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Abstract—The Autonomous LIDAR Mapping System was de-
signed and built as a custom 3D modeling mapping prototype
used for many different applications like surveying, construction,
or architectural purposes. This system takes advantage of LIDAR
technology to map or scan static environments for applicable
point cloud data and extract a 3D model object of a given
space. This project eliminates the need for humans to measure
manually, and presents it as a low cost solution. The custom
built 3D modeling software has a simple user interface where
the final 3D model image is displayed. This project is delivered
as a prototype of an affordable LIDAR mapping system.

I. INTRODUCTION

THERE is great demand in the current market for efficient
and affordable LIDAR mapping systems for indoor and

outdoor environments within the architectural, engineering
and construction industries. Technical advances in this field
continue to grow with market projections of $4.4 billion by
the year 2023 [1]. The time and cost savings for humans to
use autonomous systems is inherently desired. It is attractive
to many different sectors in the market. [2]. This work presents
our design approach to construct such a prototype device to
transform the final output into a 3D model object.

A. Motivation

One major motivation for this project was the opportunity
to build a custom mapping robot with the ability to provide
information to create 3D models for historic building struc-
tures to protect, preserve, and archive for future generations.
One example to this was the fire that destroyed the Gothic
architecture of the Notre-Dame de Paris cathedral in Paris,
France [3].

B. LIDAR Technology

Light Detection and Ranging (LIDAR) technology is a
reliable laser scanning technology that sends light pulses
reflecting off objects and measuring distances of an obstacle
[4]. LIDAR is an extremely useful tool for autonomous robotic
platforms and a large part to our 3D modeling visualization
scanning robot. This 3D modeling environment technology
is an important topic for many research fields. Some of
these applications include autonomous navigation like aerial
vehicles (UAV’s), self-driving cars, automated guided vehicles
(AGV’s), and mapping architectural buildings [4].

This project implements our custom version of what is
referred to as the LIDAR Autonomous Mapping System or
the acronym “LAMS”. The actual cost of 3D LIDAR sensors

are extremely high, which limited our ability to only be able
to acquire a 2D LIDAR laser scanner. The core purpose for
LAMS was to perform omnidirectional laser range finding for
the surrounding environment [5]. This process adopted a laser
triangulation ranging principle by operating high-speed vision
acquisition and processing hardware [6].

C. Project Scope and Overview

The originally proposed scope for this project was delivered
as a custom terrestrial low-cost 3D modeling scanning robot
prototype. We used the Slamtec RPLIDAR A2M8 2D 360-
degree 12m radius laser scanner. It is mounted to the top of
a static (terrestrial) tripod stable base as shown in Figure 1.
All the components and brackets required were designed using
CAD software and then 3D printed to secure the hardware to
the device. The servo motor acts as the turning mechanism
to the scanning assembly. It performs a 0 to 180 degree
incremental turn on the x-y axis, while the LIDAR sensor
gets mounted to the L-bracket and will rotate continuously at
360 degrees on the z-axis. This is meant to achieve the full
360 degree 3D cloud map using only a 2D scanner. It must
be noted that our scans are limited to ranges of 12m radius as
the max distance for the scanner, so there are limitations to
this design.

To store the point cloud data from the scanner we built an
embedded PCB design which includes SD card protocol in

Figure 1: LAMS robot on terrestrial tripod base



Figure 2: Example 3D laser scan of Notre Dame Cathedral in
France

SDHC format (4-8 GB storage capacity) to handle and store
the data. It gets stored as a .lams file into the SD card.

The custom 3D modeling software tools convert the .lams
file from the SD card into an .obj file. Therefore, the first
purpose of the software is to convert the data files for viewing.
It can then display all the points in the 3D viewer from the
converted obj file. The user can then use the visualization tools
to look at the points (map) and its features to display on your
computer. The final result is similar to Figure 2 of the point
cloud image. All the details to the design and implementation
are given in this report.

The final scope of this project was separated into the 3 major
components, and satisfies what was originally proposed.

1) Designed and built a custom LIDAR mapping robot
mounted to a terrestrial tripod base to scan for point
cloud scanning.

