
ECE 3992 DOCUMENTATION 1

Automated Espresso Machine
Isabella Gilman, Alexander Hudson, Ethan Melvick, Dawson Mildon

Computer Engineering, University Of Utah

Abstract—This report explains the work done to create an
automated coffee machine. The original goal was to build an
automated espresso machine, but after further exploration, it
was discovered this task was too complicated to complete within
the time restrictions. This document outlines the original design,
changes made to the design to meet completion upon delivery
date, and the engineering work that had to be done.

Index Terms—coffee, espresso, automation, computer engineer-
ing, systems engineering

I. INTRODUCTION

Drinking coffee is a morning ritual for many Americans.
It is customary for people to turn to caffeine as a way to
help wake up in the morning, and a popular choice is coffee.
According to the National Coffee Association, it is estimated
that two-thirds of Americans drink coffee on a daily basis,
most having 3 or more cups of coffee throughout the day [1].
With Americans consuming so much coffee daily, our group
will seek to design and build a fully automated coffee machine,
reducing the time Americans spend brewing their own coffee
or waiting in line at a coffee shop.

With hundreds of different types of coffee drinks (especially
when considering the different beans, roasts, grounds, and
brews), it was important to limit the scope of this project while
leaving room for expansion. Since espresso, and espresso-
based drinks, are the most popular in the U.S. [1], our original
goal was to create an automated espresso machine. However,
once development started, it was discovered the project was
more comprehensive than could be accomplished during the
time frame. As such, the project was changed to an automated
coffee machine.

This paper explains what our original design was, and what
changes were made to it to limit the overall work requirements.
This paper also goes into detail about the engineering work
done by each member of the team which resulted in the final
product.

II. RELATED WORK

We believe that our system is pretty unique. While there
are fully automatic espresso machines such as the Bravilor
Bonamat – Sego [2], we believe our system is largely not
related to these machines. Our system is more similar to
devices like vending machines, pinball machines, ATMs, and
any other heavily mechanical device. Several mechanical sub-
systems will have to work in harmony with each other.

Some may argue the current fully automatic espresso ma-
chines are smaller and systematically superior to our proposed
solution; we would argue that our solution is far more interest-
ing than the fully automatic espresso machines found in offices
and gas stations. The movement and system complexity will

entertain users of our system providing novelty. This novelty
provides value similar to the Makr Shakr (A robotic bar tender)
[3]. While our system will not be using expensive robots, it
will ultimately be extremely similar to the Reis & Irvy’s frozen
yogurt robot. Reis & Irvy’s – The Future of Frozen Yogurt! [4].
This device has a moving arm that collects a cup, fills it with
frozen yogurt, gets toppings, then dispenses it to the user. A
system like this is exactly what we are looking for.

While Reis & Irvy do not have a publicly available
datasheet, we have been able to find a few academic papers
relevant to our topic. One such academic reference is a text
book: Design of Embedded Robust Control Systems Using
MATLAB / Simulink [5]. The topics in this text book are
useful for validating our approach and are for the most
part language agnostic. Working using the philosophy in the
textbook will help us build a stable system.

Our system is fairly different because of the use of Lab-
VIEW. While the graphical programming language is no
stranger to control systems, including its use in the Hadron
Collider, it is a language some members of the team are fairly
unfamiliar with. We were able to identify academic writing
on a LabVIEW based traffic controller [6].The article uses
explicit examples for data communication, system design, and
other useful code samples. Referencing this article will help
the team understand what LabVIEW is, as well as how to use
it.

A combined understanding of what is currently on the
market, similar systems, and academic reviews of control
systems is vital for our project success. Using each of these
resources will help us develop a robust, reliable machine.
These pieces of related work do not reflect all the related work
in our industry. As we continue our development, we believe
we will continue a find a large variety of systems related to
espresso machines.

