UDASH: Server-Controlling Delivery Kart

Louis Cerda, Zahid Safi, Saeed Aljaberi, Jacob Montes, Jonny Palacios-Torres, Zyad Youssef
Computer Engineering, University of Utah, Salt Lake City

Abstract—UDash is a food and package delivery service
designed for the University of Utah campus. Deliveries are
controlled via users connected to the UDash server. The delivery
vehicle, Kart, will intermittently receive GPS instructions from
our server and navigate toward the requested dispatch area.
Upon approximate distance to the pick-up zone, the Kart will
notify the server of its arrival via GPS coordinates back to the
server.

I. INTRODUCTION

Inspiration for this project comes from a transportation issue
on the University of Utah campus. From residence housing to
hospital clinics and the engineering and humanities buildings.
A total of 203 buildings spanning 1,534 acres of land makes
transporting various goods across campus challenging [1].
In addition, many smaller sub-buildings and departments are
landlocked, having little access to public roads. Consequently,
delivering packages between facilities requires delivering on
foot or driving vehicles slowly to avoid pedestrians. Both so-
lutions are time-consuming and require manually transporting
the packages between buildings.

UDash is an online delivery service where customers can
request and deliver various goods across campus through an
online website. The delivery Kart will dispatch deliveries
based on popular routes between the different zones, as shown
in Fig. 2.

As shown in Fig. 1, a typical delivery and demonstration
will involve a user-controlled route between the Merrill Engi-
neering Building (MEB) and Warnock Engineering Building
(WEB). Each building’s entrance will serve as the designated
zones for dispatch. Assuming that the Kart starts at MEB, a
patron will request delivery to WEB through our website. The
UDash Website will then communicate with the server, which
is responsible for handling the orders and contacting the Kart.
The Kart begins by receiving the first set of GPS coordinates
that serve as directions for the vehicle.

During the delivery, the Kart will frequently ping its current
location back to the server, and the server will validate if the
Kart is operating correctly. The delivery is complete when the
Kart arrives at a zone by an approximate distance. The user
will see it’s final location through GPS coordinates on the
server.

The Kart is no bigger than 22 inches wide and 21 inches
tall operated via micro-processor. Customers will recognize
the vehicle by its distinct U shape that is synonymous of our
university’s logo. Packages will be seated in the center of the
U and will controlled remotely by a human operator.

-
EL™

Merrill
Engineering

ey

Warnock
Engineering

U‘t.ocboo. ©
ton®

Fig. 1. The proposed working route. Delivery will be made between Merrill
Engineering to Warnock Engineering.

II. BACKGROUND

The approach to UDash is separated into three components,
hardware, software, and firmware. Hardware will consist of
the RC Kart and sensors. The software comprises the server
and website responsible for controlling the Kart manually.
Lastly, firmware involves the GPS hardware and establishing
a connection between the Kart and the server.

A. Hacking the RC Kart

The hardware team uses Arrma Senton 4x4 V3 Mega 550
as UDash’s Kart platform (Fig. 3). Arrma’s Karts are durable,
allow for chassis adjustability and replacement parts, and
support a broader wheelbase to support the U frame, shown
in Fig. 4. It has a top speed of 35 mph and an estimated 10
Ibs carrying capacity [2]. The carrying capacity is the project
constraint as the extra weight of electronics and the frame
itself and package will factor into the total weight of the Kart.
The different speed provides additional torque needed to carry
the weight Kart across campus but not exceed dangerous rates.
The Kart is controlled through a radio transmitter and receiver

B. Software

A server and user interface (UI) is used to help communicate
with the Kart and different users for our project. A web



Memll

aBoino
1SBMULION

Marrioft
Ubrary

Fig. 2. Map indicates how a sophisticated delivery system could be imple-
mented on campus. The red dotted lines indicate possible routes taken by the
Kart, the green polygons indicate delivery zones. Original image taken from
the University of Utah campus and was later annotated [1].

server with application programming interface calls (APIs) is
commonly seen in similar web projects. Websites like Google
and Netflix utilize API calls to interact with their website based
on their application’s needs. Google, for example, uses API
calls that connect users to google maps and various services
tied to their google account. A similar design approach was
used for our website, where different API calls can track the
Kart’s usage and location based on API calls made to the
website.

