
From Flab to Ab: A Smart Home Gym

Jake Betenson, Matthew Cranford, Cole Jacobs, Tyler Linquata, and Ryan Lukas

Abstract— Physical exercise is a critical component of any
healthy lifestyle. For some people, formal exercise – especially
when it includes weight training – can be intimidating. For this
project, we built a virtual fitness coach that provides interactive
feedback on the user’s movements and form. This tool is a
“smart mirror” – a two-way mirror with an electronic display
behind the glass. Other features include automatic workout
logging to personalize the users experience. The information
gathered and generated for the user will also be made acces-
sible through a mobile application for added convenience and
availability.

I. INTRODUCTION

INDIVIDUALS trying to improve their health often perceive
exercise and fitness to be a daunting task. The anticipation

and intimidation they feel may lead further to frustration
or feeling discouraged about their fitness goals. Many of
these concerns are legitimate – if one does not know and
use proper form, the risk of exercise-related injury increases.
To avoid this, many seek help from a personal trainer. With
professional instruction, individuals learn to use correct form
and how to structure an effective exercise schedule. Not only
is the risk of injury reduced, but also the results of the
workout become more pronounced.

Though there are many benefits associated with receiving
personal training, there are also drawbacks. Some individuals
may find the high, recurring price to be an obstacle to
their fitness goals. Others may find the advanced planning
and rigid schedule to be challenging. Our solution to these
problems was to create a personal trainer without the person.

Using modern technology, we built a virtual trainer that
can replace the need for a personal trainer and provide
benefits to both beginners and veterans of fitness. This trainer
takes the form of a “smart mirror” – a two-way mirror with
an electronic display behind the glass. The finished product
is a tool that removes much of the pain of working out.

A. Project Synopsis

The core of this project is the smart mirror. Mirrors
are commonly used in gyms as a way to provide positive
reinforcement and motivation to exercisers. They also allow
one to see exactly what the body is doing, which is helpful
when practicing new movements. A smart mirror retains
these functions, but it also provides the opportunity to go
beyond a simple reflection.

1The authors are with the Electrical and Computer
Engineering Dept., University of Utah, Salt Lake City, UT
84112 USA (email: j.betenson@utah.edu,
u1147580@utah.edu, cole.jacobs@utah.edu,
tyler.linquata@utah.edu, u1063988@utah.edu)

A smart mirror is typically composed of three components:
two-way glass, an electronic display, and a computing device.
Two-way glass is designed to reflect light from one direction
while allowing light to escape from the other. Placing the
electronic display behind the glass enables the reflection
typically seen in a mirror to be joined by images projecting
from the screen. By connecting the electronic display to
the computing device, one can customize the display with
graphical widgets, providing an interactive experience.

This project’s smart mirror is comprised of plexiglass sheet
with a mirror coating that is encased in an attractive frame,
which also houses an Nvidia Jetson and an LCD television. A
camera is mounted to the frame to allow video capture of the
space immediately in front of the mirror. These components,
running appropriate software, constitute the virtual trainer.
The trainer provides feedback on the user’s form with the
use of a overlay on the user’s reflection with lines indicating
current position.

B. Demonstration

The demonstration showcases the core features of the
project: the smart mirror, the mobile application, and the
smart trainer. This will require sufficient space to fit the mir-
ror, exercise equipment, and room to perform the exercises.
The demonstration requires 20 square feet, in a relatively
simple environment.

Over the course of the demonstration, attendees can per-
form a supported exercise, such as a squat, in front of the
mirror in order to get feedback regarding their exercise form
and their number of exercise repetitions. This information is
gathered by camera and processed on the mirror’s attached
Nvidia Jetson Nano.

Most saliently, the display will include a skeletal tracker
to assist with exercise form. During the exercise, a video
feed is displayed on the mirror with the skeletal tracker
overlaid. This video feed also includes graphics to help the
user understand how the exercise should be performed.

II. BACKGROUND

A. Human Pose Estimation

This project is strongly influenced by ongoing research
related to body pose estimation. Body pose estimation refers
to the process of estimating a person’s pose by inferring
where body joints are. Its possible applications are many,
including being used to monitor and analyze exercise form.

Beginning with “DeepPose” by Toshev et al. [1], efforts
in human pose estimation began utilizing Deep Neural Net-
works (DNNs) and other machine learning techniques to
better approximate joint locations. The speed and accuracy



of these systems continue to improve with advancements
in neural network configurations. One particularly useful
resource for our project will be OpenPose [2]. This is a pre-
trained real-time system available as an open source library
for research purposes. This library utilizes OpenCV [3] to
associate body parts with provided images and video. A
similar library, TRTPose, can be run on the Nvidia Jetson
to analyze posture and movement during exercise.