III. IMPLEMENTATION

The implementation of our automated espresso machine is
drastically different than that of our design in our intermediate
project proposal. In our original design, we had planned to
make the coffee completely from scratch starting from coffee
beans and use a mechanical arm to ferry the beans to different
the stations necessary to process them. A rough drawing of
this original design is shown in Fig. 1. After deliberating on
our design during the summer, we decided that this would
be too mechanically challenging, given that none of us have
extensive experience in mechanical engineering. Instead, we
decided that we would automate an existing coffee machine.
For this project we used a Keurig®K-Classic®and altered it so
that it could be used by simply pressing a button on a digital
user interface.
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Still, this project is heavily mechanical and required much
effort to put together. The following sections will go through
the mechanical aspects of the implementation, including mo-
tions automated and motors used; the motor controller board,
which facilitates control of the motors and onboard buttons
of the Keurig®; the microcontroller, which contains the main
control loop of the project; the user interface, which gathers
input from the user; and finally the last section will describe
the final working state of the project.

Fig. 1: Original project design

Fig. 2: Actual Implementation

A. Mechanical Design

A Keurig®is convenient for our purposes because it comes
with pre-packaged coffee flavors and a water-tight machanism
for properly brewing the coffee. It also, however, requires the

user to manually load the pod, open and close the lid, press
the brew button, and finally unload the pod. To fully automate
the Keurig®, there were four features we had to implement
opening/closing the lid, loading the pod, unloading the pod,
and brewing the coffee.

• Opening/Closing the Lid
In the Keurig®’s unmodified form there was a handle that
the user used to open and close the lid. This handle spun
a small knob that we were able to connect a motor to
on the side of the Keurig®after we removed the handle.
The knob itself raised and lowered along with the lid,
so we had to use the lid of the Keurig®as an anchor
point for the motor. The lid is spring-loaded to force the
lid into either an open or closed state, and because of
this the force needed to open or close the machine was
greater than we initially expected and our first motor was
not strong enough. We ended up using a 499:1 Metal
Gearmotor (Polulu item #1591). This gave us enough
force to overcome the spring and open/close the Keurig®.

• Loading the Pod
The pod loading mechanism utilized a linear actuator
powered by a 488:1 Metal Gearmotor (Polulu item
#3711). The linear actuator was connected to a short
PVC pipe that contained the desired coffee pod. When
the pod needed to be loaded into the machine, the linear
actuator would push the PVC pipe (with the pod inside)
over until the pipe lined up with a small chute. The
pod could then fall into the chute, landing in the opened
Keurig®. The force of landing in the Keurig®would not
be enough to puncture the pod on the needle inside the
Keurig®, but the force of closing the lid with the pod
inside would be enough to do this. In the future, the
automated coffee machine would be able to hold more
than one pod by simply adding a longer PVC pipe above
where the existing one sits in resting position, so the pods
could fall into place sequentially.

• Unloading the Pod
The unloading mechanism was much more complicated
and we were not able to get it working reliably. Originally
we tried to use a solenoid to kick the pod out, but the
solenoid we were using did not have enough travel to
completely remove the pod. Instead we put together a
two-phase system, in which a needle was attached the
solenoid, which spun about the axis of another brushed
motor. When it was time to remove the cup, the solenoid
and needle spun into place, the solenoid would fire,
and the needle would attempt to pierce the cup, before
the needle and cup would spin back out of the way.
Unfortunately, in either design we were unable to remove
the cup.

• Brewing the Coffee
The Keurig®was already able to brew coffee at the
push of a button. For us to control this process we
simply hijacked their control board and simulated the
button presses that would trigger the brewing process.
We accomplished this by shorting out the buttons with
our own relays located on our motor controller board.
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In addition to these mechanical processes, we also needed
a way to calibrate our motors and track position. We had two
ways to do this: current sense and limit switches. The premise
of current sense is to use spikes in current to gauge whether or
not we’ve hit a wall and need to stop the motor. Initially, we
tried to use current sense for opening and closing the lid, how-
ever, we found that in opening the lid the spike in current was
actually greater while overriding the spring loaded mechanism
than it was when hitting the limit when fully opening the lid.
This observation is demonstrated in Fig. 3. Because of this,
limit switches were used to determine stopping points for the
motors while opening the lid, closing the lid, and moving the
linear actuator. The outputs of the limit switches were plugged
directly into inputs of the microcontroller.

