
1

Astronomy Made Easy: An Overview of the Design
and Fabrication of an All-In-One Stargazing

Solution
Rich Baird, Miguel Gomez, Tyler Liddell, Hyrum Saunders

University of Utah Computer Engineering

Abstract—Society has seen considerable benefits from science
and engineering projects when done on a large scale. Minimizing
the costs of these projects allows ordinary people to enjoy the
fruits of that labor. One such realm that many would like to
enter is astronomy. The first telescopes were very cost-prohibitive
and took an unquantifiable amount of funds and resources to
see construction. While they have come a long way, such as
the Hyperia telescope designed by Vaonis, the costs are still too
significant for most but low enough for more amateurs to join the
astrophotography game. The designs discussed are comparatively
inexpensive and more manageable for those who have some
photography gear on hand–enabling avid photographers to turn
their lenses to the sky. While it would be best to create a system
that does not come with an impact on the environment, an
analysis of the various aspects of our strategy to ensure there is
as little impact as possible must be considered. The materials,
size, and cost will be essential for success in creating a design
focusing on a small form factor while still building a tracker that
can perform.

Index Terms—application programming interface (API), an-
droid package (APK), digital single lens reflex (DSLR), micro-
controller unit (MCU), publication subscription (Pubsub), small
board computer (SBC)

I. INTRODUCTION

FOR too long there has been an enormous barrier to entry
in astrophotography. As humans, the authors consistently

look to the sky in awe, yet the authors do not have the means
to capture these inspiring sights. Many telescope companies
exist which allow you to gaze upwards, but the costs are too
great for everyone to take part in the capture process.

Astrophotography requires lots of technical knowledge:
knowing how quickly stars move across the sky so you
can track them properly, setting up specialized equipment to
achieve a smooth track at the correct speed, configuring your
camera settings just right for the perfect exposures, and many
other minute details you need to know to achieve high-quality
photographs of the night sky.

Additionally, the cost associated with the various instru-
ments needed for astrophotography is prohibitive for most
people. Getting started in astrophotography will cost a mini-
mum of $600 for equipment alone, and that will only get you
used, inferior equipment. If you want to get truly amazing
pictures, professional astrophotography equipment can cost
$3,000 or more. That is only taking into account the hardware;
much of which doesn’t function properly without the software
licensed with the hardware, which can cost you $100s extra
each year [1]. Other automated, all-in-one astrophotography

stations exist. But they are few and far between and can cost
anywhere from $4,000 and beyond [2].

The proposed solution is a cost-friendly system that will
take care of all the technical details while capturing these in-
spiring sights; an automated point-and-shoot system that takes
images of stars using a Sony camera as the sensor. An app
controls a telescope and camera system. The ability to have a
device that could be easily printed and fabricated will allow
amateur astronomers to enter the astrophotography community
without the burden of needing to spend an exorbitant amount
of time and money gaining specialized photography skills and
instruments.

This simplest approach will involve using existing hardware
(a camera and lens) with custom 3D printed hardware for the
mount and movement system, driven by motors and voice coil
actuators. Software will automate camera movements, capture
pictures, and will include a user application on a phone to
select which celestial bodies are to be photographed.

A system that can track a celestial body requires projection
mapping or spherical coordinates. A method of calculating
changes in position over time will be implemented on a
microcontroller (MCU) or small board computer (SBC) inter-
facing with a star-tracking Application Programming Interface
(API) to obtain astronomical data. A few options exist for
implementing such designs in hardware alone or could allow
for some more software to handle the heavy lifting.

Taking pictures in remote areas will spawn software prob-
lems, as the software must work without a network connection.
When connected to a network, the system can download in-
formation on celestial bodies, but once disconnected from the
network it must perform its own calculations to track celestial
bodies based on the last known location (the downloaded
information) available to them.

There are additional complications beyond hardware and
software issues. As governments, corporations, and even pri-
vate organizations continue filling the sky with low earth orbit
(LEO) satellites, the night sky is becoming more difficult
to view from earth. Photographing the night sky results in
streaked pictures as satellites travel at different speeds than
stars [3].

For now, it is still possible to capture the night sky, provided
a plan of when and where it will be done, to reduce satellites.
As the sky continues to fill up, this may become impossible.
Future astrophotographers will need to have their own high-
orbit satellites in space to capture high-quality photos. When

2

that happens it will require some truly extraordinary projects
to eliminate the barrier to entry for astrophotography.

II. BACKGROUND

Whereas the monetary barrier to entry may be overcome
with sufficient resources, the technical barrier to entry is not
so easily overcome. Successful astrophotography requires at
a minimum, a rudimentary understanding of the fields of
photography, astronomy, and geometry. Several tools exist to
lower this barrier of entry and reduce the level of knowledge
required to be successful. These systems fall primarily into
one of four categories: alignment devices and systems, im-
age processing software, star tracking tools, and all-in-one
solutions. There are several difficulties associated with the
hardware and software. Large gear ratios will be needed to
make any camera movement as smooth as possible so that
when photographing things such as time-lapses, the picture
quality will not suffer from small movements. Balance will
also be a primary concern, the system needs to remain small
and lightweight, but counterweights may be necessary to keep
everything balanced. The description and purpose of each,
as well as some examples of existing solutions, are detailed
herewith.

A. Alignment Devices and Systems

To capture an image of a celestial body many light years
away, long exposure times are required. This poses a signif-
icant challenge for a camera exposing the image from the
perspective of the earth. As the earth rotates, the objects
in the sky appear to move from the camera’s perspective.
Thus, with sufficiently long exposures, the image will be
exposed in multiple positions in the same image, creating a
motion blur effect. In some cases, this is desired, such as
when photographing star trails as shown in Fig. 2. In the
case of photographing a static image, however, such blur may
detract from the photographer’s intention. To overcome this
issue, careful alignment of the camera mount with the north
pole, allows the photographer to fix one axis of movement,
and rotate the camera precisely as shown in Fig. 1 with
the movement of the earth. There are several commercial
systems available to assist with this including any of a number
of equatorial mounts, Polaris spotting scopes, and alignment
apps for the phone or desktop. These are extremely useful;
however, they all assume that one understands the underlying
importance of proper equatorial alignment, as well as how to
locate a north indicator such as Polaris in the sky.

