE
	HSIMRELTOTALTIME
	HSIMURILIB

	Modeling
	Fresh Simulation Models
	HCI
	appendmodel

	Post-Stress Simulation Models

	Output Files
	Fresh Simulation
	Post-Stress Simulation

	API Access
	URI for HCI Equations
	URI Extension for Customized Stressed Model Equations

	MOSRA Print Commands
	MOSRA Examples
	Fresh Simulation Netlist Example
	Fresh Simulation Outputs
	Post-Stress Simulation Netlist Example
	Associated Transistors Using the Degraded Model

	Overview of the Unified MOSRA Solution
	HSIMUNIFIEDMOSRA
	Using Fresh and Post-Stress Simulation Models
	Output Files for Fresh and Post-Stress Simulations
	API Access

	Running the MOSRA Flow
	Running a MOSRA Example with Built-In Equations
	Running a MOSRA API Example

	Correlating the MOSRA Output Files with HSPICE
	HSPICE Fresh Simulation Results
	HSPICE Post-Stress Simulation Results

	7 HSIMplus-PrimeRail Interface
	HSIMplus PrimeRail Flow
	HSIM Simulation
	HSIMPRIMERAIL
	HSIMPRIMERAILTCL

	Combining HSIMplus-PrimeRail Interface with PWRA Options
	HSIM Re-use Simulation Results Option (Phase I RA Results Re-use)

	IVEC CFG TCL File Syntax
	HSIMRATAU vs. IVEC tau

	8 CircuitCheck
	Overview of CircuitCheck (CCK) Option
	CircuitCheck Tutorial
	Conventions

	CircuitCheck Command Usage
	Specifying Circuit Checks in Command Files
	Running Circuit Check Operations without DC Initialization and Transient Simulation
	cckNoSimu

	Passing Parameters Into CircuitCheck Commands
	CircuitCheck.cck
	Include Statements

	Parametric Checks
	Check Electrical Parameters
	cckParam
	Capacitor Values
	MOSFET Width
	MOSFET Length
	MOSFET Drain/Source Area and Drain/Source Perimeter
	MOSFET Gate Oxide Thickness
	Diode Width, Length, and Area
	Simulation Run Temperature
	Model
	Limiting the Number of Violations Reported
	M-factor

	Post-Layout RC Checking
	cckParasiticRC

	Design and Electrical Rules Check
	Static Device Voltage Analysis
	Device Voltage Analysis for Transistors
	cckMosV

	Device Voltage Analysis for Capacitor, Resistor and Diode
	cckCapV
	cckDioV
	cckResV

	Subcircuit-Based Voltage Analysis Using the Static Approach
	cckSubV

	Diode Forward Bias Analysis
	cckDiode

	Element Current Analysis
	cckElemI

	Instance and Subcircuit Reference Check
	cckMatchSub

	Excessive Current Path Detection
	cckExiPath

	Floating Gates and Current Sources Analysis
	cckFloatGateIsrc

	Check NMOS Bulk Connections
	cckNmosB_gt_DS
	Example

	Find Potentially Conducting NMOS Devices
	cckNmosG_gt_DS

	Check NMOS Node to VDD Connection
	cckNmosNodeToVdd

	Check Node Voltage
	cckNodeVoltage

	Check Paths to Voltage Sources
	cckPathToVsrc

	Check PMOS Bulk Connections
	cckPmosB_lt_DS
	Example

	Find Potentially Conducting PMOS Devices
	cckPmosG_lt_DS

	Check PMOS Node To GND Connection
	cckPmosNodeToGnd

	Safe Operating Area Check
	cckSOA

	Subcircuit-Based Voltage Analysis Using the Dynamic Approach
	cckDynSubV

	Substrate Forward Bias Check
	cckSubstrate

	Unprotected Antenna Node Check
	cckAntGate

	Static Voltage Propagation Sharing
	Propagation Parameters
	Propagation Sharing
	Example