The UDash project takes inspiration from DoorDash’s de-
livery service model. The UDash website allows the user to
control the Kart, get a live video feed, and see the GPS location
of the Kart. The UDash website will employ distinct API calls
to forward movement requests to the Kart, while the Kart
itself will utilize similar API calls to return GPS data. Not
to mention that the video stream will be hosted on the Kart
itself, allowing the operator to view what the Kart sees.

Fig. 3. Arrma Senton 4x4 V3 Mega 550 kit with the plastic top body removed
used for the Kart [2].

Fig. 4. 3D printing model of the Block U designed using the iOS Shapr3D
application.

C. Firmware

To navigate between different drop off-points on campus,
a consistent protocol was constructed for transmitting and
receiving the current location of the Kart. To select the
best Global Positioning System (GPS) device for the project,
some background in GPS systems was conducted to minimize
potential risks in the engineering process. Using a GPS, the
positioning of an object can be calculated using trilateration,
a mathematical approach to finding an object using two-
dimensional or three-dimensional coordinates after connecting
to a minimum of 3 satellites [3]. To begin sending GPS
coordinates to the server backend, the GPS has to have a set
of reliable features that will benefit the kart as follows:

« Fast Initialization: The Kart will be highly dependent on
knowing its location on startup to know where to go.
e Accuracy: All GPS modules are not 100% exact, but



having an overall accurate GPS will help pinpoint any
round-off error.

« Reliable Connection: Minimizing the loss of GPS satellite
connections is crucial to ensure position updates occur at
their required times.

o Ease of Use: A GPS with dedicated server libraries to
build off from and easy hardware connections.

After considering all the design factors, the GlobalSat BU-
353-S4 USB GPS Receiver was chosen for its reliability for
current and previous users, a hot-start time of one second (35
for a cold-start), a 10m 2D Root Mean Square (RMS) for
accuracy, a WiFi to USB connection with a dedicated GPS
library called GPSd that can parse data in JSON.

Using the Raspberry Pi 4, the GPSd library will read
latitude and longitude coordinates, which will then be stored
as the Kart’s central transportation controller. By reading the
coordinates, the Raspberry Pi can calculate the current position
of the Kart and compare the current location with the database.
The database tells the Kart where to go after the data is sent
to the server.

III. WORK IMPLEMENTED

The team proposes to deliver packages between MEB and
WEB. A data set of GPS coordinate points will mark the
proposed route. In addition, UDash will have two pick-up
zones at the entrance of each building. Customers will then be
able to request pick or delivery from the two locations from
the UDash Website.

The team has been able to create a working kart in which
we can communicate with using a website through an API
back end to send movement commands, GPS coordinates and
a video stream. The Pi, which is the central component of the
kart uses our phone hotspot in order to send the video stream
and communicate with the API. Since the usage of API for
controlling the kart and a working video stream, we don’t need
to be near the Kart and can control it remotely.

A. Hardware

The Arrma RC Kart operates by receiving radio signals
emitted by the remote controller to the SLR 300 Antenna
Receiver. The signal is then sent through the receiver plug,
which is connected to the Electronic Speed Controller (ESC).
The ESC is an electrical circuit responsible for controlling
and regulating the DC motor’s speed through two pulse-wide
modulations (PWM) wires. The first PWM wire is responsible
for managing the speed of the motor, while the second PWM
wire acts as a traditional servo motor signal that controls the
Kart’s steering. The Hardware team used this knowledge to
their advantage by intercepting the Kart’s communication with
the motor using the PWM signals from the onboard Raspberry
Pi 4 rather than the Kart’s internal radio receiver.