2) Designed and built an integrated embedded PCB to store
the data with SD card protocol (SDHC).

3) Designed and built a custom 3D modeling software to
convert and produce the final 3D model images and files.

II. BACKGROUND

Light Detection and Ranging (LIDAR) mapping is used for
many applications. Archaeological studies have used aerial
LIDAR scans to locate and map Mayan ruins in the Mexican
states of Tabasco and Chiapas. The LIDAR sensor is fixed
to an aerial vehicle to map the ground below. These scans
are able to penetrate the dense jungle foliage and provide
mapping that researchers review. These LIDAR scans helped
researchers discover ruins were much more extensive than
previously thought [7].

In 2015 Andrew Tallon, a professor of Art History at
Vassar College, used a LIDAR sensor mounted on a tripod
to make high detail laser scans of the Notre Dame Cathedral
(Figure 2). These LIDAR scans of Notre Dame are very highly
valued ever since the fire in 2019 that destroyed the cathedral
because of their possible use in the reconstruction effort [3].
Researchers at The University of Tubingen in Germany and
Orebro University in Sweden have constructed a mobile robot
that can navigate through a building and scan the space using

Table I: Hardware Bill Of Materials

Qty Part
1 Part: IC1 - ATSAME54N20A-AUT

Mfr: Microchip - MCU 120MHZ 1024KB FLASH 100 TQFP
1 Part: U1 - MAX20034ATIR/VY+

Mfr: Maxim Integrated - 2.2MHz, 36V, Dual Buck Control
1 Part: OSC1 - CX3225CA12000D0KPSC1

Mfr: Kyocera - Crystals 12MHz 8pF 3.2x2.5x0.8mm
1 Part: SD-CARD-CONN - GSD09002SEU

Mfr: Amphenol - Memory Card Connect SD, 9 pos, 15
2 Part: RESET, START BUTTON - LL3301BF065QJ

Mfr: E-Switch - PB Switch 50mA 12VDC F065 9.5mm J-Lead
8 Part: C5,C6,C7,C8,C10,C11,C15,C16 - C0603C104K5RACTU

Mfr: KEMET Corp- 100nF 50V X7R 10% Pad SMD 0603
2 Part: C1,C4 - C0603C472J5RACTU

Mfr: KEMET Corp- Cap Ceramic 4.7nF 50V X7R 5%Pad 0603
2 Part: C2,C3 - 04025A4R7JAT2A

Mfr: AVX - Cap Ceramic 4.7pF 50V C0G 5% Pad SMD 0402
1 Part: C9 - GRM188R61E106KA73D

Mfr: Murata Elect- MLCC - SMD/SMT 10UF 25V 10% 0603
2 Part: C12,C13 - GRM1885C1H8R0CA01D

Mfr: Murata Elect- MLCC SMD/SMT 8pF 0603
1 Part: C14 - GRM188R61C475KAAJD

Mfr: Murata Elect- SMD/SMT 0603 4.7uF 16V *Derate
1 Part: CBIAS - C1206C685K4RACTU

Mfr: KEMET Corp- Ceramic 6.8uF 16V X7R 10% Pad 1206
5 Part: COUT1, CIN - C4532X7R1C336M250KC

Mfr: TDK - MLCC SMD/SMT 1812 16V 33uF X7R 20%
5 Part: COUT2 - GRM31CR71A226ME15L

Mfr: Murata- Cap 22uF 10V X7R 1206 20% 3.2mOhm 0.72nH
2 Part: D1,D2 - MBRS140T3G

Mfr: ON Semiconductor- Rect. Diode Sch Si 40V 1A 2-Pin
1 Part: LED STATUS - 155060VS75300

Mfr: Wurth Elektronik- WL-SMSW Grn 2V 20mA 572nm
2 Part: LED RX, LED TX - 155060VS75301

Mfr: Wurth Elektronik- WL-SMSW Ambr 2V 20mA 610nm
1 Part: L1 - SRP1238A-3R3M

Mfr: Bourns- Fixed Inductor 3.3uH 20% SMD 1238 AEC-Q200
1 Part: L2 - MSS1260-682MLB