	Digital Logic and Memory Diagnostics
	Flash Memory Check
	cckFlashcore

	Find Un-initialized Latch
	cckLatchUnInit
	cckLatchInElem
	cckLatchSkipElem

	Check Stack-up Transistors
	cckMaxStackUpNmos
	cckMaxStackUpPmos

	Check and Classify the Stuck Nodes
	cckMaxStuckAt
	cckToggleCount
	cckConnReport

	Interactive Circuit Debugging Command for Tracking Circuit
	Finding a Node’s First State Change After a Specified Time
	ntrig
	intrig

	Timing Checks
	Check Number of n-MOSFET in Charging Path to VDD
	cckMaxNmosToVdd

	Check Number of p-MOSFET in Discharging Path to GND
	cckMaxPmosToGnd
	cckMaxStackUpNmos
	cckMaxStackUpPmos

	Checking Path Delay Between Two Nodes
	cckMeasPathDelay

	Estimating the Rise and Fall Delay at a Node
	cckNodeMaxRF
	cckParasiticRC

	Static RC Delay Analysis - Estimate Slew Rate
	cckRCDlyPath
	Delay Path Sub-Commands
	cckDlyAtNode
	cckDlySkipElem
	cckDlySkipNode
	cckLimitRisePmosFallNmos
	cckRCFallDelay
	cckRCRiseDelay
	cckSetMosDir
	Computing the Resistance of MOSFET
	Rising and Falling Path Delays
	Explanation of this Rising Path Report
	Explanation of this Falling Path Report:

	Dynamic Device Voltage Check
	tcheck mosv
	tag_name
	mosv
	subckt
	mos
	model
	report
	time
	parallel
	separate_file
	Output Sorting
	start/stop
	step
	tcheck bjtv
	tcheck diodev
	tcheck capv
	Post-Process Device Voltage Check
	Method 1
	Method 2

	Signal Integrity Checks
	Dynamic Crosstalk Analysis
	cckDXtalk

	Signal Edge Characteristics
	Thresholds

	Usage Flow Methods
	Method 1
	Method 2

	cckParasiticRC
	Static Crosstalk Noise Analysis: Estimating Noise Glitches
	Running Crosstalk Glitch Analysis

	hsim.cckxtk Output Sample
	hsim.cckvr Output Sample
	hsim.cckvf Output Sample
	cckxtk Output Sample
	hsim.cckvr Output Sample
	hsim.cckvf Output Sample

	Leakage Current Detection
	Detect Leakage Paths Between Voltage Supply Nodes
	cckMaxStaticLeak

	Leakage Current Detection in Non-Conducting Transistors
	cckOffLeakI
	Leakage Current in OFF Transistor

	Leakage Current Ratio
	Command Output

	Power-Down Floating-Gate Checking
	cckAnalogPDown
	cckAnalogPDownIth
	cckElemI
	cckExiPath

	Static Analysis
	Static 0 and Static 1 Notes
	Static High Impedance Node
	cckStaticHZNode
	Static DC Path
	cckStaticDCPath

	CircuitCheck Utilities
	Basic Checking
	cckBasic

	Comparing DC Results Between HSIM and Other Simulators
	cckCompareOp

	Find Subcircuit Instances
	cckMatchSub

	Pattern Matching Capability
	cckPatternMatch
	cckPatternConstraint
	cckSetMosDir

	Setting Transistor Directions
	cckTgPair

	Global Parameter Settings
	CircuitCheck Tutorial
	Invoking CircuitCheck
	Test Case
	Test Case Example for tcheck mosv
	Run HSIM

	9 HSIM-ADMS Integration
	Introduction to HSIM-ADMS
	ADMS Overview

	HSIM-ADMSTool Setup
	Licensing
	Mentor ADMS License
	Synopsys HSIM License

	Installing and Configuring ADMS

	HSIM-ADMS High-level Architecture and Data Flow
	HSIM-ADMS Simulation Flow
	HSIM-ADMS Examples
	HSIM-ADMS Configuration Commands
	Partitioning Your Design
	.HSIMBB and .part
	#HSIMBB and #ENDHSIMBB
	.bbinclude

	HSIM-ADMS Hierarchy

	HSIM-ADMS Control Options
	Passing HSIM Options in HSIM-ADMS
	Passing HSIM Options in the ADMS Netlist File
	Passing HSIM Options on the ADMS Command Line

	HSIM-ADMS DC Iterations
	HSIM-ADMS Boundary Elements
	Special Supply Converters
	Interactive Debugging

