
1

Wireless Mesh Audio System
Stephan Stankovic (u0872863@utah.edu)

Steen Sia (u1031024@utah.edu)
Jeremy Wu (u0895969@utah.edu)

Jonathan Pilling (u6005524@utah.edu)
https://theboyzzzz.github.io

Abstract—In today’s world, many households have
an abundance of wireless or Bluetooth speakers laying
around. However, due to software and hardware limi-
tations, it is difficult to pair multiple speakers together.
We aim to solve this issue by designing a wireless mesh
audio system that allows users to pair any number of
speakers together. This mesh audio system is comprised of
a single transmitter and multiple receivers: the transmitter
takes an audio input from the users device and sends
the signal to each of the receivers simultaneously. Since
wireless networks do not have the bandwidth limitations
of Bluetooth, our system will allow users to pair as many
speakers as they wish.

Index Terms—Audio, auxiliary, bandwidth, Bluetooth,
receivers, speakers, transmitter, wireless mesh audio sys-
tem

I. INTRODUCTION

A. Background

Speakers are becoming increasingly prevalent into our
society. They are present in phones, laptops, cars, and
most households will have at least a few speakers laying
around. However, as prevalent as speakers have become,
support for pairing multiple speakers together (especially
of different brands) is surprisingly limited.

One popular solution for wireless speaker pairing is
Bluetooth. Bluetooth is a low latency wireless commu-
nication protocol used for exchanging data over short
distance radio waves [1]. While it is convenient and read-
ily available in any smart phone or laptop, it does have
bandwidth limitations. The low bandwidth means that
only two Bluetooth speakers can be paired concurrently
to one device. While this is enough for many situations,
larger rooms often require more than two speakers to fill
the room with sound.

In order to overcome the limitations of Bluetooth, our
system uses a wireless mesh network. Wireless networks

This work was supported by the University of Utah, submitted on
December 13, 2019. Stephan Stankovic, Steen Sia, Jonathan Pilling,
and Jeremy Wu are all with the University of Utah, Salt Lake
City, UT 84112 USA (u0872863@utah.edu); (u1031024@utah.edu);
(u0895969@utah.edu); (u6005524@utah.edu)

are designed to replace wired Ethernet connections and
can handle much greater throughput than Bluetooth.
By using a wireless network instead of Bluetooth, our
audio system will not run into bandwidth limitations
when pairing multiple speakers together. Our mesh audio
system will be comprised of two main parts: a transmitter
and multiple receivers. The transmitter will take an audio
signal through an auxiliary input and send it to each of
the receivers simultaneously.

There are some existing products that implement a
wireless multi-room audio system similar to ours such as
Sonos and Google Cast [2], [3]. However, the proprietary
software/hardware used by these manufacturers make
it hard or impossible to pair different brands together.
For example, Sonos users can only stream audio to
their speakers by using the Sonos app, while an Apple
Homepod requires an Apple device to stream any kind
of content. Another problem for many of these existing
wireless audio solutions is that they are prohibitively
costly. The Sonos connect, which acts as a receiver to
allow users to stream audio to their own speakers, costs
$349 for a single unit. The Google Chromecast audio
is a much cheaper solution at $29, but streaming to the
Chromecast audio is not supported by all devices/appli-
cations.

Our goal is to bridge the gaps in the wireless speaker
market by creating a mesh audio system that does not
require any proprietary software/hardware. We will keep
our system simple and inexpensive. Each receiver will
also have a simple auxiliary output, meaning that users
will not be restricted to any existing ecosystem and they
can connect to any brand of speakers.

B. Motivation

1) Wireless Mesh Networks: Bluetooth is currently
the most popular solution for wireless speakers due to
it is ease of use and availability; however, as explained
previously, Bluetooth suffers from bandwidth limitations.
Thus, it is not a viable solution for our project.

A traditional WiFi network is comprised of a single
root node known as an Access Point (AP) and leaf

2

nodes that connect to the root. The root is responsible
for arbitrating and forwarding all data between the leaf
nodes. Since the AP must be directly connected to each
of the leaf nodes, traditional WiFi networks suffer from
limited coverage because every node must be in range
to connect to the root node. Furthermore, another issue
is that the network is susceptible to overloading as the
maximum bandwidth is determined by the AP.

