
1

Automatic Planet Tracker
Amar Barucija, Daniel Toone, Jake Steers

Abstract—Amateur astronomy is a hobby in which
average people observe the stars and planets using small
budget, do-it-yourself builds. This project takes inspiration
from amateur astronomy through the design of an auto-
matically driven planet tracking telescope. The telescope
is capable of automatically following planets or stars
as they travel through the sky. Users can choose what
celestial body to track in a mobile phone based app. The
user is also capable of manually controlling the telescope
movement through this app. Movement of the telescope
is achieved by the use of motors with gearing connected
to a custom built mount upon which the telescope is
mounted. The motors movement is controlled by a micro-
controller device that resides on the mount. This micro-
controller receives instructions from a computer device
that interprets user input from the mobile app. The lens
of the telescope itself will not automatically adjust to the
planet it is pointing towards. Users will manually focus the
lens of the telescope after choosing which planet to track.

I. INTRODUCTION

THIS report details the design of a motorized mount
for a telescope to be attached onto. The project was

inspired out of amateur astronomy projects where people
create home made telescopes, mounts and automated
systems for telescopes. Automatic telescope controllers
are known as GoTo telescopes in the world of ama-
teur astronomy. Creating a motorized telescope mount
involves mechanical, electrical and software engineering
challenges that will make for an interesting telescope for
people to enjoy.

The telescope mount will have 3D-printed parts at-
tached to allow for rapid prototyping of said parts.
This mount will specifically be an alt-azimuth mount,
which allows for relatively simple horizontal and vertical
movement compared to other mount types. The modified
mount will have slots for motors that will be screwed in
for stability and strength.

There will be two motors, one for vertical and one
for horizontal movement. The motors themselves will
be stepper motors which allow for precision movement.
These motors will also be accompanied by motor driver
circuit boards. Gears will be attached to the motors as

The authors are in the Computer Engineering department at the
University of Utah.

the gearing will further increase the precision of move-
ment required for tracking planets and stars. The motor
driver boards will be connected to a micro-controller to
provide necessary analog to digital converters to read
motor RPMs. The micro-controller can provide digital
outputs, allowing us to specify rotation direction and
speed of actuation. Digital inputs will be used to receive
coordinates from a communicating computer device.

The micro-controller itself is in charge of translating
its received coordinates into rotational commands for the
motors to rotate into new positions. These translations
will be written into code stored on the micro-controller
where writing the code for such a translation will be one
of the main tasks of this project. The computer device
of our system will store code of its own utilizing an
external library to provide coordinates of a given planet
to the micro-controller device.

To control the mount, the user will use a mobile
application to select a planet to track. The mobile ap-
plication will then communicate this selection to the
computer device via Bluetooth. The computer device
will send the coordinates of the user selected planet to
the micro-controller. The micro-controller will then point
the mount to the coordinates. This flow describes our
final deliverable, a fully functioning automatic telescope
mount.

II. BACKGROUND

Building telescopes is very common in amateur as-
tronomy, as such, there is a litany of work from which to
draw from. As we are building an automatic telescope,
it is worth noting that these are generally referred to
as GoTo telescopes within the amateur astronomy com-
munity. As there is an increased degree of complexity
with telescope motorization, we have done research into
other related work focused on automatically driving a
telescope.

A. Related Work

Our system will require software engineering to create
motor manipulating control logic within the system’s
micro-controller for manipulating the stepper motors to
rotate the alt-azimuth mount. This system design of
allowing a user to select a planet for the telescope



2

to automatically track is known as a GoTo telescope.
The effort in coding the control logic of our micro-
controller will face many bugs and code reiterations
before getting the mount to rotate automatically. How-
ever, an open source control logic for driving a GoTo
system exists under the name of OnStep and provides
clear specifications on how to build such a system using
OnStep [4]. Using this guide as a resource to design our
system’s automatic tracking technology will be beneficial
to avoid any coding or design pitfalls related to the
micro-controller. The OnStep website also has builds that
other people have done using this technology. However,
we are not directly using OnStep because a major aspect
of our project will be writing the control logic which
is what OnStep provides. Therefore, some of the work
provided may not be applicable to our system. However,
we can still use these for reference and examples when
building our project.