	HSIM-ADMS Outputs
	Logfile Outputs
	Waveform Outputs

	Black Box Mode Limitations[1]
	References

	10 HSIM-Virtuoso Analog Design Environment Interface
	HSIM Virtuoso Analog Design Environment Interface Package Options and Platform Support
	All-In-One Package (AAIM)
	AAIM Installation & Setup
	AAIM Uninstallation

	Native Netlist Integration (AANNI)
	Native Netlist Integration Installation & Setup
	Native Netlist Integration Features
	Basic Native Netlist Integration Flow
	Porting the Existing Design
	Native Netlist Integration Window and Pull-Down Menus
	Environment Setup
	Basic Setup
	Advanced Setup

	Setup Parameters
	Netlisting
	Create Top Netlist
	Edit Top Netlist
	Create Top & Host Netlist
	View Host Netlist
	Run HSIM

	Regenerate the Netlist and Run HSIM
	Toggle between Spectre and HSIM Simulation Database for Waveform Probing
	Toggle Flow I:
	Toggle Flow II:

	CircuitCheck in the HSIM-Virtuoso Interface Environment
	View Log File
	View Output ASCII Files
	Save/Load States

	Check in Synopsys License
	Cadence Cross-probing
	WaveView Analyzer Cross-probing

	CoSim (AACoSim) Integration
	UNIX Setup
	CoSim Installation
	Basic CoSim Flow

	HSIM-Virtuoso CircuitCheck Integration
	Native Netlist CircuitCheck
	Viewing Commands When Multiple Commands Are Applied
	cckCommandFile, cckDeviceVFile

	WaveView Analyzer Integration

	11 Verilog/VHDL/HSIM Co-Simulation
	Setting Up System Environment Variables for Co-Simulation
	Co-Simulation with Verilog as the Top Instance
	High-Level Co-Simulation Instructions
	Detailed Co-Simulation Instructions

	Instance Based Instantiation with Verilog Configuration
	Co-Simulation with VHDL as the Top Instance
	Co-Simulation with SPICE as the Top Instance
	Spectre/Verilog Co-Simulation Running Under the Virtuoso Analog Design Environment
	Donut Partitioning with Verilog as the Top Instance (V-S-V)
	Using Verilog-on-Top Partitioning
	First Run Example
	Second Run Example
	Verilog and SPICE Files:

	Donut Partitioning with SPICE as the Top Instance (S-V-S)
	Using SPICE-on-Top Partitioning
	First Run Example
	Second Run Example
	Verilog and SPICE Files

	Save-Restart in Co-Simulation
	Appending a Waveform in Co-Simulation

	Configuration File Commands
	analog_cell
	auto_vsrc_warning
	correct_netlist
	define_print_variable
	define_strength
	digital_cell
	digital_cell_inst
	dump_interface
	dump_port_prop
	dump_setting
	keep_iface_file
	map_subckt_name
	map_unfound_port
	report_logic_delay
	report_port_resistance
	set_args
	set_intr_mode
	set_fall_step
	set_port_prop
	set_port_prop_warning
	set_print_progress
	set_rise_step
	set_slope_step
	set_verbose
	set_verilog_supply1
	set_verilog_supply0
	verilog_file

	Automatic Voltage Level Detection
	Voltage Setting Rules
	Rule 1
	Rule 2
	Rule 3

	Co-Simulation Interactive Mode
	List Interface Nodes
	csli

	Print Global Interface History in Time
	csh

	Print Interface Node History
	csnh, csinh

	Set the Number of Entries Printed By csnh and csinh
	csnph

	Set Watchpoint to Interface Node
	csnw, csinw

	Delete Watchpoint
	csdnw, csdinw

	Verilog System Tasks for Co-Simulation
	Co-Simulation Setup Guidelines
	Map Correct Port Voltages
	Define Clear Port Direction
	Set Input Ports As Voltage Sources If Possible
	Define SPICE Netlist Bus Notation
	Handle Bi-Directional Ports

	Partitioning Guidelines
	Partition Boundary with Clear Digital Behavior
	Avoid Partitioning at Timing Sensitive Signals
	Avoid Reach-in Signals in Analog Partitions
	Avoid Partitioning at Bi-directional Signals Involved Strength Fighting and Pass Switches
	Avoid Fine Grain Partitioning