Mfr: Coilcraft- 6.8uH 20% 18.5mOhm 3.8Arms 20C 5.9Arms
1 Part: R1 - ERJ-2RKF1022X

Mfr: Panasonic- TF 0402 10.2K Ohm 1% 0.1W(1/10W)
2 Part: R3,R4 - ERJ2GEJ513X

Mfr: Panasonic- TF 0402 51K Ohm 5% 0.1W(1/10W)
1 Part: R2 - ERJ2RKF1052X

Mfr: Panasonic- TF 0402 10.5K Ohm 1% 0.1W(1/10W)
1 Part: R5 - ERJ-UP3F3300V

Mfr: Panasonic- TF 0603 0.25W 1% 330ohm AEC-Q200
5 Part: R6,R8,R12,R13,R15 - ERJ-UP3F1002V

Mfr: Panasonic- TF 0603 0.25W 1% 10Kohm AEC-Q200
4 Part: R7,R9,R10,R11 - ERJ-PA3F1003V

Mfr: Panasonic- TF 0603 100Kohm 1% Anti-Surge AEC-Q200
1 Part: R14 - ERJ-PA3F1001V

Mfr: Panasonic- TF 0603 1Kohm 1% Anti-Surge AEC-Q200
3 Part: R16,R17,R18 - ERJ-UP3J101V

Mfr: Panasonic- TF 0603 0.25W 5% 100ohm AEC-Q200

LIDAR. The LIDAR scans are then compiled into 3D model
that is useful for construction and renovation of an office or
living space [8].

The LIDAR mapping of Notre Dame and autonomous
mapping robots are similar to LAMS. Both of these implemen-
tations rotated a LIDAR scanner around the space to construct
a point cloud data set which is processed into useful 3D
models. LAMS is designed to produce a similar result, albeit,
limited to being a prototype of these other systems.



III. HARDWARE

Our project’s hardware can be divided into 2 sections,
integrating our components with our processor and developing
the embedded system. The processor decision was heavily
based on the necessity of using an SD card, so we decided to
use Microchip’s SAME54 series microprocessor. The decision
resulted in the purchase of a SAME54 development board: the
SAME54 Xplained Pro Evaluation Kit. This board allowed us
to begin designing the embedded software before an embedded
board would be developed to ensure working programming as
we didn’t want to risk a faulty PCB design.

A. Component Integration

To integrate the components with our processor, we inte-
grated each component, one-by-one into our software. To start
off, we used internal timer peripherals to produce a PWM
signal to the servo, UART communications to the LIDAR, as
well as simple GPIO signals for a status LED and start button
to start a scan.

The servo was an SPT5435 [9] that provided enough torque
to rotate our platform without a lot of stress. The decision for
this servo was also loosely based around a previous design that
required more torque. We also wrote a small algorithm that
allows us to give an angle and will adjust the timer peripheral
to switch to its relative count specific to this servo. After
working with the servo and seeing its performance, it was
decided that if this were to go into production or this project
was redesigned, a better solution would be to use a rotary
motor for smoother angle transitions.

Next we worked to integrate the LIDAR sensor. After
finding the sensor communication protocol [10], we were able
to generate the required sequences of bytes to send to the
LIDAR as well as receive and process the incoming data.
This was the most challenging aspect of writing the software
as much of the signals sent and received were time specific
and needed to keep track of the bytes sent back and forth, as
well as fully understanding the protocol in operation. To help
our debugging process, we utilized a Saleae logic analyzer
that allowed us monitor the signal traffic to ensure the bytes
incoming and outgoing were what was expected.

Lastly we developed communications with the SD card. In
order to save readable files, we utilized an open-source FATFS
driver module [11] that allowed us to write file-specific data
while also updating the base data of the SD card, keeping
track of file structures and file management.

Once all basic communications had been tested and we
were able to combine all the developed methods to be called
within a single scan process. We decided that there should be
a maximum number of scans per servo angle, as well as a
maximum time spent on each angle in case of large rooms or
incomprehensible objects that LIDAR laser could not detect.
One such object was mirrors as the laser is not refracted
directly off of the mirror, rather rebounding at a 90-degree
angle from its position.

(a)

(b)

Figure 3: (a) Custom PCB stencil. (b) Custom PCB board.

