
Mobile Sensing Platform

Jeremy Johnson, Jiwon Nam, Shibo Tang, Zhao Wang
j.erik.johnson1994@gmail.com, skajw90@gmail.com, shibot.tom@gmail.com, wangzhaoppz@gmail.com

ECE 4710, University Of Utah
Department of Electrical and Computer Engineering

URL: https://www.group2.info/

Abstract— In the world today, information is everything. We
designed and constructed a mobile sensing platform that is
easy to transport and operate. Our platform took the form of
a remote-control car. The remote for our car was a custom
iOS application. Communication between the car and app
was done using a local Wi-Fi network. A user was able to
control the cars movement, driving forward and backward.
The car was equipped with a camera and mapping sensors
and streamed information to the app. The work for our project
was divided into several important sections: the iOS application,
the communication protocols via Wi-Fi, the sensor/motor/power
configurations for the car, the car frame/tire components,
and the mapping algorithms. By combining all these together
we had a complete, functional mobile sensing platform. We
demonstrated full functionality of our iOS app to control the
car driving anywhere within the same Wi-Fi network. You
could drive out of sight using the video feed from the onboard
camera, and we demonstrated successful collection of mapping
information as the vehicle was driving around. The information
was then compiled in real-time into a graphical map displayed
on the application. Our project provides an avenue for collecting
previously inaccessible information in a safe and effective way.

I. Introduction
For our project we wanted to come up with a project that

was not only challenging for us, but useful in the real world
and fun for everyone on demo day. We wanted to incorporate
an iOS application to control something physical. We decided
on a car due to its applicability in the real world. Many jobs
in the world can be dangerous to humans and the transition
has already begun to move towards robots. Our goal was
to provide a mobile sensing platform from which as much
information as you could want about an environment could
be obtained in a direct way without ever having to be there
yourself.

Our information gathering was largely reliant upon a live
video feed from the car. This allowed the user to guide the
car to the locations they desired to get the data they needed.
Besides gathering information via the video feed through
which the user can see what is around, we also incorporated
distance sensors on the sides of the car.

We then gave the user the option to map where the car
went and what it saw on either side. This data was made
immediately available to the user creating the opportunity
for real-time information gathering without ever having to
go to the location themselves.

Our project combined the technologies of Wi-Fi data trans-
mission, embedded system design, iOS application develop-

ment, live video transmission and room-mapping algorithms.
Most of the current products available are for recreational
use. Our design was intended to be used in industry. We
separated our project into several major tasks:

• Driving controls
• Wi-Fi data transmission
• Live video feed
• Room mapping
• iOS application UI design
• Combine everything above together and test

Below is a figure representing what our overall design looked
like:

Fig. 1. Project Diagram

II. Hardware

A. Raspberry Pi 4 Model B

In our project proposal, we were planning on using
STM32F072 Discovery boards to run the PCB control pro-
gram and interface with the other sensors. Because we
were planning to use Wi-Fi for communication between the
mobile application and the STM32F072, we needed to add
an additional Wi-Fi module, we chose an ESP8266. Moving
forward in our project design we decided to find a solution
that could more easily support the use of a camera module
since that is such a vital part of our project. We decided to
change to using a Raspberry Pi 4 as our new microcontroller.
The raspberry pi had enough GPIO ports to interface all the



sensors and the two motors (pcb). In addition, it has a built-
in port to connect a camera module and has a built-in Wi-Fi
module. The memory on the pi was more than enough for
us to store our sensor data. This also turned out to be a good
choice because of the later need to run multiple programs at
the same time on the pi.

