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Abstract

An autonomous scalable nano-drone would be useful for a variety of purposes including pollinating

plants and performing reconnaissance. We propose building a drone that can safely navigate an area while

simultaneously searching for a specific target, such as a QR code or a red dot. Rather than building our

own drone, we will modify a quadcopter called the CrazyFlie 2.0 by attaching a camera and proximity

sensors so that it can avoid obstacles and search for targets. Our project is successful if our drone can

navigate a room without crashing and find all of the targets.

I. INTRODUCTION AND MOTIVATION

For our senior project we propose to modify a quadcopter so that it can fly autonomously and search

for targets. We will take an existing quadcopter called the CrazyFile 2.0 and attach proximity sensors

for avoiding obstacles and a camera for finding targets. We will demo this by placing targets (such as

QR codes or red dots) around a room and then releasing the quadcopter. We will know our project is

successful if the quadcopter can find all the targets and report their location back to the central computer

without running into walls or other obstacles.

The idea for this project came from reading an article about colony collapse disorder (CCD). CCD

is a mysterious phenomenon responsible for the deaths of as much as 30 – 90 % of adult honey bees

within a colony. The effects of CCD could be economically disastrous because about 130 agricultural

plants in the United States are dependent on honey bee pollination (valued at about $15 billion annually)

[1]. We think our autonomous drone could be a great solution for CCD. The central computer could use

an algorithm to recognize plants that need pollinating and direct the drone to the targets. CCD is just one

example of where an autonomous drone could be useful. Other good examples include finding survivors

after a natural disaster, performing reconnaissance in a military situation, or tracking animals for hunters.
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II. BACKGROUND

An autonomous drone is not a particularly new or revolutionary concept. The military has been using

drones for the past several decades and some companies even sell drones as toys such as the AR Drone

2.0 by Parrot, the FPV X4 Mini RTF Quadcopter by Hubsan, and the Phantom Aerial UAV Drone

Quadcopter by DJI. Even Amazon has been doing research on using drones as a delivery system for

packages. Although our project is not completely original, the aspect that sets it apart from all these

other drones is scale. To date, no one has implemented a completely autonomous quadcopter as small as

the CrazyFlie (which weighs only 27 grams and is as big as the palm of your hand). The closest product

we could find to this is called the Zano and weighs 55 grams.

III. HARDWARE

A. Quadcopter

We briefly considered making our own quadcopter for this project but quickly decided against it. Due

to time constraints and the complexity of flight, we thought that making both a quadcopter and making

it autonomous would be unrealistic. We even found a senior project from 2013 who attempted to create

a quadcopter and it proved to be a huge amount of work [2].

Fortunately, we were able to find a quadcopter that was perfect for our purposes: the CrazyFlie 2.0

by Bitcraze (see Fig. 1). This quadcopter uses both open source hardware and software, making it an

optimal platform to host our modifications. The CrazyFlie also provides a number of other useful features

such as online documentation, a radio module and communication protocol, easy flashing via radio, and

some basic flight code. The tiny quadcopter is also surprisingly powerful, with 168MHz Cortex-M4 MCU

with 192kb of SRAM and 1Mb of flash memory [3]. The CrazyFlies MCU comes preloaded with some

basic flight code. It basically uses stabilization algorithms to point the quadcopter forward and keep it

somewhat level. The CrazyFlie also comes with code to interface with the radio and manage power usage.

B. Proximity Sensors

Our quadcopter will use a combination of infrared and ultrasonic sensors for collision avoidance.

The infrared portion will consist of many infrared LEDs coupled with a receiver in each of the cardinal

directions. Infrared LEDs are perfect for this platform because they are extremely light and draw very

little power; however, infrareds lose a lot of accuracy depending on the angle the light hits the obstacle.
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Fig. 1: Picture of the CrazyFlie 2.0 quadcopter [4].

Fig. 2: Picture of the LV-MaxSonar-EZ2 ultrasonic sensor [5].

For the ultrasonic portion we will be using the LV-MaxSonar-EZ2 ultrasonic range finder (see Fig. 2).

The following characteristics make this sensor ideal for our project: 1) It only weighs 5 grams; 2) It

supports input voltages from 2.5 to 5.5 volts; and 3) It can detect objects from 0 to 254 inches (6.75

meters) [5]. The LV-MaxSonar-EZ series offers options in a variety of beam widths, but we decided

that the EZ2 (medium width) was best because any beam wider may be disturbed by the spinning of

the rotors. If we had a bigger quadcopter we would probably use these sensors exclusively because they

work well regardless of the material and angle of the obstacle.
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Fig. 3: Picture of the OV3640 image sensor [7].

C. Camera

We will be using the OV3640 image sensor for our camera (see Fig. 3). The main advantages of

this camera is it operates between 2.5 to 3.0 volts and is only a few centimeters across [6]. The biggest

disadvantage of this camera is how many IO pins it takes to run it (12 out of the 13 available). We will

solve this problem by using an additional micro controller unit (MCU) to interface with the camera.

IV. INTERFACES

All of the proximity sensors will communicate with the MCU via analog to digital converters (ADC).

We can configure these ADCs so that they trigger an interrupt whenever they detect a nearby obstacle.