To guide our definition of proper form, we will primarily
refer to academic research conducted on sports biomechanics
and strength and conditioning [4], [5]. These sources provide
mathematical descriptions of lifting technique that will be
critical for building our model of proper form.

B. Related Work

This project belongs to a growing trend of fitness-related
startups and smart gym equipment. In 2019, venture capital-
ists spent hundreds of millions of dollars on fitness startups
in the United States [6]. We are clearly not alone in our
excitement for technology in this market.

Though not yet prevalent for the average consumer, there
are several products which offer features that overlap with
our proposed project. The two products most similar to our
own are Tempo [8] and MIRROR [7]. The latter of these
products can be seen in Fig. 1. Both of these products use
screens which are designed to be looked at during exercise
and use sensors to count reps and analyze form – features
we would like to emulate. However, these products differ
from the proposed project in their focus on live, subscription-
based training classes. No such content will be provided in
this project.

We are separated in other ways from these products
including in the amount of money available to us and in
our lack of privacy concerns. Since this is an academic
pursuit, our budget is limited. We will also be making use of
open source technologies that are available to us under the
condition that we do not profit on our project.

Fig. 1. Example of Mirror Co. product [7]

III. DESIGN OVERVIEW

A. Frontend

The frontend consists of GUI written in python that
displays the informed image, current exercise, the current
rep count, and workout history to the user. The image has
an overlay that helps the user understand how to perform
the exercise. The overlay will change color to indicate ’how
close’ the user is to finishing one repetition as well. This
direct feedback gives the user an intuitive feel of the workout
and whether they are performing it both correctly and safely.

Switching to a GUI based option was not our first choice.
Originally we had plan to use Node.js and have a web
server display the image. This way we could manipulate
the screen and make the mirror look and feel like a mirror.
Unfortunately, pose-estimation on video streams in real time
is resource intensive and the through-put of images to the
web server was too slow to produce any usable feedback. Our
frames-per-second (FPS) went from approximately 13fps to
less than 2fps, making the web server idea a dead end.
That is not to say that the idea is not possible but with
our limited resources, pivoting to a different framework was
more suitable.

After choosing to build our GUI with python, we chose the
library PySimpleGui after iterating through different python
GUI libraries. An issue we encountered while developing
the frontend is the lack of documentation of the GUI library
used. The lack of documentation made it difficult to know
exactly how to manipulate the provided code to produce
exactly what was designed. For example, a certain function
call was necessary for the GUI to update its state but the
call was deceptively unclear that it was needed (it was called
window.read() ), but nothing would function correctly unless
this line of code was kept.

Lastly, our final challenge was resizing the GUI to make
sure everything looked adequate. We tried expanding the
window by setting the size to fit the monitor (720p) but only
filled up about one half of the screen. After playing around
with the setting, we made sure to set the output display of
the jetson to 720p. We also realized that the drawn image
coming from the Jetson can not be resized because we would
drastically loose FPS. Therefore, we made the drawn image
that’s being pipe-lined in one half of what the final GUI size
would be. Pipe-lining the image at the specific size solved
the problem of having to resize the image once it gets to
GUI which helped retain our current FPS.

B. Backend

The first essential step in developing the backend is
configuring the development environment correctly and in
an orderly manner. This proved to be quite a challenge with
the Jetson Nano for several reasons namely, there are many
pose-estimation frameworks standards that rely on various
different versions of python and its associated libraries. This
meant that when attempting to test out a specific framework,
it would interfere with other installations. Another issue is
that most of the current pose-estimations frameworks are



Fig. 2. Final GUI Application

not optimized for the Jetson Nano and as such performed
poorly when tested, providing an undesirable frame rate of
2-3 fps. This issue was solved when we began using virtual
environments to keep installations isolated from each other
and discovered a framework that had been optimized exactly
for the Jetson Nano.

With the correct libraries and frameworks in place, a
true Integrated-Development-Environment (IDE) was lack-
ing. The initial hope was that the native Ubuntu operating
system on the Jetson would allow us to have some nice tools
for remote development. This hope was dashed when it was
discovered how resource intensive the IDE was, making it
impossible to simultaneously develop and test. This road-
block was overcome by utilizing some clever programming
tools such as tmux. This tool allows users to share the same
shell terminal making it easier to pair program in a limited
environment.

In order to provide exercise feedback, the backend utilizes
NVidia’s TRTPose. TRTPose has several pretrained neural
networks optimized for NVidia’s family of Jetson products
capable of human pose estimation. These networks take in a
resized image from the attached webcam and parse key joints
on the humans detected in the image. This implementation
uses ResNet-18, an eighteen layer convolutional neural net-
work that utilizes skip connections for faster inference and
training. Compared to DenseNet-18, which was only capable
of doing inference on 2-3 frames per second, ResNet-18
provides 13-15 frames per second. This level of performance
is enough to provide a smooth user experience.