Microcomputer: Raspberry Pi 4 Model B
Manufacturer: Raspberry Pi Foundation

Fig. 2. Raspberry Pi 4 Microcomputer Tech Specs [1]

• Broadcom BCM2711, Quad core Cortex-A72 (ARM
v8) 64-bit @ 1.5 GHz

• 4GB LPDDR4-3200 SDRAM
• 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless
• Bluetooth 5.0
• 2 * USB 3.0 ports
• 2 * USB 2.0 ports
• 2 * micro-HDMI ports
• Raspberry Pi standard 40 pin GPIO header
• 2-lane MIPI CSI camera port
• 3.3V, 5V DC via GPIO header
• Micro-SD card slot for loading operating system and

data storage

The Raspberry Pi became the central hub for our project.
We used the pi to run the PCB motor drivers, camera and
sensors, and create the server which is used to transfer the
data between the car and mobile application. More specifics
on software will be discussed later in this paper but we had
3 main programs running on the pi that gave our project life.
We had the master controller which gathered data from the
sensors and motors and controlled the motor speed. We ran a
MQTT server which supported the communication between
the application and the master controller. And we set up a
webpage to stream the video to. All of these needed to be
running for the project to be a success.

B. Motors
Motor: Pololu 2824 - 50:1 Metal Gearmotor 37Dx70L

mm with 64 CPR Encoder Manufacturer: Pololu

Fig. 3. Pololu 2824 Motor [2]

This gearmotor is a powerful 12V brushed DC motor with
a 50:1 metal gearbox and an integrated quadrature encoder
that provides a resolution of 64 counts per revolution of
the motor shaft [2]. This will give us the proper torque to
maneuver the car. One of the most important features of this
motor is the integrated encoder.

The encoder played several vital roles in our project. First,
we used the encoders in combination with a PID controller to
get both motors to turn at the same speed. This is important
because motors of the same variety have minute differences
in their composition. This causes them to turn at slightly
different speeds even when given the same amount of power.

By using the encoder values from the motors, we could
tell exactly how fast the motor was turning and adjust
the individual power to each motor to get them to turn
at the same speed, thus allowing us to drive straight. The
second importance behind the encoders was for our mapping
functionality. We used the encoders to tell not only how far
the vehicle had moved since the last sampling, but also used
them to tell how far the vehicle had turned when one motor
turned further than the other.

Fig. 4. and Fig. 5. shows how the motors quadrature
encoder works, and how it can be used to get the rotation
amount for speed control and mapping.

Fig. 4. Channel A and B in Encoder with XOR gate [3]



Fig. 5. Square Waveform of Channel A,B and A XOR B [3]

To monitor the speed of rotation, simply use the output or
measure the frequency. The reason for having two outputs
is that you can also determine the direction of shaft rotation
by looking at the pattern of binary numbers generated by the
two outputs. We used this to be able to measure the direction
of the car as well as the distance.

C. Motor Driver
PCB motor driver: Custom Design

Fig. 6. Motor Driver Board

We designed a custom pcb motor driver that was equipped
to drive the Pololu 50:1 metal gearmotor. It used a L289N
H-bridge and had all the connections to be able to drive the
motor, switch its direction and read back the encoder values.
It took in 12V power to drive the motor and a 5V power
supply to give and receive the proper control signals and
encoder values from the motor.

D. Camera
Camera Module: Kuman Camera Module 5MP 1080p

OV5647 Sensor HD Video Webcam

Manufacturer: Kuman

Fig. 7. Kuman for Raspberry Pi Camera Module [4]

• RPi Camera, Supports Raspberry Pi Model B/B+ A+
RPi 3 2 1 with the FFC Cable, it also support raspberry
pi zero/ zero W with the FPC Cable

• 5-megapixel OV5647 sensor, Supports up to 2 infrared
LED and/or fill flash

We selected this camera module because of its ease of use
with the Raspberry Pi. The Pi we chose has a port that can
directly interface with the camera, a ribbon runs from the
camera into the port. The module transfers live video data
to the Raspberry Pi. We mounted the camera to the front of
the vehicle so that the user could use the feed to see where
they were driving. The camera has a light sensor so that it
can auto change between normal and infrared mode.