B. Image Processing Software

Another challenge related to the long-exposure nature of
astrophotography is noise. Longer exposures are required to
obtain enough detail to distinguish the object from the night
sky. While exposing for longer times allows the image to
be properly exposed, it also creates the potential for noise.
Consider that exposure is to a digital light sensor as gain is to a
microphone. In order to obtain high-fidelity recordings, a large
gain is required, however, the challenge becomes filtering the

Fig. 1: Diagram of polar alignment using Polaris (A.K.A. The
North Star) [4]

intended recording from the background noise the microphone
will inevitably pick up. This is why expensive microphones
typically include directional sound filtering, active noise can-
celing, and other features that will help to increase the signal-
to-noise ratio.

One way to increase the signal-to-noise ratio in photography
is a process known as photo stacking. Photo stacking is the
process of taking multiple shots at varying exposure lengths,
rather than a single shot exposed purely for the subject, and
stacking the highest fidelity portions of each image while
masking their low fidelity counterparts. This creates an image
that is well exposed across the entire image, and not just for
the subject. Before digital photography, this technique was
popular with professional film photographers, who would do
the work of stacking and masking in a dark room using real
film. Today there exist many tools and computer algorithms
aimed at automating this process. One of the most popular
of such tools is deep sky stacker, an open-source tool written
for windows. Other implementations exist as libraries based
on OpenCV. Proprietary tools such as Adobe Photoshop are
also popular. Photo stacking and image processing software
has been around for a long time, however, it has always been
an additional step. Integrating this technology into a seamless
pipeline adds value to the system by further reducing the
technical barrier to entry, and reducing the mean time to a
finished product. This is accomplished in the final product
utilizing algorithms available as part of the OpenCV library.

C. Star Tracking Tools

It doesn’t matter how much equipment one has if they don’t
know where to find the image they want to photograph. This
is where star tracking tools come into play. There is no small
number of tools with varying levels of user interactivity fea-
tured. Some simply provide coordinates, while others display
images and constellations on a mobile phone in real-time as it
is panned about the night sky. The final system calculated the
right ascension and declination of requested stars, having the
mount setup convert those into necessary motor movements.
This process is explained in detail in later sections.

3

Fig. 2: Circumpolar stars in star trails [5]

D. All-In-One Solutions

Aside from the proposed solution, few all-in-one solutions
exist for this niche. One notable exception is Stellina by
Vaonis. Stellina is an all-in-one smart telescope designed
specifically for astrophotography that incorporates all of the
same features noted here. At a price tag of $3,999.00 however,
it is priced at the same level as many of the professional tools,
so while it boasts a truly modern form factor and polished
mobile app, it remains cost prohibitive to be purchased for
a hobby and too limited in its output and configurability
to be useful for enthusiasts and professionals. The system
proposed here is configuration agnostic, and while providing a
streamlined start-to-finish solution, leaves the raw image files
available to be processed by hand if so desired.

III. RELATED WORK

Careful alignment of the mount is required not only initially,
as discussed in the background section, but also while tracking
the image across the sky. In his several works on the topic,
Suzynski introduces and refines a novel way to maintain the
alignment using an affordable webcam and a convolution on
the brightness signal received from the webcam. [6] [7].

Image stacking is a common technique for increasing the
signal-to-noise ratio by stacking images atop each other and
masking to reveal only the best exposed portions from each
image. Whereas this is a computationally intensive task that
typically is reserved for post-processing, authors Zhou and Yu
demonstrate a method for performing this process in real-time
using the correlation of the signal phase [8].

A mention must be made of Suzynski’s detailed explanation
of his full ground-based astronomical observatory [9]. His
setup incorporates all the features and several more that
the authors intend to implement. Although it is evident that
great care has been taken with each design choice in the
build, Suzynski’s design is inherently immobile. Many design
considerations are made in the build trade portability for image
quality and focal distance. As the intent of the design is to
be a true personal observatory, these decisions make sense.
This, however, is antithetical to the design of the authors, that
is, to implement a portable astrophotography station. Still,

this entry bares acknowledging and further examination, as
portions of the design may provide guidance during the design
and assembly process.

IV. PROJECT COMPONENTS

A. Overview
The system required many design choices. The following

section will contain in-depth information on each component
and how they function together to create a cohesive unit.
Fig. 16 in Appendix A shows an overview of the entire system.

B. Alpaca
The project followed the ASCOM Alpaca Interface, which

is an industry-standard interface provided for telescopes,
cameras, and other mount devices. In this case, the tele-
scope and camera interfaces were followed. Alpaca pro-
vides definitions for functionalities such as startexposure,
slewtocoordinatesasync, imagearray, and more. These
endpoints provide a definition of what data is passed through
the interface and what data is passed back. Alpaca does noth-
ing to implement any of this functionality, but rather defines
the methods to create a standard. Alpaca uses HTTP PUT
and GET requests with specific body information included
for each endpoint. The advantage of using Alpaca is that one
may switch out their mount system with another mount system
that is also Alpaca compliant, and the software sending these
requests can still control the new mount. On the flip side,
one may use different control software and their mount will
still be controllable. Looking again at Fig. 16 in Appendix A,
the project can be viewed as a “left side” and a “right side”
where Alpaca requests are created and sent from the left side,
while the mount system satisfies those requests and responds
on the right side. Fig. 3 shows an extremely simplified view
of the setup, highlighting the place of the Alpaca interface.
Choosing to follow the Alpaca Interface was done very early

Fig. 3: Very simplified design of system

in the project development, and influenced many of the design
choices made. It required a split of the left side and right
side, and also required any information passed from the two
sides to go through the Alpaca Interface, while also limiting
what information was possible to the defined endpoints from
Alpaca.

C. Software-left side
The “left side” of the interface contains all software nec-

essary to provide a UI for a user as well as sending Alpaca
requests through the interface. It includes the StargazerApp, an
app written with the Flutter framework, the StargazerServer-
AlpacaClient, responsible for interfacing with many other
programs, and the ImageProcessor.