Using the framework described, we successfully imple-
mented features which provide visual feedback to the user
and enable auto-logging of exercises. These features are
currently supported for three exercises: bicep curl, shoulder
press, and squat. In this case, visual feedback refers to
highlighted planes or arcs, applied in a post-processing
phase, which guide the user’s movement in both direction
and distance. Auto-logging of exercises refers to the ap-
plications’s ability to automatically detect and record rep
counts, which are paired with the user’s selected exercise
and exported.

Visual feedback and auto-logging are related in one im-
portant way: they depend on categorizing the user’s pose
into one of two states. These states are designated as up and

down states, and they refer to whether the user is in the high
or low portion of his/her range of motion for the exercise.
Categorizing the user’s state depends on which exercise they
are performing, but the general principles are the same.

The first important step in categorizing a user’s state is
identifying which joints are relevant to that exercise. In
reality, many exercises (compound lifts in particular) involve
multiple muscle groups and therefore multiple joint groups.
However, this application takes a less rigorous approach to
form checking because the alternative would entail several
cameras capturing the user’s movement from different an-
gles. As a result, only joints that are immediately relevant
in our isolated view of the exercise are selected. For bicep
curl, this corresponds to the shoulder, elbow, and wrist joints.
For squat, the knee and hip joints are important, and for
shoulder press, we’re interested in the user’s elbow, neck,
and shoulder.

After relevant joints have been identified, the next step is to
define the thresholds which separate the up and down states.
These thresholds are predicated on good exercise technique.
For example, completing a proper curl requires the weight
to start in a resting, extended position and then be brought
up until the bicep is fully contracted. This movement can
be quantified by calculating the angle formed between the
upper arm and the lower arm with the elbow as vertex. After
accounting for body mass, which restricts the possible values
of these angles, the down state of bicep curl was defined as
anything more relaxed than 120◦. The up state was defined
as anything more contracted than 50◦.

Fig. 3. Visual effects for a user performing a bicep curl

The same process can be repeated for shoulder press and
squat, albeit with slightly different details. Where angles
were previously used, thresholds for these exercises were
more accurately defined as vertical positions relative to some
body part. For squat, up was defined to mean that the user’s
hip was at least 3

4 length of the femur above the knee and



down to mean that the user’s hip was no more than 1
4 length

of the femur above the knee. For shoulder press, up was
defined as at least 1

2 length of the forearm above the neck
and down to mean lower than the neck. The visual feedback
produced as a result represents planes which the user must
cross.

With thresholds defined and the user’s state properly cat-
egorized, it becomes possible to add post-processing effects
to the image to communicate to the user which way he/she
needs to move. These effects were applied using OpenCV
[3], which exposes functions to draw lines, circles, and
ellipses on a given image. Examples of visual effects for
bicep curl, shoulder press, and squat are shown in Fig. 3, 4,
and 5 respectively.

To implement auto-logging, the application need only
track the recent history of the user’s categorized states. A
completed rep for any of these exercises is counted when
the user successfully moves from the starting state of the
exercise to the complementary state and then back to the
starting state. For bicep curl and shoulder, this translates into
a movement from down to up and back to down, whereas
squat begins in the up state and is therefore the sequence up
to down and back to up. This count is communicated to the
phone, the frontend application, and a connected database
via polling for future review.

C. Networking

The project uses Web API calls for communication be-
tween the Jetson’s backend and the Mobile Application. The
Jetson’s Python backend builds a dedicated HTTP server
written using the Flask library. Flask is a Python-compatible
micro web framework that facilitates simple web servers
with custom API endpoint calls. The mobile application
accesses these endpoints to command the Jetson to begin or
end an exercise, get detailed knowledge about the workout,
toggle debug modes, etc. The API calls include one for each
exercise and additional debugging queries.

Fig. 4. Visual effects for a user performing a shoulder press

Fig. 5. Visual effects for a user performing a squat

D. Database

Firebase is a NoSQL database that allowed us to push
JSON formatted files to save and be able to retrieve infor-
mation for future use. To be able to sync up with Firebase,
we built functions to allow three different collections to be
built: User, Session, and Workout. Each user’s information
would be saved such as their email, name, and a unique user
identification. This unique user identification was then used
as a field for each saved JSON file to be able to retrieve each
specific session and workout that apply to each user.