Designing a GoTo telescope will require knowledge
of the mathematical units utilized in calculating as-
tronomical positions and mount angles. Basic GoTo
telescopes systems use a simple approach of calculat-
ing the direction of a given target and converting said
direction into mount angles for which the telescope
must accurately point towards. The direction of a given
target is calculated in nominal mount coordinates where
mount angles or rotations are calculated using parallactic
angles. To elaborate, a parallactic angle is the spherical
angle between the hour circle and the vertical circle
passing through the zenith of a given celestial object.
However, these calculations can be known to have mod-
est accuracy whereas an approach utilizing a rigorous
matrix algorithm would yield far greater precision, as
stated by Wallace [6]. Although the simple approach
mentioned prior will be implemented into our automatic
telescope system, this other approach using a rigorous
matrix algorithm will be beneficial if accuracy of our
telescope becomes a concern.

The design for our telescope will require the use of
hall effect sensors placed onto the telescope’s mount for
calibration before regular use. However, the concern here
is that these sensors will not nearly be as accurate for
calibrating as it will be to manually point the telescope
to specific stars. Therefore, a quality of life addition
to this project will be to attach a camera or imaging
device onto the telescope to make the calibration process
automatic. This addition is considered to be a stretch
goal for our project and will be utilized to automatically
align our telescope to the sky with great precision, as
detailed by this article [2]. The automated calibration
works by utilizing point pattern matching and normalized
correlation matching. This is done by taking a picture

of the sky and synthesizing an image of the sky, both
relative to the telescope’s current angle. Both images are
then compared to identify more precise locations of the
stars found in both images. If time permits, an addition
like this will be a significant quality of life improvement
to the user experience of our automatic telescope.

III. IMPLEMENTATION

This section details the final implementation of our
alt-azimuth GoTo mount, an automatic telescope to track
planets. All files associated with the 3D designs, mobile
application code, and Raspberry Pi Python scripts can be
found in our team’s GitHub page [3]. The alt-azimuth,
as shown in Fig. 1, allows for relatively easy horizontal
and vertical movement compared to other mount types.
We adapted an existing alt-azimuth mount to reduce
the time and complexity in automating the telescope.
This turned out to be both a boon and a limitation
as, while it was easier to design around the existing
mount, it also restricted us because our designs could
not interfere with the rotation of the telescope or base
mount. The mount’s horizontal movement is powered by
a stepper motor with a planetary gearbox attached to it.
A planetary gearbox provides a very large step down for
accuracy. The vertical movement utilizes the same kind
of stepper motor with a planetary gearbox. As planned
from the proposal, the telescope does work using GoTo
logic written in Python code. One major change from the
initial plan of the proposal was combining the computer
device and micro-controller into the Raspberry Pi. The
Raspberry Pi now serves those two roles, that of taking
in the requested planet, getting the coordinates, and then
driving the motors based on those coordinates.

Fig. 1. Showing the function of an alt-azimuth mount [1]



3

A. Raspberry Pi

The user’s selection of a planet in the mobile appli-
cation is be sent to the Raspberry Pi via Bluetooth. The
Raspberry Pi receives the coordinates from the SkyField
library based on the selected planet using Python [5]. The
SkyField library provides the astronomical coordinates
and angles of planets alongside functionality to calculate
angles of planets from a given longitude and latitude
on earth’s surface. The library’s versatility and ease of
use greatly simplified our project. One major change is
that, instead of sending the coordinates to a STM32F072
Discovery Board controlling the mount’s motors, the
Raspberry Pi controls the motors. This was done as a
simplification of our workflow and only required us to
write python code for the Raspberry Pi, forgoing the
embedded systems C that would’ve been required for the
STM32F072 Discovery. The Raspberry Pi’s GPIO pins
were used to signal the motor drivers. One concern was
that because the Raspberry Pi ran a full operating system,
the speed of the GPIO signalling was subject to the
operating system’s scheduler. This meant we could not
go any faster than 1µs without workarounds. However,
this ended up being sufficient as the higher speeds
caused issues with the physical movement anyway. The
code as written sets up a Bluetooth server and awaits
a connection from the user app. Once it receives this
connection it can be manually moved into position by the
user to perform a calibration by moving the telescope to
point north and vertically level. After this calibration, the
user is free to select any planet and the code will retrieve
the location information from the SkyField library. This
provides an expected position against the telescopes
current position. Signals to the motor drivers will be
sent until these match each other, moving the telescope
towards the selected planet. Calibration of the telescope
mount and stepper motors are required to ensure that
the mount slews in the correct direction. Initially we
were going to use hall effect sensors to do an automatic
calibration but realized that this would only work for
the vertical. The horizontal would require an onboard
compass to point north. It was eventually decided for the
sake of time that manual calibration would be sufficient
for our purposes, though we are confident that it could
be automatic with some additional hardware. The system
diagram of communication from the mobile application
to the Raspberry Pi to the motor drivers can be seen
below in Fig. 2. The code went through several iterative
designs because we had to work around the Bluetooth
communication protocol.