4

1) StargazerApp: The StargazerApp was an app written
with the Flutter framework and is compatible with Android,
IOS, and even as a web app. The app implemented an
“Autonomous Mode”, which allows users to search for stars
that are visible to them in the sky according to their latitude
as well as their sidereal time. Once a user has selected a
star they would like to photograph, they can select among
many qualities, which dictate how many images to take of the
star, and for how long each image should be. The purpose of
these multiple images is explained later with image processing.
Users are able to add many different stars, reorder, or remove
them. The app also supports user-specific favorites which per-
sist whenever reopening the app. Once all of the images have
been taken of the requested star and then processed, it appears
as a finished entry in the queue, where the user is able to view
the final image. The app supports an arbitrarily-long queue,
meaning a user may select many stars to be taken in a row,
and then leave the setup to take all of the requested pictures.
The StargazerApp, from the user’s perspective, removes much
of the required knowledge of astrophotography and provides
an easy interface to select the stars they want while the system
takes care of the rest.

2) StargazerServer-AlpacaClient: The StargazerServer-
AlpacaClient is a group of Python threads that work together
to fulfill much of the left side. The AlpacaServer is responsible
for communicating with any users from the StargazerApp.
It runs a server, that receives connection requests from the
app, which it accepts, creates a client connection, and hands
off to a new thread to receive data. The communication
between the StargazerApp and the StargazerServer uses a
custom JSON interface, which allows for actions such as
getting the current star queue, requesting to change this
queue, searching for visible stars, getting and setting favorite
stars, and getting finished pictures. Because individual threads
handle client connections, multiple concurrent users may
connect to the StargazerServer and view or modify the queue,
search stars, and display completed images simultaneously.
This communication is implemented on top of TCP sockets.
To allow this connection to occur easily, the Raspberry Pi was
set up as an access point, where users can simply connect
to it as a WiFi network. A network bridge was also set up
on the Pi to allow connected devices to still have access to
the internet through that same WiFi network. This setup was
chosen due to the ease of use with TCP sockets, as well as
the built-in error detection and guaranteed delivery provided
by TCP.

The StargazerServer uses the Rhodesmill Skyfield library,
which allows reading from a .dat file which is a list of celestial
catalog entries and their absolute positions at a specific time.
Stars move very predictably, so the library computes the
right ascension and declination of those same objects given a
sidereal time. This project used the Hipparcos Catalog, which
is a catalog of 118,218 stars and their positions at a past time.
These entries were fed into Skyfield in order to calculate the
current right ascension and declination, which is used later.
Using this library and the mentioned .dat file allows the system
to work completely remote, without any internet connection.
This is important for this application, as dark sky locations

are generally very remote. Given a specific latitude, some
stars will be visible at some times of the night, some stars
will always be visible, and some stars will never be visible.
Given a user’s current latitude on the earth, any stars with a
declination in the range 90 > declination > (90− latitude)
will always be visible to that user. Any stars with a declination
of (90 − latitude) > declination > latitude will be
visible at only certain points in the day, as they will pass
behind the horizon. Lastly, any stars with a declination of
latitude > declination > 0 will never be visible at that
latitude. The StargazerServer maintains which stars are visible
from its current position, and only provides these stars when
given a search query from the StargazerApp.

After a user has made a request through the StargazerApp
into the StargazerServer, a request is put into a queue to be
sent to the AlpacaClient. The AlpacaClient is responsible for
talking with the Alpaca Interface, sending requests for the
telescope to slew, start or stop tracking, begin exposures of
specified lengths, getting image data from the last exposure,
and more. The requests the AlpacaClient receives from the
StargazerServer contain information such as what star is to
be imaged, how many images, and for how long. It first
computes the current right ascension and declination of that
star and calls the slewtocoordinatesasync endpoint in the
Alpaca Interface. The specifics of how the right side of the
interface function will be discussed later. Once the telescope
has finished slewing, the AlpacaClient requests for it to begin
tracking in order to keep the camera pointed directly at
the star for all of the exposures. The AlpacaClient takes
the requested number of pictures for the specified duration
using the startexposure endpoint in the interface. After
completing each exposure, it requests the image data from
the imagearray endpoint, and stores it in Redis, the database
of choice, also keeping track of the key the images are stored
under. After all the images are complete, the AlpacaClient
will put a request into the outgoing queue going to the image
processor thread and is now able to take the next star request
out of the incoming queue.

The image processor thread in the StargazerServer-
AlpacaClient program simply interfaces with the ImagePro-
cessor Go program, which is explained in the next section.
Putting this waiting in its own thread allows the AlpacaClient
to continue to slew the telescope and take images, while the
image processing works on any previous jobs. After an image
has been stacked and processed, the image processor thread
puts a finished entry into a queue going to the StargazerServer.
From here, the StargazerServer may display the finished entry
and allow users of the StargazerApp to request the final image
from a job.

3) Image processing: The image processor depends on
OpenCV to perform the heavy lifting. A C-compatible API
wraps the relevant OpenCV C++ functions to facilitate inter-
facing with the GO front end. Go listens for requests from the
relevant Redis channel in a separate thread and upon receipt
queries the image data from the Redis image database. Go
is chosen for this task due to its performant nature and pre-
existing libraries for interfacing with Redis. As a so-called
high level language, Go provides many convenience features

5

that C does not but also has a C compatibility layer for
interfacing directly with C when the raw performance of the
C language is required. Once the Go front-end has received
the image data from the Redis database, the data is passed
directly to the C program where OpenCV is used to align and
stack the images.

For alignment OpenCV relies on the enhanced correlation
coefficient (ECC) maximization method is used to align the
images, and the values are stacked and normalized as 8-bit
color values. The ECC method relies on a method described in
a paper by Evangelidis et al. [10]. The essence of the method is
the correlation between the pixel values of two like images. A
threshold is provided to terminate the process once the aligned
pixels are within the given threshold. To facilitate this method,
the images are first converted to grayscale so that pixels may
be compared directly without the need for exponential looping
that would otherwise be required to account for different color
channels. Though the process is a linear one, the number of
iterations required to reach a given threshold can be enough to
greatly overwhelm even capable desktop machines. Thus the
parameters are chosen such that the process may be complete
within a threshold of three minutes.

Once stacked, the image has a false color profile applied
to convert the grayscale image to a full-color one. This
is similar to the approach taken by NASA radio and IR
telescopes, except that NASA images a single subject with
this process multiple times using separate filters each time so
that each emission spectrum may be individually recognized
and analyzed.