B. Embedded System

Designing the embedded system was a tricky task. We
developed our boards and schematics using EAGLE where we
carefully sifted through our component’s different documenta-
tions and datasheets to ensure correct setup. Once our design
components and boards arrived (Figure 3a), we used a PCB
stencil (Figure 3b) for correct solder-paste placement and a
reflow oven to melt the solder-paste, securing the components
without damaging the microprocessor.

We wanted all voltages to run through the system to
basically have a single power source that can control both the
3.3V power supply to the microprocessor while also outputting
the 5V connections to the servo and LIDAR. We decided to
use a voltage regulator capable of outputting the 2 voltages
with an input power of 9V. However, this is what caused
our custom PCB design to not work. After assembling the
board, we found that the outputted voltages from the voltage
regulator were not close enough to our desired voltage levels.
We believe the reason for this was due to our attempt of
low-cost development manufacturing, as well as the irregular
component values needed from the voltage regulator to operate
and output the required voltage levels. We now know of 2
safer options for powering a microprocessor: (1) We can use a
variable voltage regulator to adjust voltages to desired levels or
(2) we can use a voltage regulator that only drops the voltage
to the desired 3.3V.

IV. SOFTWARE

A. Software Language

The LAMS 3D Viewer was written completely in the
programming language Java. We chose to write the viewer



in Java in order to make it cross platform for all major
operating systems and for portability. As a result, our software
runs from a single executable jar file on Linux, Mac, and
Windows without any installation, assuming that the Java
Runtime Environment is already installed.

B. Software Structure

The Java code is split into two main packages. The first
package is the .lam file to .obj file converter and the second
is the 3D Viewer. Data stored on the SD card is formatted
in spherical coordinates with the form (r, θ, φ). This must
be converted to Cartesian coordinates before the data can be
displayed in the LAMS 3D Viewer.

C. LAM to OBJ Converter

The converter software converts the Spherical Coordinates
to Cartesian Coordinates, generating edges between the points
and a mesh with triangular faces. Because the model could
have void areas (holes) where no LiDAR data is available, not
all possible faces are valid. In order to ensure that the software
can recreate the scanned area accurately, the number of θ and
φ steps must be provided. For example, if the LAMS scan is
returning 1 scan per angle, the θ steps would be 360 and the
φ steps would be 180.

The converter software steps through every scan point to
look for data at each θ and φ and creates edges between
the adjacent points. If data is missing for a certain point, the
converter leaves a hole in the model at that point. Once all
the edges are created, the converter will create faces from the
list of edges. Creating edges and faces from a point cloud
requires a good deal of calculation. In order to make the
processing easier, we created classes for faces, edges, spherical
coordinates and Cartesian coordinates. These different classes
have helper methods to assist in the processing of the point
cloud.

Figure 4: Vertex, wireframe and solid views of the LAMS 3D
viewer side by side.

D. LAMS 3D Viewer

The converter supports the LAMS 3D Viewer which will
display the point cloud and model to the user and allow the
user to make sense of and edit the data. The LAMS 3D Viewer
has 3 views: the vertex view, the wireframe view, and the
solid view as seen in Figure 4. The LAMS 3D Viewer has
a drawing panel, which is the main feature of the Graphical
User Interface (GUI), a menu bar, and satellite windows for
tools and settings. The LAMS 3D Viewer has one class that
handles all of the graphics processing. This class has methods
to add points, lines, and faces to lists which will be drawn to
the canvas. The Draw3D class will draw to the screen when
the refresh method is called. Because there are no animated or
moving objects, a static image rendered to the screen worked
for our 3D viewer.

The LAMS 3D Viewer has a move and select tool in the
toolbar. When the move tool is selected, the mouse click and
drag will rotate the 3D Model. When the select tool is selected,
the mouse click and drag will allow the user to highlight
vertices which can be deleted by hitting the delete key. When
only two points are selected, the “E” key will create an edge
between the two vertices. When 3 or 4 vertices are selected,
hitting the “F” key will create a face between the vertices. In
both the selection mode and the move mode, the arrow keys
the “Q” key and the “W” key can be used to navigate around
the model.