To overcome the range and bandwidth limitations of
a traditional wireless network and Bluetooth, our system
will use a wireless mesh network. A mesh network
differs from a traditional WiFi network in that all nodes
communicate directly with neighboring nodes instead of
a central AP. In essence, this means that every node in the
network that has children becomes an AP, and children
with no other connections are known as leaves. Thus, a
mesh network is easily scalable since it is not bandwidth
limited by a single AP and it also leads to much greater
coverage since each new node that is added extends the
range of the network [4]. Currently ESP offers their own
ESP-Mesh protocol, which we have successfully setup
and transferred text, but we may use the AP+Station
mode to create our own mesh protocol.

Fig. 1. Sample WiFi Mesh Network [5]

2) Huzzah ESP32 Board: The core component of
our mesh audio system is the ESP32 board [6]. ESP32
boards have multiples features that are perfect for our
project application. The existing features are as follows:

• 802.11b/g/n HT40 WiFi transceiver: Built-in WiFi
allows our boards to form a mesh network and
communicate with one another.

• Integrated Bluetooth: Bluetooth will allow the root
node to be paired to a smartphone for wireless
control over the mesh network.

• Low noise analog amplifier: A low noise analog
amplifier ensures clean audio transmission to each
speaker.

• 2 x DAC: Digital to Analog converters allow us to
convert the digital audio signal to an analog output

for our speakers.
• PWM/timer input/output available on every

GPIO pin: Timers on every pin will allow us to
keep our mesh audio system synchronized.

Fig. 2. Huzzah ESP32 Board [6]

C. Hardware

Hardware for this senior project will be our ESP32
boards connected to PCBs which will contain an audio
jack and any additional components we deem are needed
for the project. We are planning on putting these in
3D printed cases combined with batteries for portability.
Batteries will be optional to allow users to take these
wherever they go, otherwise users will be able to power
the system with a micro usb. The optional battery will
be any Lithium Ion Polymer battery. Other hardware
we will be utilizing for our project will be speakers to
showcase transmitted; synced audio; mobile phone to run
and showcase our application; and a transmitter board.

II. TECHNICAL DETAILS

A. iPhone Application

To control the mesh audio network, an iPhone ap-
plication was developed using Swift. The application
communicates with the root node in the network through
BLE (Bluetooth Low Energy). The main features of the
app are as follows:

• Connect to any BLE peripherals
• Add/remove devices from the network
• Rename devices in the network
• Mute devices
• Change volume

3

1) Swift Core Bluetooth Framework: The Core Blue-
tooth Framework provides classes that allow iOS devices
to discover, explore, and interact with low energy periph-
erals. The two main components of Bluetooth commu-
nication are known as the central and the peripheral. In
the case of the wireless mesh audio network, the phone
application is the central, and the Esp32 devices are the
peripherals. Peripherals constantly advertise the data that
they have to any centrals in close proximity. When a cen-
tral discovers a peripheral, it is able to act as a manager
by connecting/disconnecting from the peripheral and
reading/interacting with the data that is being advertised.
An example of communication between peripherals and
centrals is shown below, where the peripheral is a heart
rate monitor, and the central is a laptop, phone, or tablet.

Fig. 3. Central and Peripheral Communication [7]

Once the central is connected to a peripheral, it may
then request data through the peripherals services. A
service is a collection of data which helps to implement
a feature or functionality of the device. For example,
in the mesh audio network, the root peripheral has the
following services:

• Device Service
• Volume Service

Each service is also a collection of characteristics, which
provide more specific data and functionality related to
the service. The structure of the peripherals in the mesh
audio network are detailed below:

• Device Service
– Device Names
– Connected Devices

• Volume Service
– Mute
– Current Volume

• Music Service
– Play/Pause
– Forward
– Backwards

Fig. 4. Peripheral Data Structure [7]

Fig. 5. Devices View

2) Application Details: Upon launching the applica-
tion, users will be greeted with a Devices screen. The
application will also automatically scan for any nearby
Bluetooth Low Energy peripherals. If any are found, they
will be displayed in the disconnected devices section. At
this point, there are two options available:

• Connect to the device: Selecting a device will bring
up a prompt which asks if the user would like to
connect to the peripheral.

4

• Scan for new devices: By either clicking on the
refresh button in the top right corner or pulling
down, users may scan for new devices. This does
not affect any currently connected devices.