4) Redis: Redis is a scalable, in-memory database designed
for rapid transit of large amounts of information. Incorporating
both a database and messaging service, Redis serves as the
communication relay between the Alpaca server and the image
processor and camera controller. Messages are encoded as
JSON objects with an ID, command, and arguments or pay-
load, depending on whether the message represents a request
or a response. As Redis only provides a one-way messaging
protocol, the ID is preserved between request and response
messages so that the two may be correlated after the fact.

D. Software-right side

As opposed to the left side, the “right side” of the interface
deals with receiving requests across the Alpaca Interface
and controlling the camera and telescope according to those
requests. It includes a Django server, the Camera Controller,
and a Raspberry Pi Pico responsible for controlling the mount
setup.

1) Alpaca Server: Our alpaca server uses Django, a python
web framework. In retrospect, this may have been a bit
much for our simple use case, especially running on a pi.
It is likely we would have seen performance improvements
using something more lightweight, like Flask. We ended up
using Django because we were more familiar with it at
the time. In our server, we included support for all of the
alpaca endpoints. As mentioned previously, Alpaca simply
defines what information is sent and received over different
technologies. We used the Alpaca HTTP interface, so we had

to implement URL endpoints for all the telescope and camera
functions that Alpaca supports. Building this out was a bit
tedious since most of Alpaca was not directly applicable to
the project. A custom interface would have been much simpler
and easier to implement. Ultimately Alpaca was used because
it has the benefit of making the mount compatible with any
alpaca-compliant controller or app.

The most interesting parts of the Django server are a
specialized queue for UART communication with the Pico -
this takes all the different threads running on the Django server
for each individual request, and makes them synchronous
before they are sent to the Pico since the Pico can’t handle
the same sort of concurrency that a pi can. When the Django
server gets a response back from the Pico it is split back into
the proper thread using unique IDs. A timeout decorator was
also built for communications with the camera and with the
Pico so the Alpaca server won’t get hung up on a request if
something in another part of the project breaks. A lot of effort
was put into making individual parts of the project safe against
other parts of the system breaking. Keeping different sections
of the system separate and only interacting through robust
communication channels allows easy recovery from errors.
The project is capable of recovering from errors that crash
separate parts of the project. As an example, if the image
processor crashes because the pi runs out of memory while
trying to stack images, it will immediately be restarted and
all the other pieces of the project continue functioning in the
meantime.

2) Camera Controller: The camera controller listens for
a Capture request from the Redis command channel. Once
received, the controller defers to the GPhoto2 command line
interface to begin a capture for the time provided as an argu-
ment in the request object. GPhoto2 is an open-source tool and
library provided for the purpose of remote-controlling digital
cameras. This software is extremely popular amongst technical
photographers where precision is of utmost importance. The
image data is streamed back to the caller and saved in memory
to be delivered to the Alpaca Server upon request.

3) Pico-Interfaces: The mount is an equatorial mount. A
later section will go into more depth, but the benefit is that it
allows the use of two motors that are completely independent
of one another. Only one motor is needed to track a star,
and while slewing the two can move one at a time. It is not
necessary to move them together, like with an alt-az mount.

One of the motors on the mount controls the right ascension
and the other declination, allowing for simpler logic and
smooth tracking of stars. Both motors are stepper motors and
are driven using two TMC2209 motor drivers. The Pico is
communicating with the motor drivers over UART. TMC2209
motor drivers have a nice interface allowing for an angular
velocity to be written to a register. It also allows more tradi-
tional control through pulses. This project uses both methods.
The first method of writing to the register is used for homing,
tracking, and declination movements. The second method is
used for right ascension since it simplified the math used to
find a star. This will be explained in more depth in the next
sections.

The Pico is also connected to a nine-axis IMU sitting below

6

the camera that returns the current orientation of the mount
in Euler angles, namely roll, pitch, and yaw. Converting the
Euler angles into equatorial coordinates is used to slew the
mount to the correct position. This will be described in the next
sections. Last, the Pico interfaces with an OLED screen that
displays information to the end user during polar alignment
and throughout the operation of the mount.

E. Equatorial Coordinates

Before discussing the mount firmware operations, it will be
helpful to have a basic understanding of equatorial coordinates.
Equatorial coordinates are analogous to spherical coordinates
except they are independent of the observer’s location on
the earth and the time of observation. Right Ascension and
declination are absolute, and the observer’s position and time
on the earth create an offset right ascension and declination
that must be handled in calculations. Another way of thinking
of it is that right ascension and declination are like longitude
and latitude, except instead of giving a location on the earth
they are giving a location on a giant imaginary sphere in space
around the earth.

Fig. 4: Equatorial Coordinates [11]

F. Mount Firmware

The Pico has two cores. One core is devoted entirely to
controlling the mount. This includes calculations to find stars
and convert Euler angles to equatorial coordinates. The very
first thing the mount does on startup is the process of polar
alignment. This is the only process in the project that is not
completely automated, as it requires the end user to make sure
the entire assembly points north and tilt the mount once the
OLED screen instructs them to do so.

Polar alignment first requires the end-user to align the front
of the mount with the north. After this is done the declination

motor angles the camera to ninety minus the mount’s current
latitude, in degrees above the horizon. At this point, the OLED
screen is used to help the user tilt the entire mount until
the camera is pointing to the horizon. Finally, the declination
motor once again angles the camera, this time to the latitude of
the mount, in degrees above the horizon. The mount is now
polar aligned and ready for use. This entire process is very
easy for a user, as they only need to adjust the mount twice,
and the OLED screen will tell them exactly what to do.

The rest of the mount software was more complicated.
Finding the right ascension and declination that the camera
was currently pointing to proved to be one of the most difficult
aspects of the project. Many of the sensors that were tested had
too much drift in every axis, making calculations unreliable
and resulting in oscillatory movements in the mount. When a
suitable sensor was finally found, the math itself posed another
challenge. Euler angles can be converted to Right Ascension
and Declination using trigonometry. Declination took some
work, but it worked well using this method. Right ascension
is more difficult since at one point in the rotation the yaw from
the sensor would drift a tiny bit and flip between 0 and 360,
throwing off calculations.