The settings editor can be accessed from the view item in the
menu bar. Aesthetic options for all 3 views of the 3D viewer
are in this editor. These settings include: changing colors for
all components in the editor, enabling the x, y, and z axes,
enabling the xy-grid, and changing the size of points in the
vertex view.

Rx(θ) =

∣∣∣∣∣∣
1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

∣∣∣∣∣∣
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cos(θ) 0 sin(θ)

0 1 0
−sin(θ) 0 cos(θ)

∣∣∣∣∣∣
Rz(θ) =
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cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

∣∣∣∣∣∣ (1)

xp = x ∗ scale+ screenWidth/2

yp = y ∗ scale+ screenHeight/2 (2)

The Draw3D class handles all the calculations required to
project 3d points onto a 2D screen. Any 3D point projected to
the screen must first be rotated and then be projected to the 2D
screen space from the 3D world space. Equation 1 shows the
rotation matrices that must be applied to the < x, y, z > vector.
After the points have been rotated in world space, the x and y
components of the resulting vector are applied to Equation 2.
After this transformation, the resulting points can be drawn to
the draw panel of the 3D Viewer. Figure 5a shows the point



(a)

(b)

Figure 5: (a) LAMS scan example of the CE senior lab. (b)
3D viewer output of software from of the scan of the lab as
shown in (a). Good example of a scan and the viewer together.

cloud representation of a LAMS scan with an environment
shown in Figure in the LAMS 3D Viewer.

V. FULL IMPLEMENTATION

Ultimately, at the end of this project the completed LAMS
system turned out to be extraordinarily similar to what was
expected and planned in our proposal. The design implemen-
tation was configured more streamlined than what was first
thought. We ended up using only one servo motor (only needed
one) – because we took advantage of the continuously turning
LIDAR sensor, allowing us to get the full 360 degree range we
needed from only using a 2D sensor. This turned out to work
in our benefit as the servo ended up having a slight vibration
that would cause more inaccurate scans.

A. Final Risk Assessment and Testing

One of the biggest challenges for the team during the testing
phases was integrating and assessing bugs throughout the
system. All the components were tested separately first, and
then combined to work through some of the problems. From
the first few scans, we needed to coordinate and work through
the calculations of the data coordinates as given by the LIDAR
scanner, so that the transfer of data was valid.

After our custom PCB was soldered, the final outputs were
not fully realized. The hard work that was given for this board
should not be lost however, giving a great experience in the

(a)

(b)

Figure 6: (a) LAMS from overhead. (b) LAMS from the side.

process with the knowledge that we tried to build this ourselves
from scratch. The final product can be seen in Figure 6a and
Figure 6b.

B. Low Cost Solution

Our proposal for this project was to finally deliver a low-
cost LIDAR system prototype. This was fully realized as a
typical LIDAR mapping system cost is in the ranges of $5000
to $85,000 in the current market. We completed this project
for under $1000 (Table II). Therefore, the final result turned
out to be successful as we completed the requirements for this
project originally proposed.



Table II: Final Cost of the LAMS Project

Part Qty Cost
LIDAR Scanner 1 $396

Servo Motor 1 $30
SAM E54 Xplained Pro Evaluation Kit 1 $75

3D Printer Filament 1 $25
PCB Design/Ordering 2 $200

Misc Components/Accessories 1 $45
Total Cost = $771

VI. CONCLUSION

This project is of great importance to documenting 3D
models of buildings and structures using LIDAR technologies.
This system was built as a low-cost prototype solution for
architects, engineers, and construction workers benefiting them
with time and money to help map locations. The system
makes for a more autonomous approach in getting 3D mapping
and surveying information available. Indeed, there were some
limitations to the project in general, but a success overall. The
knowledge and experience gained will be a benefit for future
opportunities.

The full integration of this prototype design incorporated
a good mix of hardware and software concepts. The man-
agement and cooperation of team responsibilities were com-
municated and utilized mainly virtually because of COVID.
All team functions were performed as a multi-disciplinary
team for various roles. The final result was a success and
ultimately delivered on the originally proposed project to meet
the specifications. Overall, we are proud of the work that was
accomplished for this project.
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