E. Distance Sensors

Ultrasonic distance sensor module: HC-SR04

Manufacturer: ElecRight

Fig. 8. HC-SR04 Ultrasonic Sensor Distance Module [5]



• Power Supply: 5V DC
• Effectual Angle: ¡15
• Detection Distance: 2 cm 500 cm
• Resolution: 0.3 cm
There are four HC-SR04 sensors used in this project: two

for the left side and two for the right side of the car. This
sensor sends out eight 40 kHz signals and detects whether it
gets any pulse signal back. If it receives a signal in return, a
high-level signal will be outputted by IO, and the duration
of the signal is the time between the sent ultrasonic wave
to when it received the return signal. The time difference
is then converted to determine the distance an object is
away from the sensor. To connect the sensor to Raspberry
Pi board, it needs:

Fig. 9. Wire Connection Between HC-SR04 and Raspberry Pi

The level shifter is used to shift the 5V signal from echo
to 3.3V because the GPIO pins on the Pi only tolerate a
maximum of 3.3V. The connection between echo, level
shifter and GPIO is shown below:

Fig. 10. Wire Connection Between HC-SR04, Level Shifter and Rasberry
Pi

We installed two sensors on both sides of the car. The
sensors were placed in a pattern with one above the other.
This is because HC-SR04 is not the most stable type of

ultrasonic sensor. Sometimes, it may give errors on feedback
that would cause the mapping to fail. To solve this issue, we
designed to use two sensors in combination with an “error
fix” algorithm which solved most of the errors from the
sensors. This algorithm is included in our data collecting
program which can collect and compare the data from both
sensors and fix the error.

F. Power Supply
Power Supplies:

The car utilizes three power supplies. One to drive the 12V
for each motor, and one 5V supply for the Raspberry Pi:

• 5V-2.1A outputs 20000mAh for Raspberry Pi * 1
• 12V output for motors

Initially we were running everything off the same power
bank. However, we noticed some inconsistencies with the
motors when everything was connected to the same power
source. The motors would consistently perform at different
speeds and the increased power draw from one would affect
the other. Due to these issues we opted to provide each motor
with its own 12V power supply and have a third power bank
provide the 5V for the Raspberry Pi.

III. Software

A. MQTT Server
For communication between the mobile application and

the raspberry pi, we decided to use an MQTT (Message
Queuing Telemetry Transport) protocol. It is a lightweight
publish and subscribe system where different clients connect
to a server and can each publish and receive messages. It is
designed for constrained devices with low bandwidth. This
was a perfect solution for our project. Using the Raspberry
Pi, we spun up a MQTT server. The vehicle controller then
connected to the server and subscribed to a variety of topics,
these included “leftMotorForward”, “leftMotorReverse” as
well as topics regarding mapping. The iOS application also
connected to the server as a client and subscribed to different
topics. When we needed to communicate between the app
and the car, they would send a message to the server under
one of those topics. The server then looks at which of its
clients care about said topic and sends it off. Below is a
flowchart of the setup with some example topics:

Fig. 11. MQTT data transmission



B. Car Controller
Our controller program on the Pi oversaw all of the

hardware on the vehicle. The program was divided into 3
parts: server communication, motor control and mapping data
collection.

As previously discussed, our communication server was
built on an MQTT protocol. When the program was fired
up it immediately attempted to connect to the MQTT server.
Once connected it subscribed to a variety of topics in order to
receive motor speed and direction commands, start mapping
command, stop mapping command and a map received
command. We designed handlers for each of these topics
to respond accordingly.

Early in the project we ran into some issues with our motor
control. We were initially just using a PWM to send power
to the motors so we could go different speeds. The issue was
that the motors we had turned at different speeds from each
other even when given the same amount of power. To solve
this issue, we designed a PID controller. Instead of telling
the motor controller how much power to send the motors
we told the controller what speed we wanted them to go.
If the speed was too slow, the controller would add a little
power. If it was too fast, it would cut some power. We had
a PID controller for each motor, this enabled them to adjust
themselves independent of the other and end up at the correct
speeds allowing us to drive straight.

The final part to our program was the mapping data. When
the user requested that a map be made, we began to sample
all the sensors and encoders at a rate of 4 times a second.
We elected to save the data in a text file that was comma
and end line delimited. All the data from one snapshot was
comma delimited and the snapshots were separated by an
end line character. When the user requested to stop mapping,
the information was immediately sent to the iOS application
as one large string. The application could then easily parse
through the data to begin creating the map.