Fig. 6. Connecting to Devices

Once a user has connected to a device, it will move
from the disconnected section into the connected section.
At this point, it is now possible to select the connected
device, which will bring up the device detail view. The
device detail view contains the bulk of the application’s
functionality, and has the following sections:

• Device Info: Shows the name, universally unique
identifier (UUID), and services of the connected
peripheral.

• Characteristics: Shows all of the characteristics of
the peripheral. Selecting a row in this section will
open a text dialog box, allowing users to send
custom data to the characteristic.

• Settings: Contains several settings for the mesh
audio network:

– Rename Device: Renames the root node
– Mute Device: Mutes all speakers in the network
– Update Characteristics: Refreshes the charac-

teristic list and updates the values of each
characteristic if they have changed.

– Send Custom Data: Allows users to send cus-
tom data to a characteristic of their choice.

• Child Devices: Shows the child devices connected
to the root node. Selecting a device presents a text

box which allows users to rename the device.

Fig. 7. Device Detail View

B. ESP32

1) WiFi Mesh: The WiFi mesh network is imple-
mented using the ESP32 Mesh Development Framework
(MDF). This framework allows a mesh network to be
setup with no router. One of the ESP32s is set to be the
root node (the device that manages the other devices in
the network). This root node then connects to leaf or
child nodes, which act as both as an access point and a
station. Since all nodes act as an access point, each node
extends the range of the network by allowing nodes that
cannot reach the root node to connect to an intermediary
node.

2) Transmission of Data: Data is transmitted through
the mesh network with the use of the wireless broadcast
function in the MDF. The broadcast function allows
nodes to send data to a device with a different MAC
address in the network. Since the root node maintains a
table of the MAC addresses of the child devices, data
can be transmitted to every device in the network by
broadcasting to each MAC address in the table.

The original intention of this project was to stream
music from an auxiliary input into the root node and
broadcast it to the entire network. The analog to digital
converter (ADC) on the board did not function properly
due to hardware limitations. Since an ADC is required to

5

convert analog input, the only alternative solution with
the remaining hardware was to store music files in the
root board’s memory. Transmitting the music file across
the mesh network involves reading 1024 byte blocks one
at a time, then broadcasting the block to the rest of the
network.

3) Bluetooth: Bluetooth is a wireless protocol that
allows devices to exchange data with one another over
short distances [8]. Bluetooth is typically used to trans-
mit small packets of data between mobile devices since
it has much lower bandwidth than traditional wireless
networks [8]. Although the low bandwidth is not ideal
for the wireless audio network, it’s more than enough
for the data transmitted between the root node and the
iOS application.

The ESP32 is a flexible micro-controller which can
behave either as a server or a client. Since our project
revolves around a main transmitter, it will act as the
server. The mobile application will act as the client that
connects to the ESP32’s server in order to access its
services.

Bluetooth on the ESP32 uses a Generic Attribute Table
to store the characteristics and services that will be
advertised. It is crucial to have generic attribute table
for BLE devices to send and receive standard messages.
It is a contract that these devices abide to in order to
trade information.

Fig. 8. Generic Attributes Data Structure [9]

Once a profile is connected to one client, it cannot
be accessed by other clients simultaneously. Multiple
services can be instantiated and can provide utilities with
the use of one or more characteristics. Each characteristic
has a declaration and value. They respectively describe
the metadata contained in the characteristic and contain
the raw data to be transmitted.

Characteristics can be advertised with a variety of per-
missions such as read, write or notify. Each characteristic

also has a UUID which allows it to be easily identified.
Our service contained the following characteristics:

• Get Device List
• Mute Device
• Rename Device
• Play
• Pause

4) I2S Communication Protocol: The way audio data
was transmitted was serially using the I2S protocol. This
protocol is specifically made for audio applications and
allows for a low jitter connection. There is only one
master and one slave to which data is being transferred
from and to. I2S uses 3 different signals: word select,
serial clock, and serial data. All of these clock signals
were generated on the ESP32 boards. This made it fairly
simple to send data since we would simply configure
the number of bits, which was 16, and the sampling
frequency, which we selected to be 11025 HZ. The WAV
files were all sampled at that rate and therefore we had
very poor audio quality. Data sent over the network is
stored into memory. I2S then retrieves it, sends it to a
direct memory access buffer, and then finally outputted
to the on-board DAC.