To fully use the Raspberry Pi’s PWM signals, the hardware
team had to first measure the incoming PWM signals from
the receiver using an oscilloscope. The PWM signals were
recorded for both steering and throttling, as shown in Fig. 5.
Different PWM signals were recorded for the PWM signals so

the Kart could change speeds and move in reverse. The main
issue with this task was that the Kart had its communication
protocol with the remote control, and there needed to be
publicly available documentation for the operating frequencies
of the PWM. In addition, testing was conducted to fine-tune
the signals from the Raspberry Pi to work correctly with the
Kart.

Fig. 5. PWM signals of the Kart for server control.

Once the correct PWM signals were determined, The Rasp-
berry Pi 4 is then directly connected to the ESC for PWM
emulation. Python libraries were created to control the speed
and operation of the RC Kart. Various high-speed libraries
and commands were needed to emulate the Kart’s movements
(left, right, accelerate, brake/reverse). The library was essential
for the project because it prevented the kart from making
adjustments to the PWM signals in the same part of the code
where GPS and server responses were occurring.

The python libraries added a layer of abstraction that allows
other portions of the code easier access to the PWM signals.
For example, this allowed the firmware to be in charge of the
GPS and the client to call functions such as right (45 degrees),
left (45 degrees), straight (50% power), etc., without knowing
the exact duty cycle for each PWM signal.

Since many of the events coincide, which can cause several
issues such as input lag, unwanted delays, and connectivity
problems. For these reasons a Raspberry Pi 4 for its micro-
processor is used because it allowed for faster calculations
and mitigation of the issues mentioned before. In addition,
the Raspberry Pi 4 lets the Kart use an ultrasonic sensor
for proximity detection so that the Kart can stop within
milliseconds in an emergency.

Another issue is connectivity and ensuring the Kart stays
connected to the server. To address this issue, the Kart uses
the mobile WiFi hotspot functionality from an iPhone 13
Max Pro to continuously connect the Raspberry Pi to the
Internet. This circumvents any issues the Kart would have had
from being out of range of the school’s WiFi router, such as
disconnecting mid-delivery. It also allowed for the Raspberry
Pi to consistently have a strong signal close by as they are
known to latch onto WiFi signals for as long as possible
despite the strength of the WiFi signal. Weak signals would
have caused issues with the Karts transmissions to the server,
this mobile hotspot solution mitigates any issues that could



have occurred between Kart and the server.

B. Firmware

To simultaneously switch from pinging the server the
Kart’s current location to receiving commands from the user.
The Kart had to be implemented to run asynchronously via
(python’s asyncio libraries). The async functionality allows the
Kart to be in a non-blocking fashion and execute commands
after a specific timer has been reached. Shown in Fig. 6 shows
the overall design of all communication components for the
UDash Kart.

Fig. 6. The overview of the required source connections to have a fully
functional server-controlled Kart.

1) Kart Client: The added flow allows the Kart to send GPS
coordinates every 4 seconds. Then, it processes the driving
commands sent to the C GPIO libraries that communicate with
the Raspberry Pi 4’s GPIO pins to signal what the Kart should
be doing (driving, resetting, reversing, etc.). Shown in Fig. 7
is the flowchart of what the Kart determines to do next after
specific actions.

2) Ultrasonic: The ultrasonic sensor is used to help the
Kart avoid obstacles. It’s a device that measures the distance
between the sensor and an object in its path. The sensor has
two components: transmitter and receiver powered using a
voltage divider of 3V (in reference to the Pi’s 5V output). This
device emits a sound wave and waits for it to be reflected in
the receiver.

The sensor calculates the distance of an object and notifies
the Kart if there’s an object blocking its path. If the Kart finds
an object less than 10us away, the Kart will no longer progress
forward if the user tries to accelerate forward. The object needs
to leave the surrounding detection area to drive forward again.
The distance of an object from the Kart is calculated using the
following equation,

1
DZE*T*S @))

where D is the distance, T is time, and S is the speed of sound.