1) Blocking: The first approach we used to com-
municate with the mobile application involved using

Python’s native Bluetooth sockets. With this approach,
we simply connected the Pi and mobile device to then
allow calibration logic to be handled. However, tracking
a planet did not work because once it moved to a selected
planet, the Python script expected more data from the
user instead of continually tracking said planet. As a
result, the script would continually wait in this loop
expecting data. One solution for this issue was to put
in a timeout for this waiting loop. If it timed out, it was
able to continue tracking the user’s last selected planet.
However, this still meant this timeout would always
occur, resulting in the Python script constantly relying
on catching exceptions to do its normal logic. Further-
more, the timeout became in issue for calibration. Since
calibration is an interruptible process where the user
can quickly select one button after another, the program
could not work fast enough to rotate the telescope since
it was bound to the duration of the timeout. As a result,
the Python script required a restructure.

2) Multi Threaded: The final and most effective re-
structure of the Python script was to use a multi threaded
approach with only two threads. One thread is responsi-
ble for connecting to and communicating with the mobile
application. The other thread is responsible for moving
the telescope based on the last read instruction in the
first thread. This means that the instructions sent by the
mobile application become stored in global variables for
both threads to have access to. As a result, thread locks
were utilized to prevent any form of race conditions or
thread exceptions. This solution worked wonderfully as
it no longer bound the calibration speed to a timeout.
Furthermore, since a single thread became responsible
for receiving and storing instructions, the other thread
could easily be interrupted unlike previously. A user
could choose a planet and then a different planet shortly
after without any miscalculations from the Python script
or socket exceptions from the mobile application. To
elaborate, the GoTo logic is continuously tracking the
telescope’s current position. Therefore, changing the
telescope’s trajectory while already pointing to a planet
will still maintain accuracy. This accuracy is what re-
sulted in the mobile application no longer needing a
loading screen between each planet input.

B. Mount design

We used an existing alt-azimuth mount with a
mounted XT8 telescope that was loaned to us. Given this,
we were hesitant to cause any serious modifications at
first. However, we are confident that the telescope can be
de-motorized and used as normal. The alt-azimuth mount
was chosen as it is relatively simple to motorize com-
pared to other mount types. Conceptually, it also easy



4

to understand, as there are two independent movement
axes. Stepper motors are necessary to provide accuracy
for moving the alt-azimuth mount. Considering that most
stepper motors have a 360 degree rotation with 200 steps,
each step would move the motor 1.8 degrees. However,
1.8 degrees of movement per step is not accurate enough
to appropriately move the mount and telescope. It is
predicted that the accuracy of the angles for which the
telescope must point to any given planet will be in the
thousandths of degrees. To accommodate this accuracy,
it was necessary to use a high ratio planetary gearboxes
attached to the mount’s stepper motors. These planetary
gearboxes provide up to a reduction of 100:1, resulting
in a step angle of 0.018 degrees, which grant even more
accuracy to the alt-azimuth mount’s movements. We
initially thought that this kind of reduction would still be
insufficient. However, our purchased motor drivers had
the ability to do micro-steps which could further subdi-
vide our movements for precision. Our gearing system
adds further reductions which meant our telescope was
very precise while still being able to move relatively
quickly. For gearing our initial plan was to use bevel
gears to drive the vertical and horizontal mount as they
were relatively cheap, easy to find, and required no
significant mounting supports other than attaching the
motor directly against the wood of the mount. However,
the bevel gears proved to be insufficient for both vertical
and horizontal purposes as described in their respective
sections.