An I2S configuration was also set up for root node
which contained a built in ADC. However, the ADC
was so inaccurate that it was unusable to decode audio.
The difference in this configuration versus the one found
above was that now the ESP32 was receiving data from
the on-board ADC, placing it into a direct memory ac-
cess buffer, where then I2S would transfer into memory
which the WiFi could access.

5) Digital to Analog Converter (DAC): Digital to
analog conversions were handled by the ESP32s built
in DAC. There are two DACs on the ESP32, one was
used for left channel audio data while the other handled
right channel audio data. The DAC received data directly
from the I2S protocol discussed above. Whenever the I2S
data was available, it could be read from two GPIO pins
on the board. The DACs were only able to achieve 8 bit
resolution for the digital data that was provided which
was unfortunately very low quality.

6) Analog to Digital Converter (ADC): Analog to
digital conversions were supposed to take place where
we stream audio from a auxiliary capable device, but
unfortunately we ran into a hiccup with the PCB that
we created, and the onboard ADCs are notoriously bad.
After much research, we learned that others couldn’t
successfully get it to sample at the advertised 192KHz
potential. Many users couldn’t even get it to sample
using the preferred method at all, and the ones who did
just did analog reads from other GPIO pins. We didn’t

6

Fig. 9. Left Right Synchronization of Audio

Fig. 10. Audio sync between 2 boards

use that method simply due to sampling being too slow
in that case.

C. PCB

The PCB was designed in the first month of our
project. We picked the TLV320AIC3204 audio codec
from Texas Instruments as our main integrated circuit
(IC) on the PCB. This would have allowed us to do
analog to digital conversions as well as digital to analog.
Therefore, we only needed to design and test one PCB
for both the root node and the non-root nodes. The data-
sheet provided from Texas Instruments was used to select
capacitor and resistor values and to wire up the board.
Unfortunately, the codec was only sold in a Quad Flat
No-Lead (QFN) form, which we found to be very hard to
solder onto the board. The PCB wasn’t used simply due
to us getting the board back from soldering the week of
demo day. We didn’t have enough time to configure the
board and verify that everything worked. Our original
proposal didn’t contain an audio codec, but due to the
poor performance of the ADC and DAC found on the
ESP32 chip, we later added one. Our original PCB was
supposed to only contain the 3.5mm headphone jack
ports and the RC circuit to reduce noise.

Similar to our original proposal, for demo day 3.5mm
headphone jack breakout circuits were placed onto
breadboards. We didn’t have enough time to create a
custom PCB for this purpose.

III. WHAT WE LEARNED

• Teamwork and Communication
• C
• WiFi and Mesh protocols
• Configuring Peripherals
• Simple Audio Signal Processing

A. Challenges

The team experienced many challenges throughout the
course of the project. Many risk mitigation plans had to
be put into effect. A lot was learned from circumventing
these roadblocks.

1) Writing Micro-controller Code: One of our first
challenges was beginning to write the code for our
micro-controller. When researching we saw that the
ESP32s had an Arduino IDE and a default Espressif
Development Framework. We decided to go with the
default framework such that we could have more access
to the ESP32 versus, having to figure out how to rewrite
everything in Arduino. We had a TA in Embedded
Systems who helped us make this decision. Tom Becnel
informed us how they wrote code for ESP32s out in the
field; and he mentioned ”We normally use their example
files and modify them for our use”. Taking his advice we
began to look into the examples and learned that there
was a Mesh Development Framework (MDF) that was
created for this specific use. We found an example of a no
router mesh system (ad-hoc) and decided to not reinvent
the wheel. We heavily modified the original code by
deleting and stitching in other examples as we saw fit.

2) PCB: From the beginning when designing the PCB
we had challenges. Embedded Systems hadn’t really
taught us how to work with a variety of components
and how to read their datasheets. When designing the
PCB we had to really bring in knowledge from 2280 and
online resources to decide what kind of capacitors and
other various components we needed to add. Creating
the schematic wasn’t horrible since we could use online
libraries which had the components we wanted to use.
The difficult part was creating the board file with correct
wiring since there were so many components.