C. Video Streaming

In our initial attempts at video streaming we tried to find
ways to package up all the data and send it directly to the
iOS application. Once there we would unpackage the data
and reformat it into an image displaying to the user the live
video stream. We ran into many issues with this and after
coming up empty handed, we determined an easier way.
Instead of packaging the data and sending it to the user
directly, we spun up a simple web page and streamed the
video there. Then, in the application we simply displayed
that webpage as the background of the application, allowing
the user to see everything that was going on. This wasn’t an
issue since our project was based on Wi-Fi communication,
there was no problem with streaming the video to a web-
page and displaying it from there, since there would always
need to be Wi-Fi to run the project in the first place.

D. IOS Application

We used a MVC technique in the iOS application. There
are four main controllers, an initial view controller, a main
view controller, a map table view and a map view controller.
All the controllers connect with their own view and model,
and they used protocol to available passing data source and
delegates without calling class. All view sizes are relative to
iOS device screen size so that user can run this application
on any iOS device with no difference.

Fig. 12. IOS application overview

The initial view controller creates a view with a connect
button so that the user can access the server. After the button
is clicked, the controller pushes the main view controller to
the front so that user can see main view.

Fig. 13. Initial view controller of IOS Application

The main view controller has four car control buttons
(left, right, acceleration and brake), speed labels, a drawing
map button, and menu button. The car control buttons are



analyzing user’s touches and if they hold down the button,
and then send commands to mqtt server. The speed labels’
values are changed by accelerating or braking. The drawing
map button sends a request to server to record data for a
mapping, and the second click stop the mapping. The menu
button will connect to map table view controller when it
pressed. The map table view controller creates a list of all

Fig. 14. Main view controller of IOS Application

map data that has been stored in the iOS device. Each cell is
represented as a button so that when the cell is clicked the
controller presents the map view controller to show the map.
It also has exit button to terminate this controller. The map

Fig. 15. Map list controller of IOS Application

view controller shows a map by using our mapping algorithm
on an input data set. The car’s movement history is drawn
with white line, and obstacles detected by the sensors are
drawn with a green line. It also has exit button to terminate
this controller.

Fig. 16. Map view controller of IOS Application

E. Mapping Algorithm
Our mapping algorithm needed three different data inputs

from the vehicle, the distance moved, the angle, and two
detected walls some distance from the car. In this project,
we measured each wheel’s rotational distance and the two
detected distances, then we drew a map using our mapping
algorithm. The mapping algorithm has these steps: initiate
position, set current angle of the car, set current position,
resize map fit to phone screen, shift map fit to phone screen,
and draw a map.

1) Initiate all coordination
At the beginning of mapping, it is supposed to be initialize

all previous and current variables. To calculate the next
position and angle, the program needs to set the first variable
as first input in this section which is setting the current value
as the previous value so that the program could use it on
next iteration. The initial starting point is at the center of the
phone screen, and angle to the north as 0 radius.

2) Set current angle and position
Since we couldn’t find a reliable way to measure angle

data, the program calculates it in this section by using
the encoder values from the motors. The program already
knows the previous points and current distances from the
two wheels data; it needs an angular center point, a relative
angle between two points, a previous center point and the
current center point. Here is a graph of how this section is
trying to find values.

Fig. 17. Rotation angle and angular velocity [6]

Angular center could be determined by previous left wheel
position (A) with angle ∆Θ. The current angle is sum of
previous angle and ∆Θ.So, the result of angular center
= (prevCenter.x + r ∗ cos(prevAngle), prevCenter.y −
r ∗ sin(prevAngle)). From this, the program could get
current car’s center point which is (angularCenter.x− r ∗
curAngle, angularCenter.y + r ∗ sin(curAngle)).

After setting all current position of two wheels, the pro-
gram sets detected objects which are orthogonal with car’s
direction vector. Therefore, it could get the point using a
projection formula u · v = 0 from left wheel and right wheel
points.