Fig. 3: Graph of current sense output over time

A full list of all mechanical components used is shown
below:

TABLE I: Mechanical Components Used

Component: Type: # Used: Purpose:
Polulu Metal
Gearmotor
#1591

Brushed Motor 1 Open/Close the lid

Polulu Metal
Gearmotor
#3711

Brushed Motor 2 Drive linear actuator
and rotate pod removal
mechanism

70155K76 Linear Solenoid 1 Remove Pod
DBWDKG-
FT01

Limit Switch 4 Track position of motors

B. Motor Control Board

The motor control board allows our microcontroller to
interface with the motors. The board is capable of controlling
four brushed motors, one solenoid, and four relays. The motor
control board was powered by a computer power supply that
provided a 12V and a 5V rail. The PCB of the motor control
board was designed so that the microcontroller could be
plugged directly into the center of the board, with correspond-
ing pin headers directly to the side of every microcontroller
pin for debugging. The PCB is shown in Fig. 4.

Fig. 4: Motor controller PCB

1) Brushed Motors: The four motors are powered by a 6V
rail derived by stepping down the power supply’s 12V using
a buck converter. Each of the motors are controlled via an H-
bridge, which allows us directional control in addition to sim-
ply being turned on or off. Each motor also generates a current
sense output, whose voltage is amplified through an op-amp
before being sent back to the microcontroller. Each amplifier
is powered through the 3V rail on the microcontroller. In total
the microcontroller has two motor control output channels and
one input current sense channel per motor. Reserved pins will
be described in a later section.

2) Solenoid: The solenoid is powered directly from the 12V
power supply and only requires one channel to activate. The
solenoid is activated when a fifth relay - reserved only for the
solenoid - connects the solenoid to the 12V source.

3) Relays: The relays (excluding the one connected to the
solenoid) are responsible for shorting out the buttons located
on the Keurig®. They are powered through the 5V supply of
the molex connector on the power supply. Each relay uses up
one channel on the microcontroller.

C. Microcontroller

The microcontroller we use for this project is the
STM32F072R8 Discovery Board from ST Microelectronics.
It facilitates communication between the user interface and
the motors at the command of the LabVIEW code.

1) USART Communication and Control Flow: The main
control flow of this project is fully dependent on the com-
munication between the LabVIEW-based user interface and
the microcontroller. The LabVIEW code enforces the order of
operations that the Keurig®should perform and requests the
microcontroller perform each function. Before the LabVIEW
code sends a command over USART, the microcontroller
remains completely inactive, besides flashing an LED light
to signal a “heartbeat”. When the LabVIEW code sends
a command, it triggers an interrupt that will then decode
the command in the C code’s comm’s module, perform the
requested task if valid, and then return a status code. Because
of this interrupt based approach, the commands run asyn-
chronously and the microcontroller will not become locked
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up while performing a task, enabling the GUI to query the
microcontroller on the state of the system at any time. The
implementation of the C code will be described in more detail
in the rest of this section.

As stated above, the process begins when the LabVIEW
code sends an instruction to the microcontroller via their
UART connection. Each instruction is four bytes long, the
first byte being the opcode, the second two any payload
contents, and the last being a checksum value. The interrupt
the incoming UART message triggers is handled by the
USART3 4 IRQHandler which calls our rxHanlder function
with the data from our UART connection passed into it. The
interrupt handler only allows us to access one byte at a time
so each full instruction is pieced together through four calls
to the rxHandler function, with each byte being written into
its corresponding section of a struct called “receivedBytes”.
If we have successfully received all four bytes we can move
onto the decode stage.

The decode function starts by checking the quality of the
incoming data using the checksum value. The checksum that
was sent by the LabVIEW code is determined mathematically
by the values contained within the other bytes. The C code
recalculates this and compares it to the sent checksum. If the
recalculated and sent checksum values do not match, then the
data has been corrupted and the microcontroller will send an
error back to the labVIEW code. If the data is determined to
be intact, then the operating state (a global variable) will be
updated to the opcode of the incoming command. The five
possible opcodes are shown in Table II.

The machine will finally act on an instruction from the main
while loop. The main while loop is continually checking for
the operating state to change. Once it does, it will run the
appropriate subroutine. The composition of these subroutines
are heavily reliant of the functionality of our motor driver,
which provides functions for control of the motors and buttons.
The motor driver will be discussed in the “Motor Board
Driver” subsection.