A mistake we made was doing all surface mount
soldering components besides the pin headers. Soldering
the PCB was a extremely difficult due to the size of
components, the placement, and the packaging of the
audio codec. This QFN package was small with 0.5 mm

7

pitch between pins. This proved difficult to work with,
even with a stencil. The IC needed to be pushed down
onto the PCB to prevent misalignment; however, when
the IC was pushed down, the solder paste was spread
between the pads causing shorts. This was hard to correct
without the right equipment.

Lastly, it was difficult working with the audio codec
since it is a fairly new chip offering from Texas In-
struments. It sounded amazing on paper and had all the
functionality we wanted, but when it came to powering
and configuring it, it proved difficult. We found the
register mapping, but didn’t really understand the process
in which to program it. Some documentation stated to
provide a master clock signal first, some places said to
power the board first then provide a clock signal. It was
confusing and difficult.

3) ADC: Working with the on-board ADC was a
challenging experience. After some research we learned
that the ADC was inaccurate and required a special type
of calibration to get it working at all. This was required
to get the sampling rate up to the 44100 Hz which we
wanted, but unfortunately we weren’t able to achieve.
We had another option of sampling from a GPIO pin,
but that was extremely slow and didn’t allow us nearly
enough samples to get any sort of recognizable audio.
The team learned a lot about how the analog voltages
are converted and represented in binary.

B. Testing and Risk Mitigation

Testing each project task was just as important as
developing the individual components. One thing that
was imperative to progress was to always make sure that
testing happened concurrently alongside implementation.
This ensured that new functions and changes to the code
base were working according to specification. Testing
new modules would first test the core feature of the
added system. After making sure the new implementa-
tion worked for normal use, edge case testing began. Af-
ter edge case testing the module was deemed complete.
As new system pieces were integrated, regression testing
was done on existing technologies to ensure there were
no new issues. Many issues were encountered throughout
the semester. Risk mitigation plans were in place to
resolve issues beyond the teams control and have a
successful demonstration.

1) Hardware Testing: One of the core custom hard-
ware pieces was the PCB with audio codec. One of
the simple tests performed was doing an ERC check
in Eagle. This was a simple check to ensure no basic
errors were made with circuit design. Once the circuit
was fabricated and the components were soldered, visual

inspections on all soldered components was performed.
During visual inspection the PCB was examined thor-
oughly. The visual inspection passed if no solder chips,
tombs, or other abnormalities were found. Many boards
failed this check under the microscope. One PCB passed
this inspection near the end of the semester. This PCB
was then hooked up to power, and voltages were traced
with a multi meter. The first multi meter test was to
check that the audio codec was receiving power and that
the voltage reading was accurate. After confirming that
the codec was powered, a phone was connected to the
auxiliary input on the PCB. Following auxiliary traces
with the multi meter confirmed that voltage readings
were being delivered to the audio codec input pins. After
these tests, serial data was attempted to be printed out on
the console. This test was never passed successfully. An
I2S/I2C timing issue seemed to be the probable cause
of the serial data issue. To circumvent this issue, the
built in ADC on ESP32 was used. More issues ensued
during testing, analog voltage readings were sporadic
and unpredictable. Another risk mitigation plan was
used. This plan used a WAV file and got rid of the
ADC conversion required. The final hardware testing was
driving speakers with the ESP32’s DAC pins. Being able
to hear audio from the speakers passed this final test.

2) Mesh Testing: The first software module that was
completed was the mesh network. The mesh network was
primarily tested by sending test packets over the mesh
network. These test packets contained integer informa-
tion. Testing was first performed with one root and one
leaf in the mesh. On successful, accurate data transfer,
this test was passed. Testing the mesh’s broadcast capa-
bilities involved one root and multiple leaf nodes. This
test was passed when integer data was being transferred
simultaneously throughout the mesh. Functional testing
was performed with a maximum of five leaf nodes.
Communication continuously worked as expected.

After root and leaf testing the mesh network was tested
with intermediate nodes. These tests also helped validate
the self-healing properties of the mesh. The intermediate
nodes provided an extra hop in the mesh network so
that a leaf did not always communicate directly with the
root. To perform this testing, the boards used were placed
approx. 25m apart. If a leaf was too far from the root, it
would connect to the mesh through the intermediate node
instead. With the change in network configuration, data
was still being transferred successfully. No data loss was
noticed, but minor latency was noticed in this network
configuration.