To prevent this the mount rotates the right ascension motor
to a ’homed’ position using a hall effect sensor between each
slew and the right ascension motor is controlled using pulses
instead of registers because the number of pulses can be
counted to know exactly how many degrees the mount has
rotated. This results in the declination always being the pitch
of the sensor from the homed position, and the only offset in
the right ascension is something astronomers call the ’local
hour angle.’ This is really just the local sidereal time. Local
sidereal time can be determined from local solar time, and the
time of year, since a sidereal day is approximately 4 minutes
shorter than a solar day.

G. Startup-Docker Compose

All of the setup and running of the system is facilitated
through Docker Compose. Components of the system were
separated into different Docker images, such as the Image
Processor, StargazerSetup, which includes the StargazerServer-
AlpacaClient and AlpacaServer, Redis, and the camera con-
troller. Each image included an entry point, so by specifying
the startup order of each within the Docker Compose, the
project could be started with simply “docker compose up”.

The order in which Docker Compose brings all of the
containers up is very important. First, Redis is brought up and
initialized. Next, the Image Processor and camera controller
are brought up. Finally, StargazerSetup is run. Docker Com-
pose was also extremely useful in creating a robust design.
The components of the project proved to be very capable and
rarely errored or crashed, however hardware limitations on
the Raspberry Pi, especially with the intensive nature of the
image processor, could cause errors or crashes. The system
was designed to be able to recover from errors in one single
part of the project, which was aided by Docker Compose’s
restart feature.

7

1) StargazerSetup: As mentioned earlier, the Stargazer-
Setup was one of the Docker images created. This container
is responsible for getting and passing required data to differ-
ent pieces through startup. The project used a Swarm Eval
kit, with the Swarm M138 modem. The Swarm allows 2-
way communication through Swarm’s satellite network. The
project primarily used the M138 in order to receive both GPS
coordinates as well as receiving the current greenwich mean
time (GMT). The Swarm can also be used to send data packets
across the internet using satellite communication, however as
discussed earlier, the entire project is able to operate without
any internet connection. The M138 modem communicates over
a specific UART NMEA format. StargazerSetup completes the
following steps. First, it sets the message rate on the Swarm.
Next, it waits to receive GPS data, extracts the latitude, and
sends it to the Pico, which requires the latitude for its homing
sequence. Once it gets a response from the Pico, it then
starts the AlpacaServer. After that has started up, it begins the
StargazerServer-AlpacaClient, which also requires GPS data
as well as GMT data to calculate star positions. After all of
these steps, StargazerSetup has finished.

2) Docker Compose-Flags: Many flags were also imple-
mented that could be turned on or off in the Docker Com-
pose to allow skipping of setup steps. These flags included
skipping camera connection attempts in the camera controller,
skipping waiting for GPS data to communicate and setup
the Pico, skipping getting the required GPS and GMT data
for the StargazerServer-AlpacaClient and using default hard-
coded data, or creating a mock telescope and camera in the
AlpacaClient, where custom objects are used in place of
the camera and telescope that return predictable values on
method calls and do not make any requests to the Alpaca
Interface. Creating such flags allowed extremely quick tuning,
development, and troubleshooting of the system without going
through each setup step every time.

H. Hardware

The mechanical aspects necessary for the system to operate
as intended required a combination of tight tolerances and
smooth operation with little to no backlash. Many revisions
of the printed parts as well as the choice of driving strength
were needed to dial in a working system that was still within
the range of power that we targeted.

1) Motors: To ensure these were not an issue, Miguel
decided stepper motors should be used instead of DC motors
due to their ease of control and ability to adjust accurately.
The use of these stepper motors also helps with the amount
of power needed to run the system as the steppers and drivers
chosen for the project are able to run efficiently with lower
power usage than others on the market. The TMC2209 motor
driver from Trinamic is shown in fig. 5 and is one of the best
in the business when a smooth and stable operation is of the
utmost importance.

These motor drivers and steppers are not too expensive
either since they have become a popular choice for 3D printer
manufacturers. The motors have a 1.8◦ step size which is
split with the 256-step sequencer within the tmc2209 driver

Fig. 5: Trinamic Driver [12]

Fig. 6: 42-34 Stepper Motors [13]

shown in fig. 17 Appendix A. The team initially planned on
having custom boards for the drivers to go on and have those
be part of the system that together broke out the signals to
the motors. However, problems stemming from the cost of
manufacturing a 4-layer board with buried signal traces, and
parts acquisition constraints from sourcing the components to
build these ourselves, became apparent once the PCBs were
designed and ready for fabrication.

Fig. 7: Custom Trinamic Driver board

Thankfully, because these drivers are popular and used by

8

many in 3D printers, there exists a breakout board containing
all the necessary components for use in the design. These
boards were manufactured and sold by B.T.T.(Big Tree Tech)
and are a popular choice in RepRap and custom core XY
printers-allowing the plans of using the TMC2209 driver to
continue.

Fig. 8: IMU Adafruit [14]

2) IMU sensor: Figuring out the orientation of the mount
and camera requires a sensitive and accurate sensor to supply
the necessary Euler angles for the conversion to relative
coordinates. After months of work attempting to get accurate
data from multiple sensors, the Adafruit BNO055 9-axis
I.M.U. was the obvious winner. This inertial measurement unit
allowed the capture of correct orientation data after performing
the calibrations and was not susceptible to the same drift issues
experienced with the 3 other sensors explored in the testing
process.

In addition to the hardware used for the sensing and driving
of the system, the need to take into consideration of controllers
that would do the heavy lifting was vital. To ensure the
system met the power requirements, a Raspberry Pi Pico as the
microcontroller for its two cores and low power consumption
revealed itself to be a great option. As a bonus to these aspects,
the team had some experience working with python, and
using a microcontroller that used this framework was helpful
in allowing the best programmers on board to work with
the embedded portions of the project in a more comfortable
environment.

I. Power

As astrophotographers would want to make their way out
into the less populated parts of the world to get the best photos,
it was essential to make the system work off the grid. To
manage the power needs of the project and ensure the system
had the ability to run without a power connection to some sort
of generator, the use of a battery pack as the power source was
settled. The battery would have to supply enough power to last
at least a full night before powering down and would need the
pack to stay cool to ensure the device does not have thermal
runaway problems where it could cause a fire. The design of
the battery would have been best using a newer technology,
such as a Lithium-sulfur battery-which has been shown to
carry more power per pound as compared to a lithium-ion

cell, which has the negative side-effect of being a fire hazard
[15].