TABLE II: UART communication standards

LabVIEW ->Microcontroller
Function

Opcode
(8-bit)

Contents
(16-bit)

Notes:

Reset() 0x01 None,
pad with
0xFF

FeedPod() 0x02 None,
pad with
0xFF

UnloadPod() 0x03 None,
pad with
0xFF

BrewCoffee(int size) 0x04 1, 2, or 3
(for sm,
med, lg)

GetStatus() 0x05 None,
pad with
0xFF

Expects
0x90-
0xAF

The final thing the microcontroller has to do after running
the appropriate subroutine is to report back to the LabVIEW
code. The transmit function is much simpler than the receive

TABLE III: Microcontroller response codes

Microcontroller ->LabVIEW
Status Meaning: Opcode: Notes:
General Statuses
Task Started 0xFA
Check Value Fault 0x01
Receiver Fault 0x02 Not enough

bytes received
Blocked 0x03 Device is al-

ready running
Unresolved Fault 0x04 Device

encountered
critical error
and has not
been reset

Bad Payload 0x05
FeedPod() Faults
Out of Pods 0x31
BrewCoffee(int size) Faults
Out of Water 0x71
GetStatus() Responses
Device in Undefined Fault State 0x90
Device Idle 0x91
Device Reset 0x92
Loading Pod 0x93
Unloading Pod 0x94
Brewing Coffee 0x95

function and only sends two bytes. The first being the status
report opcode, and the second being the checksum value. Be-
cause there are only two bytes, the checksum value is simply
a copy of the opcode. Sending is done by simply loading
the transmit data register (USART3 TDR). All possible return
values are listed in Table III.

2) Motor Board Driver: The motor board driver contains
many macros to control simple motor movement by changing
settings in the GPIO pin’s control registers. Pin assignments
can be seen in Table IV. The driver offers seven functions for
controls the components connected to the PCB.

• MBD initFunctions()
• MBD getMotorChannelFeedback(uint8 t channel)
• MBD setRelay(uint8 t relayNumber)
• MBD resetRelay(uint8 t relayNumber)
• MBD toggleRelay(uint8 t relayNumber)
• MBD popSolenoid()
• MBD motorCommand(uint8 t channel, uint8 t com-

mand)
The initFunctions method needs to be run prior to using any
functions provided by the driver. This function sets up all
registers and timers needed by the driver.

The second method, getMotorChannelFeedback, reports
back the current sense value. The channel parameter represents
which motor you are requesting information from.

SetRelay, resetRelay, and toggleRelay are responsible for
turning a relay on, off, or toggling its current setting, respec-
tively. The relayNumber parameter specifies which relay you
are modifying.

Recall that the solenoid is connected to a fifth relay. The
popSolenoid method utilizes similar macros as those used in
the relay functions to activate the solenoid for a brief period
of time to create a “popping” action. This is achieved by
turning on the solenoid’s relay and then beginning a timer.
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When the timer ends its handler resets the relay, completing
the solenoid’s popping action.

The motorCommands function is used to control the brushed
motors. The function has channel and command parameters.
The channel parameter specifies which motor you would like
to control, while the command parameter specifies the type of
action. Command 1 is forward, 2 is backward, 3 is stop, and
4 is stop all motors.

TABLE IV: Pin Assignments

Pin Alias Purpose
I2C Pins
PB13 I2C2 SCL Clock Signal
PB14 I2C2 SDA Data Signal
UART Pins
PB10 USART3 TX Transmit
PB11 USART3 RX Receive
Analog (Current Sense)
PC0 M1IS Motor 1 Current Sense
PC1 M2IS Motor 2 Current Sense
PC2 M3IS Motor 3 Current Sense
PC3 M4IS Motor 4 Current Sense
GPIO (Motors)
PB0 M1I1 Motor 1 Input 1
PB1 M1I2 Motor 1 Input 2
PB3 M2I1 Motor 2 Input 1
PB4 M2I2 Motor 2 Input 2
PB5 M3I1 Motor 3 Input 1
PB6 M3I2 Motor 3 Input 2
PB8 M4I1 Motor 4 Input 1
PB9 M4I2 Motor 4 Input 2
GPIO (Buttons)
PC4 R1T
PC5 R2T
PC10 R3T
PC11 R4T
PC12 SRT
LED GPIO
PC6 LD3 Red LED
PC7 LD6 Blue LED
PC8 LD4 Orange LED
PC9 LD5 Green LED

D. LabVIEW

LabVIEW was used to create the user interface, with the
interface itself running on a normal Windows 10 machine.
The LabVIEW code connected to the UART pins on the
microcontroller through one of the USB serial ports on the
computer. The interface had 3 radio buttons for choosing the
size (small, medium, or large) and a “Begin Brewing” button.
In a display window to the right the GUI also displayed the
current status of the coffee machine. A picture of the graphical
user interface is shown in Fig. 5.