1) Vertical movement: The vertical bevel gear would
push the telescope up instead of rotating it as the
telescope was not held down except by gravity when
placed in the mount. We eventually replaced the vertical
bevel gears with a synchronous timing belt. This had
the advantage of holding the telescope down based on

tension, and more efficiently transferred force from the
motors. This implementation still had issues though, as it
required the motor and gear to be on the same plane. This
meant we had to create a 3D printed mount that would
extend outwards from the mount to hold the motor in
place. Additionally, it was discovered the belt did not
have sufficient tension to move the telescope upwards
once it was past a certain point due to it being heavier
in the front. This was resolved by adding a bearing to put
tension on the belt. The use of the synchronous timing
belt also resolved our issues with backlash as we could
not detect any when calibrating the telescope. The final
design of the vertical mount is shown in Fig. 3

2) Horizontal movement: The horizontal mount was
able to rotate with the bevel gears for a time until we
believe that the threads that held the bolt in place were
stripped. This meant that the bolt freely rotated instead
of rotating the top half of the base mount against the
bottom half. To fix this, we used a 3D printed plate
screwed onto the bottom horizontal platform that held
the bolts head in place. This achieved a similar effect as
earlier. However, we ran into another issue where, with
the bolt held into place, the bevel gears forces meant it
would push the 3D printed mount that held the motor
in place against the top horizontal base. This eventually
lead to the 3D print breaking and no longer holding the
motor against the bevel gear. To resolve this issue, we
decided that a synchronous belt gear would avoid this
issue of forces. While it was a tight fit, we were able to
fit the motor housing vertically on the forward part of
the mount. However, due to the weight of the telescope
the belt teeth would skip over the gear instead of rotating
it. To resolve this we increased the tension of the belt
by adding several bearings to push against the belt. This
allowed the mount to rotate but was still unreliable as

Fig. 2. The planned flow of the command logic



5

Fig. 3. The final design of the vertical mount

the belt sometimes slipped off the bearings which would
result in it not moving. To mitigate this we stacked two
bearings on top of each other to allow the belts to move
around more without slipping off. The final design is
shown in Fig. 4

Fig. 4. The final design of the horizontal mount

C. Mobile Application

1) Flutter SDK: The mobile application was designed
and implemented using the Flutter SDK. Flutter was
chosen primarily for its convenience in platform porta-
bility. To elaborate, an app developed through Flutter
can be ran on either an Apple or Android device without
requiring specific code changes. Platform portability was
an important focus at the beginning of this project as both
Apple and Android devices were present on the team.

2) Bluetooth: Bluetooth was chosen as the commu-
nication protocol between the mobile application and
the Raspberry Pi script since it allowed the devices
to communicate together without the need of internet.
Furthermore, experience was already present on the team
regarding Bluetooth socket programming via Python.
To our surprise, programming Bluetooth logic in Dart
(Flutter SDK’s language) was significantly different from
Python.

Programming for Bluetooth on Flutter became an issue
at the very start of the project. It was quickly discovered
that such communication would only be possible on
Android devices and not Apple Devices. This is due to
the fact that the Raspberry Pi 4 operates on the Radio
Frequency Communication (RFCOMM) protocol for its
Bluetooth module where Apple devices have been using
the Bluetooth Low Energy (BLE) protocol for over a
decade. Therefore, Bluetooth communication from an
Apple device to a Raspberry Pi 4 is impossible due to the
differing communication protocols. On the other hand,
Android devices are capable of such communication
since many still utilize the RFCOMM protocol. Once
this knowledge was discovered, the mobile application
development was shifted towards testing and utilizing
the Flutter application solely on an Android device. The
Android device used by the team was a Google Pixel
XL.

3) Application Design: The user interface of the
application was designed to be a scrolling list of planets
for the user to be able to easily identify their inputs.
The top row of the application was also reserved for
buttons whose functionality aimed towards connecting
to the Raspberry Pi alongside calibrating the telescope.
Furthermore, the application was designed to disable all
buttons except for the connect button until a successful
connection was established with the Raspberry Pi, as
shown in Fig. 5. With a connection established, the con-
nect button would green while enabling all other buttons
with a blue color, as shown in Fig. 6. A calibration menu
was specifically designed to look like a remote where
the user can send commands to point the telescope up,
down, left, or right. Additionally, a centered button on



6

the calibration menu can be used to stop the telescope
from moving, as shown in Fig. 7.

Fig. 5. The design and layout of the mobile application’s main
menu. All buttons but the connect button are disabled, as indicated
by the grey color of the other buttons.

4) Automatic Calibration: With the project’s initial
design, it was anticipated that automatically calibrating
the telescope would be possible without the need of
manual movement from the user. Eventually, a separate
menu was designed as a prototype for such functionality.
This menu contained a compass and would utilize the
device’s gyroscope to determine how far off the device
is from facing North. However, the Flutter library to read
data from an Android device’s gyroscope was failing to
work properly. Whenever gyroscope data was attempted
for reading, an exception would be thrown indicating
that the gyroscope sensor was offline. After some further
investigation, it was discovered that the Google Pixel XL
does not contain a gyroscope module. As a result, this
menu, alongside the automatic calibration functionality
of the project, was scrapped due to the inhibiting factors
of our Android device. The design of the automatic cal-
ibration menu, alongside the movement of the compass
based on the rotation of the Android device, can be found
in Fig. 8 and Fig. 9.