With a NoSQL database, it is hard to retrieve the unique
ID until we found out that you can pass this unique ID
along with a 201 OK status to say that the individuals user
profile was built. Then within the mobile application, we
would hold a dictionary of keys that linked with the Firebase
authentication to know which user is using the application.
After the User is built within the database and the unique
ID has been created, we can now add each workout session
the individual takes a part of. This Session holds specifically
the user identification and a unique session ID to link each
workout with the session.

Fig. 6. NoSQL Firebase Database

Having a field that holds the specific session ID will
allow the mobile application to hold another dictionary of
each session the individual participates in. To find each
workout, you would search on the session ID field to find the
specific workouts they performed in the Workout collection.



This would pass back every specific workout they did and
how many repetitions were performed. With three different
collections, it helps keep all data separate and organized so
we wouldn’t have any overlapping data within a NoSQL
database. This ended being a proof of concept showing
that this application can hold more than one user and store
multiple workout sessions for the user to go back and
examine their previous workouts.

E. Mobile Application

The mobile application is the primary method of user
interaction for this device. Developed using Swift 5.0 and
UIKit, the application is compatible with any iOS device, and
will be compatible with upcoming MacBooks, allowing the
user to control the mirror from nearly any Apple computing
device.

This application was developed following the Model View
Controller (MVC) design pattern. The MVC pattern was used
because it is generally simple to implement and is a robust,
widely used pattern in mobile app development. In the MVC
pattern, code is split into the three main sections. The model
represents the state of the application. It consists of any
data being held by the application, as well as methods that
manipulate the data. In this pattern, only the model should
modify application state. The view is a group of classes that
represents what the user is seeing and interacting with. Often,
the view is connected to a controller, which is responsible for
retrieving data for the view from the model, and for telling
the model when and how it should manipulate data.

Fig. 7. Model View Controller diagram [9]

The application is capable of connecting wirelessly to the
mirror and a Google Firebase instance. The API calls are
handled with the Swift URLRequest and URLSession li-
braries. All connections to Firebase, FireAuth, and FireStore
are made using the official Firebase library for Swift. All user
information and authentication is securely stored on Firebase
to mitigate security risks and anonymize data.

F. Physical Construction

The mirror consists of a wooden frame that encloses a
television. The frame also holds a reflective surface in place
over the display. The Jetson Nano sits behind the display
while a video camera is mounted on top to capture input
data.

IV. CONCLUSION

The current implementation allows for a video feed at
13-15 frames per second at 640x480 which is a smooth
enough user experience. More powerful Jetson boards such
as the TX1 or TX2 can be used to immediately improve
the video feed’s frames per second or resolution, but also
increasing the cost. The supported exercises give basic visual
feedback showing how the exercise should be performed.
While the iOS application is user friendly and functions as
a controller for the mirror. This is an effective baseline for
future work. If development continues biometric data can be
gathered from smart peripherals such as the Apple Watch
or Garmin Forerunner and displayed on the mirror in real
time. Microsoft’s Kinect camera could be employed to get
depth data from the secondary infrared camera which can be
used for three dimensional exercise logic such as misaligned
limbs. Lastly, we could enhance the feature suite on the
mobile application with elements such as a workout history
or nutrition management.

REFERENCES

[1] A. Toshev and C. Szegedy, “DeepPose: Human Pose Estimation via
Deep Neural Networks,” Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pp. 1–9, Dec
2013.

[2] Z. Cao, G. Hidalgo, T. Simon, S. Wei, and Y. Sheikh, “OpenPose:
Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 7291–7299.

[3] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[4] S. Lorenzetti, M. Ostermann, F. Zeidler, P. Zimmer, L. Jentsch, R. List,
W. R. Taylor, and F. Schellenberg, “How to squat? Effects of various
stance widths, foot placement angles and level of experience on knee,
hip and trunk motion and loading,” BMC Sports Science, Medicine and
Rehabilitation, vol. 10, no. 14, pp. 1–11, Jul 2018.

[5] P. Comfort and P. Kasim, “Optimizing Squat Technique,” Strength and
Conditioning Journal, vol. 29, pp. 10–13, Dec 2007.

[6] P. Mathur. (2019) Fitness-hardware startups follow Pelo-
ton’s lead – up to a point. [Online]. Avail-
able: https://pitchbook.com/news/articles/peloton-breaks-ground-for-
fitness-hardware-startups

[7] MIRROR. (2020) Mirror. [Online]. Available: https://www.mirror.co
[8] CoreTech Fitness Co. (2020) Tempo. [Online]. Available:

https://tempo.fit
[9] Wikipedia. (2020) Mvc. [Online]. Available:

https://upload.wikimedia.org/wikipedia/commons/thumb/a/a0/MVC-
Process.svg/1200px-MVC-Process.svg.png