Transmission of audio data was broken into pieces.
After the final risk mitigation plan was in place, a leaf
board was used to verify that a speaker could be driven

8

by a WAV file being played through the ESP’s DAC.
After this functionality was working, the WAV file was
moved to the root node. This WAV file data was then
packed and broadcast over the mesh network. Various
I2S and WIFI buffers had to be adjusted for this to work.
Once audio was successfully playing over the mesh,
different sample rates, I2S buffer sizes, and delays were
manipulated during testing.

Ensuring that audio was synced was one of the final
tests for the mesh network. This was done by listening to
the track while it was played through different speakers.
Some minor latency issues seemed to happen at times,
but most of the time these issues were not audible.

3) Mobile App Testing: Testing of the mobile appli-
cation was done mostly by trial and error. Testing user
interfaces with unit tests or conventional testing methods
is challenging due to the fact that most of the mobile
application relies upon graphical design. User interface
design is also largely dependent on preferences that can
vary from user to user.

4) Bluetooth Testing: Testing the Bluetooth integra-
tion was done through two methods: prototype applica-
tion and mobile application. The prototype application
utilized is the nRF Connect for Mobile [9]. An app
offered in Android and iOS, which allowed us to use our
phones to test our implemented ESP32 BLE server. In
action, our BLE server would initiate advertising mode
and allow the app to scan for devices. Upon scanning, we
were able to connect to ”ESP-Mesh” (BLE server) and
see listed services and their respective characteristics.
The first test simulation was to be able to send bytes
of data to the client. The Bluetooth implementation
consisted of a mock characteristic that had a value array
of bytes containing ”hello” represented in hexadeci-
mal. Once read from the characteristic, ”hello” displays
without any issues. This marked the start of our read
characteristics that were previously mentioned in the
Bluetooth section.

The next test consisted of the app transmitting infor-
mation to the BLE server. The app would be able to
write any byte value and our BLE server should print
out that same value. Fortunately, esp-idf had utilities to
make data transfer easy [8] which allowed us to log the
data sent from the client when a writing event occurs.

Finally once these characteristics became functional,
we were able to test them using the actual mobile
application. The phone application easily identified the
BLE server under ”ESP-MESH”, connected to it, and
accessed the UUIDs for each characteristic. We added
one more characteristic which allowed read, write, and
notify permissions. The phone app was able to en-
able/disable notification which respectively acts as a way

to receive/block server information. This was a good
function to implement in order to perform less tasks
or essentially put the server and client interaction on
stand by. The test from before remains, we made sure
that our mobile app was able to read all characteristics
simultaneously and parse characters and integers. Lastly,
we sent integers from the mobile app to the BLE server
and the server was able to print the same data. The
transmission of data (reading and writing) performed
seamlessly and had no delay.

C. 3D Printed Case

The purpose of the 3D printed case is to provide an
enclosure for both the ESP32 and the custom PCB. The
bottom case is designed to hold the ESP32 with pegs. It
also features a hole for the mini-USB port so that it can
go inside the case and attach to the micro controller.

Fig. 11. Bottom Case

The top case is responsible for holding the custom
PCB upside down. It has snap fit sides guaranteed to
keep the case in tact. The purpose of this is so that we
can have wires directly connecting from the PCB to the
ESP32 and make it compact. There is also a hole for the
top case to give enough space for the audio jack pins to
connect inside the case.

Fig. 12. Top Case

9

Lastly, the full case with the ESP32 and PCB together
is represented below. But due to technical difficulties
with the PCB, we did not opt to use the 3D printed
design.

Fig. 13. Full Case

V. CONCLUSION

We have learned a lot about how to work as a group
and present ideas to each other. Communication is vital
in any group setting and we have learned how important
this is in an engineering setting. We have also learned
about the technologies we worked with throughout the
semester. Moreover, we have learned about wireless
mesh networks and how to implement them. Lastly, we
have learned about using frameworks with the ESP-
MDF and IDF. These were core frameworks used in our
project. To summarize, the intent of the Audio Mesh
project was to propose a new audio solutions system
that pairs with multiple speakers of different brands. This
project used a Wi-Fi mesh system to combat Bluetooth
discrepancies. Each designated speaker, connected to
their own PCBs, received audio data from the root board.
The hope for this project was to provide a quality of life
experience for consumers that desire flexibility in sound
systems.