Fig. 5: User Interface

Besides the user interface, the LabVIEW code was also
responsible for the control flow of the coffee machine (i.e.
what steps had to be taken in what order). So when a
user interacted with the user interface, it would initiate the
coffee making process and the LabVIEW would instruct the
microcontroller to take the first step, then the LabVIEW code
would decide what to do next based on the responses from the
microcontroller. This process will be discussed in more detail
in the “Control Flow” subsection.

1) Hardware Abstraction Layer: The Testeract Hardware
Abstraction Layer (HAL) is designed to address all of the
common needs of a hardware abstraction layer. These include
modularity, scalability, and abstracting commonly used parts
into pre-packaged modules so the end user and developers of
any extensible plugins to the HAL are required to do minimal
work with maximal code reuse and can deploy the update
separately from the rest of the HAL. The HAL was designed
so it could be used in a way that would allow the state
of Devices to be shared anywhere in the application space,
including sharing between NI LabVIEW and NI TestStand.
The HAL is not dependent on any specific connection type,
and is not limited to any specific communication protocols
or Device types. Any Device, with any well-defined interface
can be integrated into the HAL, which made it perfect for
our coffee machine. The HAL is built using LabVIEW Object
Oriented Programming (LVOOP). It is class based and uses
inheritance and containment to dynamically specify class and
method definitions. Its ease of use, adaptability, and support
made it perfect for our project.

Fig. 6: Testeract HAL Architecture

We used the Testeract HAL by implementing a device
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type called ”CoffeeMachine” to define all of the methods
needed to interact with the micro controller code. This includes
other methods such as initalize and close which managed the
VISA/UART bus to support our protocol. After all of the
methods were defined, two child / model classes were created:
“Hardware” and “Simulation”. By using the already created
Testeract device config editor, we could easily switch between
the two implementation classes. Simulation was used when
hardware was not available but work on the GUI needed to be
done. It used a series of weights to emulate the hardware. The
Hardware model classes implemented all the code for sending
and receiving with hardware, This includes opcodes, managing
device state, etc.

2) Control Flow: This GUI utilizes what is called a
producer-consumer loop. This is two while loops running in
parallel with each other. The producer loop is listening for user
input, and the consumer loop is acting on those instructions.
When the user presses “Start Brewing” the producer loop
receives that command and queues the UnloadPod state. The
consumer loop is constantly watching the queue, so when it
receives the UnloadPod state, it begins the sequence to brew
the coffee. First, it disables the controls so the user cannot
send another command while the machine is busy. Then it
sends the command to the machine to unload the pod. Once
the device is idle, it can send the next command, which is
LoadPod. Again, the LabVIEW code waits for the device to
be idle before sending the BrewCoffee command. Then, the
machine waits for the device to be idle before enabling the
controls again.

If at any point the device returns an error, the error is caught
by the LabVIEW code and reported to the user. This puts the
consumer loop in the error state. The user then has the option
to reinitialize the device, in which case the consumer loop goes
to the Reset state, or the user can opt to close the program,
which puts the consumer loop in the Close state. Utilizing the
HAL made these states fairly basic, because each state was
just making a call to the HAL which was doing all of the
communication with the device.

E. Final Project State
We managed to get our software and hardware completed

early on, but struggled to finish the mechanical aspects of the
project. In, hindsight we underestimated the risks that such
a mechanically-intensive posed for us. As a result, we were
able to open and close the lid and simulate pressing the brew
and sizing options buttons, but had unreliable loading and
unloading of the pod. Further because of these issues, we had
trouble with the final steps of integration; namely, combining
each of working discrete steps into one sequential process.
Despite this, we are proud of the underlying infrastructure
we created. By the end, we were able to create a sleek user
interface, a reliable communication protocol, and were able to
control an assortment of motors through the use of a custom
made PCB and motor driver.
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