Kart Connected to
Server

W
4 seconds

passed? L

S

Standby

Yes
1)

Command
Received?

Read GPS Data >

Send Lat/Lon to
Server

AV

Parse JSON from
Server

Valid
Command?

Standby

Fig. 7. Kart client - A high-level overview of the logic to run the Kart.

Object
detected?

3) Live Stream: The Kart is being controlled remotely by
keyboard inputs sent from our website, as well as Arducam
(live stream to monitor) to move the Kart to the delivery
location remotely. Arducam provides methods to the stream
such as, return the frame, and stopping the stream entirely.

The website uses flask API to live stream the video. With
flask API, the website can stream the video on a local host
with no latency and reasonable resolution, which is relayed to
the website for viewing.

C. Software

As a delivery service, our primary concern was how well
the Kart takes in orders and notifies them in which direction
it should go. So, to make things simple, the software team
created a user-friendly website using RESTful (Representa-
tional State Transfer) API calls that aids in the communication
process between the Kart and the server, seen in Fig. 8.

The website acts as a front-end graphical user interface,
allowing the user to control the Kart through W-A-S-D key-
board keys, while also supplying the user with a live video
feed streamed straight from the Kart, enabling us to see what
the Kart sees. In addition, the website can communicate the
Kart’s location prompting the users with information about the
Kart’s last site.

To create a responsive server, the server uses FastAPI, which
allows efficient development of web server and reduced the
number of files and configuration settings that generally come
with web frameworks like Django. First, to run the back-end,
FastAPI and Unicorn were used for the server. Next, API
endpoints were created that enable the Kart to communicate
with the website and vice versa.



After looking into multiple online documentations, the
software team had decided to utilize FastAPI for the back-
end while utilizing the React.js framework, and Javascript for
the front-end [4] React.js simplified the API calls from the
back-end, making returning the data much more accessible,
especially with the website’s user-friendly interface. Finally,
everything was tested locally to ensure a proper connection
was established. The server utilizes Fly.io for continuous
operation, making it easier for both the website and Kart to
communicate. The following diagram represents the overall
software architecture:

Website
User Interface
A
Restful
AFI
¥
Senver
Routes/Paths
Orders
Feguests
GPS/Coordinate pings
Restiul
AFI
¥
Dasher

Process Requests

Make Deliveries

Take Directions

Fig. 8. The UDash server architecture to send commands to the Kart client.

IV. SERVER FRAMEWORKS AND LIBRARIES

o React]JS — Used to design and implement the look of the
website and also to make it user friendly

o Fly.io — Used to deploy our Back-End server so that it is
accessible by the website and the Kart

o FastAPI — Used to implement the Back-End API’s that
are used by the Kart and website

(1]
(2]

3

—_

[4]
[5

—_

(6]

o Docker — Utilized for software scalability and deploy-
ment

o Google Maps API — Used within the website to display
the Karts location

o ngrok — Utilized for exposing and hosting the Kart’s
video live stream

REFERENCES

“Campus map - the university of utah,” 03 2022. [Online]. Available:
https://map.utah.edu/

“Arrma senton mega radio controlled car - designed fast, designed
tough,” www.arrma-rc.com. [Online]. Available: https://www.arrma-
rc.com/rc-cars/latest/senton/mega/4x4

P. Sirish Kumar and V. Srilatha Indira Dutt, “The global positioning
system: Popular accuracy measures,” Materials Today: Proceedings,
vol. 33, pp. 47974801, 2020.

React, “Getting started — react,” Reactjs.org, 2019. [Online]. Available:
https://reactjs.org/docs/getting-started.html

“Sql (relational) databases - fastapi,” fastapi.tiangolo.com. [Online].
Auvailable: https://fastapi.tiangolo.com/tutorial/sql-databases/

Z. Kang, B. Tapley, J. Ries, S. Bettadpur, and P. Nagel, “Impact of
gps satellite antenna offsets on gps-based precise orbit determination,”
Advances in Space Research, vol. 39, pp. 1524-1530, 01 2007.