Unfortunately, the cost of these cells is still too great to
have them in the project and had to go with some lithium-
ion cells instead. The cells chosen were Samsung INR18650-
30Q batteries due to their discharge rate and power density.
The batteries needed to be as close to each other in their
internal resistance as possible to make sure there would be no
overheating of the cells while discharging or charging. This
design also called for a charging circuit as well as a balanced
discharger for ensuring no individual cells were stressed.

Fig. 9: Samsung 18650 Cell Battery [16]

The final group of cells used came close to being exactly
what was needed, even if the cells obtained were slightly
outside the desired range when it came to their claimed
internal resistance. This is an unfortunate effect that has been
a problem in batteries for some time since there are many
counterfeit cells out there. In this case, the cells are genuine
but happened to be improperly stored at some time since they
are higher than the average cell and roughly four times the
internal resistance, as stated in the manufacturers’ datasheets.

Fig. 10: Samsung 18650 Cell Resistances

Shown in 10, the resistances are higher than the expected
45m from the datasheets, but there is little variation given their

9

voltage - which is good for the pack we needed.
Creating a battery large enough to handle the draws ex-

pected from the system requires at least a 28V pack, given
the lower end of the estimation from the draw seen with a
Pico, Pi - 4B, two motors, and the various peripherals. As
it should ideally be above the needed values, an 8 series 4
parallel pack was built to have the 4 · 3Ah per battery of
capacity and 8 ·4.2V nominal voltage. Giving a pack of 34V .

The total power requirements for the design were accounted
for using the power estimates with this battery pack. table I
gives us the average, as well as the high end of the expected
peak draw, and the battery built can satisfy that with room to
spare.

Table I
Power Requirements

Device Max/Pk. Avg.
Pico at 5V 2.5Wh 0.5Wh

Pi 4B at 5V 15Wh 8Wh
Motors at 25V 37.5Wh 6.25Wh

Noctua Fan at 12V .6Wh .6Wh
Buck Converters 10% 10%

Totals 61.1Wh 16.89Wh

percentage above refers to the losses in power conversion

J. 3D printing

The printing of the design was a considerable challenge.
Since the group members are not structural or mechanical
engineering students, the project started with a base design
created by a user on Thingiverse. The design by user isaac879
was a great place to start the development of the setup needed
for the implementation. This design was provided using a
creative commons license and would not be the final design for
a monetized assembly. Still, it was a great way to get started
with modifications needed for the assembly and provide a good
proof of concept build.

The design required many iterations to get the parts printed
correctly. In addition, considerable work was required to get
the printers in the lab into working condition to get the
printing of the part without issues. This included re-leveling,
disassembly, cleaning, fitting, tightening, and customizing the
firmware on the machine to print with the necessary speeds to
ensure accuracy. A few different materials were tested for their
robustness, and high-impact polystyrene (HIPS) filament was
the choice that won out for its durability and weight. Being
very tough yet light allowed for the parts to hold everything
together but not be so heavy that it became a problem for
the motors. It combines the hardness of polystyrene with the
elasticity of rubber to produce a high-impact thermoplastic that
is tough and strong without being brittle.

1) Slip Ring: To ensure the design was functional and
simple to use, a slip ring was used to pass the data and
power lines from the lower part of the system to the upper
part that needed to rotate 360◦. This part was essential and
tough to integrate as the data lines must be handled carefully
when introducing noise. This slip ring is visible in fig. 15
and 11. This part caused some needed revisions to the base

design, and changes were made to facilitate this addition. The
slip ring design allowed the entire assembly to be removed in
case something needed to be worked on by disconnecting the
cables to the PCBs. Since signaling within the slip ring is can
be a problem for some applications, special care was needed
when making connections to ensure the signal integrity was
not compromised. For USB, a modification to a USB 2.0 cable
was made to force a connected device to see it as a hub. This
allowed the signals to be read on either end without issues.
This design worked well with a laptop, but the Raspberry Pi
4B would not connect without another hub connected between
the male USB-A side and the Pi.

Fig. 11: Slipring type - 24 wire used, 12 wire pictured

2) Bearing: One of the toughest parts of 3D printing the
entire assembly and gearing setup was the tolerances needed
to ensure proper movement in the gears and the internal
bearing assembly. There were many revisions to the bearing
that caused some grief in the early days of the project, and
purchasing a bearing from McMaster Carr was considered due
to this complexity. However, the cost of purchasing such a
niche part was too great. A few materials were floated as the
ones to use for the ring, and iterations of the bearing were long
and hard. Due to the size and shape of the bearing, printing
in resin took a considerable amount of time with the printer
in the Lab. The Form2 resin printer is a great machine for
a plethora of applications. Unfortunately, this was not one of
those applications. Its build plate is not large enough for the
bearing to possibly print flat, and this causes structural weak
points along the bearing. The orientation of the model is shown
in fig. 12 and is cut at roughly half the print completed.

Because of this, there was a significant number of failures in
the printing where the part had some cracks left behind from
layers that did not adhere as cleanly as they should have. After
many prints, a few came out well enough to create a working
bearing for the design. However, this is where the problem of
being brittle comes into play. As the strain of the bearing on
the inner walls goes up from the metal ball bearings within,
tiny cracks begin to form as the bearing takes that stress. This
results in binding issues that cannot be avoided and would be

10

Fig. 12: Print Orientation

solved by regular maintenance in the form of a replacement
bearing. The time between the start of a good bearing and the
need for a replacement was too short for this to be a good
solution.

After many iterations of this, Miguel decided to go back
to basics and printed something out of a different material.
This time something that would be able to provide some
give instead so that the internal stresses could be mitigated -
removing the need for replacement bearings. After searching
for a material with the proper hardness, Miguel settled on ther-
moplastic polyurethane (TPU); A successor to thermoplastic
Elastomer (TPE) materials that came before it. This turned
out to be the best choice in the printing process as the first
bearing Miguel printed after dialing in the new settings for
the material was the exact one used for testing and, ultimately,
the demo. The problem of micro-cracks in operation was no
longer an issue as the TPU allowed for some flex in the
movement, and the material naturally has some lubrication
from the polyurethane. STP automotive grease was used to
ensure smooth movement in the bearing, as it is the best
lubricant Miguel has ever used for these applications.