REFERENCES

[1] S. Pandi, S. Wunderlich, and F. H. P. Fitzek, “Reliable low
latency wireless mesh networks — from myth to reality,” in
2018 15th IEEE Annual Consumer Communications Networking
Conference (CCNC), Jan 2018, pp. 1–2.

[2] “Wireless speakers and home sound systems.” [Online].
Available: https://www.sonos.com/en-us/home

[3] “Chromecast built-in.” [Online]. Available:
https://www.google.com/intl/en us/chromecast/built-in/

[4] R. Bruno, M. Conti, and E. Gregori, “Mesh networks: commodity
multihop ad hoc networks,” IEEE communications magazine,
vol. 43, no. 3, pp. 123–131, 2005.

[5] Espressif, “Esp-mesh concepts.” [Online]. Avail-
able: https://docs.espressif.com/projects/esp-idf/en/latest/api-
guides/mesh.html#mesh-concepts

[6] A. Industries, “Adafruit huzzah32 – esp32 feather board.”
[Online]. Available: https://www.adafruit.com/product/3405

[7] Apple, “Apple developer documentation.” [Online]. Available:
https://developer.apple.com/library/archive/documentation/

[8] Espressif, “espressif/esp-idf.” [Online].
Available: https://github.com/espressif/esp-
idf/blob/master/examples/bluetooth/bluedroid/ble/gatt server service table/tutorial/Gatt Server Service Table Example Walkthrough.md

[9] M. Wisintainer, Sheldon, Germán, R. Santos, Giovanni, Y. Tawil,
S. Bello, S. Santos, Michele, Paul, and et al., “Esp32 bluetooth
low energy (ble) on arduino ide,” Jun 2019. [Online].
Available: https://randomnerdtutorials.com/esp32-bluetooth-low-
energy-ble-arduino-ide/

Stephan Stankovic Stephan Stankovic was
born in Salt Lake City, Utah. His background
comes from the Balkan country of Serbia,
which peaked his interest in Nikola Tesla.
Began to pursue a bachelor degree in Com-
puter Engineering at the University of Utah in
August 2013. Expected graduation date, Fall
2019.

Steen Sia Steen Sia was born in Dumaguete
City, Philippines in 1997. He moved to the
United States in 2009 and is pursuing a bach-
elor’s degree in Computer Engineering at the
University of Utah. Currently, he is working
as a Software QA intern at SelectHealth in
Murray, Utah.

Jonathan Pilling Jonathan Wyatt Pilling was
born in Salt Lake City, Utah in 1995. He’s
currently working on his B.S. in Computer
Engineering from the University of Utah lo-
cated in Salt Lake City. From 2016 to 2019
he worked at Huntsman Cancer Institute at the
Information Desk. Since the summer of 2019
he’s been working as a Software QA Intern
for ChartLogic in Sandy, Utah. Mr. Pilling’s

awards include Hack the U 2016 - 1st Place (Hack to Save Homeless
Pets) and multiple Dean’s List awards.

10

IV. BILL OF MATERIALS

TABLE I
BOM

Item Unit Cost Quantity Part # Manufacturer Description Datasheet/Documentation

HUZZAH32 $19.95 15 3405 Adafruit WiFi modules https://www.espressif.com
ESP-IDF $0.00 1 N/A Espressif Programming Guide https://docs.espressif.com
Visual Studio Code $0.00 1 N/A Microsoft IDE to code https://code.visualstudio.com/
XB31 EXTRA BASS $99.99 1 N/A Sony Bluetooth Speakers https://www.sony.com/
Auxiliary Cable $5.49 15 N/A Syncfruit 3.5mm Premium Aux Cable https://www.amazon.com/
PCB Creation/Labor $3 15 N/A Eagle Fabrication of PCBs https://www.autodesk.com/
Headphone jack $0.95 15 N/A Adafruit 3.5mm Stereo Headphone Jack https://www.adafruit.com/

Jeremy Wu Jeremy Wu was born in Salt Lake
City, Utah. He’s currently a senior in the Com-
puter Engineering program at the University of
Utah. He currently works as a junior software
developer at IDFL Laboratory and Institute.