3) Resize map fit to phone screen

The program then calculates the maximum ratio between
phone screen’s width / drawn map’s maximum width and
phone screen’s height / drawn map’s maximum height. The
ratio will be adjusted to stored data array set and multiply
the ratio to all points.

4) Shift map fit to phone screen

We then perform a check of the global maximum and
minimum for x and y points, and if the global maximum or
minimum exceed phone screen bounds, shift all points by
the difference between maxima or minima and phone screen
max point and phone screen min point. Now the entire map
fits on the screen at one time.

5) Draw map

To draw the map, we connect between previous points and
current points with lines. In the case of wall not detected
which is -1 value of measured sensor distance, the program
won’t draw any lines.

IV. Frame
A. Body

Our frame design was based on three rules: 1. Easy to
install, 2. stable, 3. Adapt to the components and wire con-
nection. Therefore, we design a hollowed-polygonal frame
which is shown below: As shown, the base was made of a

Fig. 18. Structure Chart of the Bottom (base)

Fig. 19. Structure Chart of the sides

Fig. 20. Structure Chart of integrated front, top and back

piece of acrylic to provide stability for the rest of the frame
and to hold the wheels and motors in place. It was designed
to allow the wires from both motors to pass through the
bottom and connect to the motor drivers inside the frame.
The left and right sides are both screwed onto the base. There
are three holes on each side with the same position. Two of
these holes are used to hold the ultrasonic sensors and the
other one is intended to facilitate airflow for cooling. The
two holes at the front and the hollowed part at the bottom
are also for airflow and cooling. We added these to the design
because the Raspberry Pi heats up a lot when running all the
programs necessary for our project.

For easy install and hardware adjustment (power banks
charging), the front, top and back side are designed to be
able to be put together via the slots on the left and right
side. This allowed us to be able to remove the top quickly
to check battery status, and wire connections easily.

B. Motor and wheels

For the motor and wheel parts, we used components from
Pololu that were designed for our specific motors as well as
some generic caster wheels to allow for easy turning:

• Pololu Universal Aluminum Mounting Hub for 6mm
Shaft * 2

• Pololu Stamped Aluminum L-Bracket Pair for 37D mm
Metal Gearmotors * 2

• Front Wheel: Pololu Wheel 9010mm Pair - Red * 2
• Rear Wheel: 1” Caster Wheels Swivel Plate w/Break

Casters on Black Polyurethane Wheels * 2
Below is an image of the final product of the vehicle:

Fig. 21. Frame on finished project



V. Conclusion

The world today is built on information. Our project was
designed around finding a way to gather information that
would otherwise be unable to obtain. We did this through
visual feedback with a camera as well as through a visual
representation of the area the car was taken as a map. The
project was very interesting as we worked through various
issues and hiccups along the way. We ended up changing
our microcontroller to a microcomputer and had to adjust
and find different ways to do things along the way. It
was great being able to incorporate our knowledge of both
hardware and software together in one project. We were able
to go through all the phases of project proposal, design, and
implementation, and were able to create a successful project
that met the requirements we had set forth in the beginning.
This experience will help further our progress in this field
and in our careers and future education.

REFERENCES

[1] RaspberryPi, “Raspberry pi 4 microcomputer tech specs,”
2019, https://www.raspberrypi.org/products/raspberry-pi-4-model-
b/specifications/.

[2] pololu, “Pololu 2824 motor,” 2019,
https://www.pololu.com/product/2824.

[3] Pololu, “Pololu encoder,” 2019, https://www.pololu.com/docs/0J63/3.4.
[4] Kuman, “Kuman for raspberry pi camera module,” 2019,

http://www.kumantech.com/.
[5] sparkfun, “Hc-sr04 ultrasonic sensor distance module,” 2018,

https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf.
[6] Unknown, “The radius of a circle is rotated through an angle

. the arc length s is described on the circumference.” 2016,
https://courses.lumenlearning.com/physics/chapter/6-1-rotation-angle-
and-angular-velocity/.