3) Gears: The gears in the design are herringbone gears,
also known as dual helical gears. These limit the possibility of
slop causing any shifting in the gear position during operation
and have a much lower probability of slippage during use. In a
typical setting using aluminum or stainless steel for the gears,
these would be considered an added cost on top of a single
helical design. This is because of the tooling necessary and the
extra work required to fabricate them. Since the designs of the
project are 3D printed there was no worry about subtractive
manufacturing techniques. Using additive processes instead,
these can print without issue in varying orientations. The first
designs were printed in resin to get the best possible resolution
on the parts, as limiting any shakiness caused by small defects
in the print was necessary. However, the problem of brittle
prints continues to creep in again.

While very smooth and nice at the start, over time, there
was a buildup of material from the micro-cracks that would
end up causing some of the teeth on the gears to break off.
Instead of using the resin-printed parts, after the successes in
the bearing, Miguel printed the gears we used in the same TPU
material, and they had no problems during operation. The best
orientation for printing these was planar, with the normal of

Fig. 13: Print Orientation

the print being equal to the axis of rotation shown in fig. 13 in
the small gears on the left and back, and simplified the printing
process by removing the need for any support materials during
the process.

4) Assembly: Many of these parts are held together using a
combination of screws and nuts with sizes varying from M2-
M4 and some heat-set threaded inserts. These inserts allow for
parts to be screwed together to have threads in place to prevent
the parts from losing their bite over time. This is a common
theme with 3D-printed parts that can be detrimental to a
project, and adding these inserts removes that problem entirely.
Aside from mounting hardware to connect parts, there was also
the use of what are referred to as compliant mechanisms. This
means a part that has some flex or give to it that would lock
in place without the need for external hardware.

K. Testing and Development

Pieces of the project were created incrementally, ensuring
testing along the way. Testing individual pieces thoroughly
lessened the overall work when integrating parts.

1) StargazerServer-AlpacaClient: The creation of the app
and the StargazerServer was done mostly in parallel, as the
communication between the two was established. Testing of
the AlpacaClient was simpler, as ASCOM provides a simulator
for a telescope and camera object. This was used in initial
testing to ensure the interface was behaving correctly.

2) AlpacaServer: The AlpacaServer was flexible in testing
and development. Since Alpaca requests are simply HTTP
with specific body data, we were able to use Postman very
frequently when trying to test certain endpoints. Integration
with the Raspberry Pi was slightly more tricky, however,
when the UART queue was created and working properly, was
simplified greatly.

3) Pico-Firmware: Much thought and design went into
making the Pico work as desired. The math required to
calculate current right ascension and declination took time to
understand and implement correctly. When fully understood,

11

however, it was simplified to be very manageable. After many
iterations, the calculations and motor movements were proven
to be extremely accurate to where stars were actually located.

4) Camera Controller: The camera controller was initially
custom software written in C utilizing the gphoto2 library.
This effort was abandoned after several months due primarily
to a lack of support and documentation. The command line
interface, though less performant, was found to be stable and
reliable for all the purposes of the project.

5) Image processor: The Image processor went through
many iterations. Initially, an attempt was made to do all
the work in C++; however, C++ lacked a simple way to
communicate with the calling Alpaca interface. An additional
attempt was made at writing a CLI for the image processor in
the same way that the camera is controlled using a CLI build
of gphoto2. Ultimately it was determined that there existed too
many challenges with writing a robust CLI capable of being
adaptable to the situations required and that a large amount
of data could cause a buffer overflow with the standard in
and output buffers of a typical terminal emulator. Ultimately
it was determined that the most performant way was to embed
the image processor into the listener program using a custom
C-API callable by the Go-C compatibility layer.

L. Components Used

A final bill of materials with an itemized view is included
with the documentation. List below serves as an overview.

1) Motors to control the assembly: Stepper motors salvaged
from an old 3D printer with a bad main board were
used. These have low power requirements and a small
footprint compared to some other stepper motor designs
available on the market.

2) 3D printed parts: Many parts were 3D printed, including
much of the platform, the camera mount, mounting
plates for PCBs, and casings for the necessary compo-
nents. A full case for all parts was planned but having
everything sectioned off in parts allowed for the whole
system to be displayed easily at the demo.

3) Power supply: the motors and other electrical compo-
nents required an external power source. The specifics
of this supply were considered when designing the
battery pack for the project. This was completed as part
of the build using the custom 34V battery pack with
charge/discharge protections. In addition to the pack, the
necessary voltages split to the various components were
completed with various switching regulators to supply
their requirements.

4) Swarm dev kit: We appreciate Swarm for being very
generous and donating the Swarm dev kit for the project.
It was used to get necessary GPS and GMT data.

M. Efforts and Individual Responsibilities

Below is an overview of the work that was accomplished
and how the work was divided.

• Rich Baird: Primarily responsible for interfacing the
Camera with the rest of the system and implementing the

image processing features. Rich designed the communi-
cation protocol between these and the Alpaca interface
and served as the SME for the photography and camera-
related elements of the project. He also designed the 9-
axis IMU interface and assisted with some of the wiring
and electrical assembly.

• Miguel Gomez: Responsible for the hardware design
choices and implementation/assembly of the electrical
and physical systems. Built the battery used to power the
system as a whole and layout for the power distribution
across all components in the design. In addition to the
electrical design. Miguel implemented the interface for
communicating with the motor drivers and was responsi-
ble for the fabrication and iterations necessary to imple-
ment the physical aspects of the assembly, including the
mounting, interfacing, and integration for the mechanical
portions of the project.

• Tyler Liddell: Along with Hyrum, responsible for al-
most all of the software, excluding the camera con-
troller and image processing. This included the Stargaz-
erApp, StargazerServer-AlpacaClient, AlpacaServer, and
MicroPython written for the Raspberry Pi Pico.

• Hyrum Saunders: Along with Tyler, responsible for al-
most all of the software, excluding the camera controller
and image processing. This included mobile phone, win-
dows, and web apps, software that acted as both the
server to those apps and the client to the Alpaca interface,
software acting as the Alpaca server in the interface, and
embedded software controlling the mount.