Fig. 6. The mobile application’s main menu once connected to the
Raspberry Pi. Here, the connect button is highlighted green to indicate
a successful connection, and all other buttons appear enabled via their
blue color.

5) Loading Screen: One of the greatest challenges
with designing the mobile application’s Bluetooth com-
munication was engineering a solution towards prevent-
ing user input. The project’s system of communication
between the mobile application and Raspberry Pi was
designed to only allow user input for a single planet
until the Raspberry Pi replies with a completion mes-
sage. This way, the user cannot spam other planets and
eventually cause socket related exceptions for the mobile
application or miscalculated angles for the Raspberry
Pi. The challenge was mitigated through the use of a
loading screen as shown in Fig. 10. More specifically, a
spinning circle on the center of the screen to indicate to
the user that the application is loading and will not be
done loading until the GoTo planet rotation is completed.

Ultimately, this loading screen was used for almost the
entirety of the project, but was scrapped by the end due
to some asynchronous issues the mobile application kept
encountering. Since the loading screen would be placed
as the topmost layer of the application’s layout, the
code would have to manually pop it out of existence to
reintroduce the menu that the loading screen was layered
upon. However, this became an issue when the mobile



7

Fig. 7. The design and layout of the mobile application’s calibration
menu.

Fig. 8. The design and layout of the automatic calibration menu
with the emulated Android device set upright.

application would interpret a single response from the
Raspberry Pi as multiple responses. Therefore, the logic
to pop off the topmost layer would be applied twice, thus
popping off the main menu itself. Since the Raspberry Pi
ultimately shifted its script to a multi threaded structure,

Fig. 9. The automatic calibration menu where the compass is rotated
alongside the rotation of the emulated Android device.

Fig. 10. The appearance of the loading screen built into the
application as a way to prevent users from spamming inputs.

the need for a loading screen became unnecessary since
continuous user input no longer had any negative impacts
on the Pi’s tracked logic.



8

IV. SUMMARY

This project was a significant learning experience for
the entire group, especially because of it’s mechanical
components. This provided a real appreciation for the
challenges and difficulties that mechanical engineers face
when designing reliable and effective systems. Despite
the many difficulties we think this was an effective
learning tool that put the team outside of it’s comfort
zone and provided an interesting project not only to
design but to use from an user perspective. It was
engaging to develop a multi-level system that required
mobile development, scripting, operating system trou-
bleshooting, and 3D designing. When put altogether,
this project started the team with many interesting but
difficult tasks and left the team with better knowledge
on how to approach such a system in the future. Due to
our consistency in clear communication, the team was
able to effectively overcome the many obstacles faced
during this project. We were pleased that our project was
received well at demo day, and we are proud of the work
we accomplished for this fitting computer engineering
project. The complete project, set up and ready for demo
day, can be found in Fig. 11

REFERENCES

[1] P. G. Abel. Mounting your telescope. https://britastro.org/2016/
mounting-your-telescope, Jan. 2016.

[2] Y. Azzam, K. Kosuge, Z. Wang, A. Alawy, and Y. Hirata. Tele-
scope Automatic Alignment and Pointing using Pattern Match-
ing. In The Fourth International Conference on the Advanced
Mechatronics, volume 2004.4, pages 96 – 102, 10 2004.

[3] A. Barucija, D. Toone, and J. Steers. Planet tracker. https://
github.com/Abarucija/Planet-Tracker.

[4] H. Dutton. Main@onstep.groups.io: Wiki. https://onstep.groups.
io/g/main/wiki.

[5] B. Rhodes. Skyfield: High precision research-grade positions for
planets and Earth satellites generator. Astrophysics Source Code
Library, July 2019. ascl:1907.024.

[6] P. T. Wallace. Rigorous algorithm for telescope pointing. In
H. Lewis, editor, Advanced Telescope and Instrumentation Con-
trol Software II, volume 4848, pages 125 – 136. International
Society for Optics and Photonics, SPIE, 2002.

Fig. 11. The complete design of the telescope utilized during demo
day.