	Strength Table Setup Guidelines
	Co-simulation with VCS
	HSIM-VCS Co-simulation Usage Flow
	Setting up System Environment Variables for Co-simulation
	Running the Designs with Co-simulation
	Co-Simulation with Verilog as the Top Instance
	Co-Simulation with SPICE as the Top Instance

	Summary of Commands
	Interactive Mode
	Limitations
	Platform Support for HSIM/VCS Co-Simulation

	Co-Simulation with ModelSim
	ModelSim/HSIM Integration
	Running ModelSim/HSIM Co-simulation with Stand-alone ModelSim
	Running ModelSim/HSIM Co-simulation Under the ADMS Environment

	HSIM Features Not Supported by Co-simulation
	References

	12 Physical Visualization Manager (PVM)
	PVM Installation
	Installing PVM: No Existing Customized Cadence Tools
	Installing PVM: Existing Custom Cadence Tools

	Using PVM
	Generating a GDSII File
	Loading a GDSII File
	Opening a View
	Violation Map Analysis: Visualization
	Localization and Highlighting
	Zoom Settings
	Visibility
	Find Resistor
	Dynamic Visualization

	Original Layout: Localization & Highlighting

	PVM Graphical User Interface (GUI)
	File Menu
	Action Menu
	Find Menu
	Settings Menu
	Layers
	Modes
	Properties
	Reference
	Violation Map
	Threshold

	Visibility Menu
	Options Menu
	Toolbar
	Log Notes
	Status bar
	References

	Part: 13 HSIMplus Appendices
	14 HSIM-Virtuoso Interface Netlist Properties
	HSIM Netlist Properties
	HSIMD Netlist Properties

	15 HSIM-Virtuoso Interface Advanced Topics
	Generating hsim/hsimD View and SimInfo
	Modifying hsim/hsimD SimInfo
	Removing hsim/hsimD SimInfo
	Netlist Procedures for Component Primitives
	HSIMD Netlist Procedures for Component Primitives
	instParameters Field
	componentName Field
	termOrder Field
	propMapping Field
	namePrefix Field
	namePrefix Field

	Models, Macros, and Include Files
	Models
	hsimD (Direct)
	Macros
	Include File
	Net Name Conversion Macro
	Expansion of pPar, iPar

	Assigning HSIM Parameters
	Assigning HSIM Parameters for Subcircuit
	Assigning an HSIM Instance Parameter
	Assigning an HSIM Parameter to an Instance with a Subcircuit (Cell) Assigned the Same HSIM Parameter in Component Description Format

	Naming Conventions
	HSIM-Virtuoso Interface Ocean Script Command Usage
	Public APIs for “HSIMOcean” package
	Ocean Script Example

	Socket (HSIM) and Direct (HSIMD) Integration
	Installing Socket (HSIM) and Direct (HSIMD) Interfaces
	Porting Existing Design
	Netlist and Simulation
	Starting the GUI and Selecting HSIM
	Specifying a Host Machine
	Setup Environment
	Netlister Settings
	Graphically Editing Stimulus Files
	Analysis
	Design Variables
	Simulator Options
	HSIM Parameters
	Selecting Data to Save or Plot
	Timing and Power Checks
	Generating Netlists
	Running Simulations

	Viewing Results
	Waveforms
	Annotation

	Load and Save Sessions

	Monte Carlo Analysis

	16 MOSRA Stressed Model Application
	stressedModelConfig API
	stressedModelInit API
	stressedModelParamNameList API
	stressedModelParamNameAndVal API
	stressedModelParamVal API

	17 User Reliability Interface
	URI Model
	Dynamic Library
	HSIMURILIB

	User Files
	URI Header File (URI.h)
	Reliability Parameters
	Reliability Variables
	Additional Stress Variables
	Other Functions

	URI Interface File (URI.c)
	User-Defined Header File (b3uri.h)
	Primary Model File (b3urimain.c)
	Model Parameter Processing File (b3uriread.c)
	Model Default Setting File (b3uriset.c)
	Model Evaluation and Load File (b3urild.c)

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