V. FUTURE WORK

The final project was completely functioning end-to-end, so
the baseline goals were met. In addition, the image processor
stretch goal was accomplished. While the image processor is
fully functional, it could benefit from further experimentation.
This could include different filters on the camera, testing at
various locations, and adjustments in settings, like what color
to use when colorizing the image during the processing itself.
This is planned work for warmer weather when it’s easier to
take the project out and test it.

Along with the planned refinements of the system, work
could be done to expand the project in entirely new ways. One
exciting idea would be to allow public control of the system
through an internet interface or portal. One could create a
“time-sharing” system where users add requests to the queue,
and the image would automatically be taken, processed, and
returned to the user. This would allow any person with an
internet connection to experience the art of astrophotography.

A completely custom design for the assembly would be
needed as well since every portion of the printing process
should be optimized. One that adheres to a set size and has
a specific camera footprint in mind would best suit the needs
of the project and could easily have swappable mounts for
other cameras. The addition of two more motors, one for a
panning system to align to true north, and another to level out
the camera while aligning to the equatorial reference frame
would remove the need to manually adjust the mount prior to

12

use. In this setting, a user could simply place the system on
the ground where it could level and align itself.

VI. CONCLUSION

This project set out to automate astrophotography. It does
so, and at a much lower price than other all-in-one astropho-
tography systems. Additionally, being Alpaca compliant al-
lows it to be swapped out with existing mounts and controllers,
further decreasing costs for individuals who may already own
some astrophotography equipment.

An app on a phone or computer allows the selection of stars,
and the mount will then slew to those stars, take pictures,
process them and return them to the app. The mount has
proved to be very accurate in finding different stars, provided
it was polar aligned correctly on startup.

The image processing is also fully functional, though further
experimentation with different locations, camera filters, and
processing settings is needed to produce the highest-quality
images. As mentioned in the Future Work section, this is
planned for the Spring and warmer weather.

Overall, the project was a success. Everything that it set
out to do was accomplished. After final adjustments, the
project will be ready for the original goal of releasing it as
an open-source project, making astrophotography easier and
more available than ever.

13

APPENDIX A
LARGER FIGURES AND DIAGRAMS

Fig. 14: Image of the completed setup

Fig. 15: Closer image of the mount setup

14

Fi
g.

16
:

O
ve

rv
ie

w
of

E
nt

ir
e

Sy
st

em

15

Fi
g.

17
:

B
lo

ck
D

ia
gr

am
of

T
M

C
22

09
D

riv
er

[1
2]

16

REFERENCES

[1] J. Menendez, “Is Astrophotography Expensive?” [Online]. Available:
https://midnightphotographer.com/is-astrophotography-expensive/

[2] “Meet STELLINA, Our Observation Station — Vaonis.” [Online].
Available: https://vaonis.com/stellina

[3] A. Woodward, “SpaceX’s Starlink Satellites Are Pho-
tobombing Astronomy Images, Study Says.” [Online].
Available: https://www.wsj.com/articles/spacexs-starlink-satellites-are-
photobombing-astronomy-images-study-says-11644062404

[4] J. Huggins, “A Graphic representation of Polar Alignment
and the Celestial Sphere,” Apr 2000. [Online]. Available:
http://www.astronomy.net/articles/4/polaralign.html

[5] 0x010C, “File:2018-03 Gorges de la Loire Na-
ture Reserve star trails.jpg,” Mar 2018. [On-
line]. Available: https://commons.wikimedia.org/wiki/File:2018-
03 Gorges de la Loire Nature Reserve star trails.jpg

[6] R. Suszynski, “Convolution Method For CCD Images Processing For
Auto-guiding Astrophotography System,” 2008 International Conference
on Computer Engineering Systems, Nov 2008. [Online]. Available:
https://ieeexplore-ieee-org.ezproxy.lib.utah.edu/document/4772970

[7] ——, “Digital Processing Of CCD images For Auto-guiding
Astrophotography System,” 2008 9th International Conference on
Signal Processing, Oct 2008. [Online]. Available: https://ieeexplore-
ieee-org.ezproxy.lib.utah.edu/document/4697272

[8] H. Zhou and Y. Yu, “Planetary Image Live Stacking Via Phase
Correlation,” 2016 9th International Symposium on Computational
Intelligence and Design (ISCID), Dec 2016. [Online]. Available:
https://ieeexplore-ieee-org.ezproxy.lib.utah.edu/document/7830782

[9] R. Suszynski, “Stand-alone Station For Deep Space Objects Astropho-
tography,” 2009 52nd IEEE International Midwest Symposium on
Circuits and Systems, Aug 2009. [Online]. Available: https://ieeexplore-
ieee-org.ezproxy.lib.utah.edu/document/5236086/figuresfigures

[10] G. D. Evangelidis and E. Z. Psarakis, “Parametric Image Alignment Us-
ing Enhanced Correlation Coefficient Maximization,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 30, no. 10, pp. 1858–
1865, 2008.

[11] M. Stefik, “What Do The Abbreviations R.A. and Dec. Mean, and How
Do You Use Them To Find Objects In The Sky,” Astronomy Magazine,
Jul 2013. [Online]. Available: https://astronomy.com/magazine/ask-
astro/2013/07/sky-coordinates

[12] tmc, “TMC2209-LA.” [Online]. Available:
https://www.trinamic.com/products/integrated-circuits/details/tmc2209-
la/

[13] creality, “Accessories Spare Parts.” [Online]. Available:
https://creality3d.shop/collections/accessories

[14] A. Industries, “Adafruit 9-DOF Absolute Orientation
IMU Fusion Breakout - BNO055.” [Online]. Available:
https://www.adafruit.com/product/2472

[15] J. Zhou, T. Wu, X. Zhou, and J. Xi, “Advanced Cathodic Free-
standing Interlayers For Lithium–sulfur Batteries: Understanding,
Fabrication, and Modification,” Jul 2022. [Online]. Available:
https://pubs.rsc.org/en/content/articlelanding/2022/CP/D2CP02097A

[16] lygte, “Test Of Samsung INR18650-30Q.” [Online]. Avail-
able: https://lygte-info.dk/review/batteries2012/Samsung%20INR18650-
30Q%203000mAh%20(Pink)%20UK.html