The camera needs a total of 12 IO pins to operate. Four of them control the camera itself, doing

functions such as telling it when to take a picture. The other 8 IO pins are for transferring data. Due to

how many IO pins this camera requires, we will have the camera interface with an MCU solely dedicated

to control it on its own printed circuit board (PCB). The camera MCU will periodically transfer camera

data to the main MCU through a universal asynchronous receiver/transmitter (UART) interface. The main

MCU will then transfer this data via the radio to the central computer.

V. PROJECT TASKS

This section describes all the tasks involved with this project. A testing and development strategy is

also described.
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1) Collision Detection - This involves using proximity sensors to determine if the drone is about

to fly into something. If the proximity sensors detect something, the software should update the

flight path accordingly. [Testing and Development Strategy] : The first step is to create a simple

breadboard circuit to display an output on an oscilloscope when something is nearby. The next

step will be to interface this simple circuit to the quadcopter (which will not be flying at this

point). The final step will be to use a custom designed PCB in place of the breadboard circuit

and to test the quadcopter in flight.

2) PCB Design - Both the proximity sensors and the camera will need a PCB. For the final

application these will probably be on the same PCB so as to weigh less, but initially we will

have them separate. The rationale for doing this is we want to be able to start writing and testing

the collision detection code as soon as possible. By separating into two PCBs at first, this allows

us to better work in parallel; one of us writes application code, while someone else can design

the final PCB. [Testing and Development Strategy] : Hopefully by the time the final PCB is

manufactured we will already have a good amount of code written. Testing then becomes simple

because we can simply run the collision detection code already written.

3) Image Processing - This involves interfacing with the camera module and designing algorithms

to recognize basic objects. [Testing and Development Strategy] : The first step will be to design

a way to interface the camera with an MCU. The next step will be to design a protocol to allow

the second MCU to communicate with the primary flight MCU to allow image transmission back

to the central application. The final step will be to write the image processing algorithms that

will run on the central computer.

4) Central Application - This is the main program that will be used to fly the drone. It will be

written in Python and contain all the logic to track progress and update the flight path. This

program will be built off of the existing CrazyFlies flight program to save development time.

[Testing and Development Strategy] : The most simple test will be to get a drone to take off and

land. When this has passed, we will try to get the drone to fly autonomously around a room.

The final test will be to integrate the image processing and have the drone search for targets.

5) Documentation - All documentation will be done on our project website. We will keep weekly

logs of what was accomplished that week, what difficulties we encountered, and what we plan

on doing the following week.
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VI. GROUP MANAGEMENT AND COMMUNICATION PLAN

During the school semesters our group will be meeting once a week for at least an hour to discuss

problems and assign tasks. Over the summer we will use a combination of email, texting, and Skype to

keep in touch and stay synchronized.

VII. SCHEDULE

This project consists of three main milestones: collision detection, video streaming, and a functional

central application. We hope to finish the first by July 3, the second by August 28, and the third by

October 15. The project will basically be done by the third milestone; all that would remain at that

point is testing and performance enhancements. Although this might be somewhat optimistic, we hope to

complete the bulk of the work over the summer and finish the project a couple of months before demo

day. What follows is our planned schedule to achieve our milestones:

Task Assigned to Deadline

Begin initial experimentation with proximity sensors. Jesse March 27

Connect a proximity sensor to the MCU. Jesse and Joey April 17

Order all IR sensors. Jesse May 15

Begin testing with the camera module. Scott and Patrick May 15

Connect all IR sensors to the MCU. Jesse and Joey May 29

Send IR PCB to fab. Patrick June 5

Construct IR PCB. Patrick June 19

Completely functional collision avoidance. Joey July 3

Basic stabilization code complete. Joey July 3

Sent Camera PCB to fab. Patrick July 3

Construct camera PCB. Patrick July 17

Interface camera PCB with CrazyFlie. Scott and Patrick July 31

Start work on the central application. All of us August 15

Stream camera data back to central application. All of us August 28

Update the application to process images. All of us September 18

Update the application to direct the CrazyFlie to targets. All of us October 15
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VIII. RISK ASSESSMENT

Due to the nature of quadcopters and the complexity of flight, there are unfortunately a huge number

of risk factors involved with this project. In this section we list several possible risks and describe a

contingency plan should the problem occur. Following the name of each risk is a color indicating how

severe we believe the risk is with RED being the most severe, YELLOW moderately severe, and GREEN

being either unlikely to happen or easy to work around.

1) Total weight [RED]: The most obvious problem is weight of the sensors. If the combined weight

of all the sensors and circuits to make them work weigh more than the carrying capacity of

the quadcopter, then it will not get off the ground or have a very short flight time. [Possible

solution]: We could use all the same software and electrical components used in the CrazyFlie

2.0, but just replace the motors and battery with bigger options. The problem with this is the

time and effort required to source the new components and assemble the board.

2) Breaking the quadcopter [YELLOW]: We will try to be as careful as we can, but there is a very

good possibility that we will break the quadcopter at some point during our testing. [Possible

solution]: Thankfully, the designers of the CrazyFlie were smart enough to design the quadcopter

such that the motors are the most likely thing to break in a crash, which are cheap and easy to

replace. If the quadcopter broke completely (not just the motors), then we would have no choice

but to just buy another one. Because of the liklihood of this problem, it is imperative that we

complete the riskiest task (i.e. collision detection) early enough so that we would have enough

time to order a new quadcopter if necessary.

3) Bandwidth [GREEN]: If we need to stream image data off the quadcopter it will require a ton

of bandwidth. [Possible solution]: We don’t think this problem is very likely to occur because

the CrazyFlie’s radio runs at 2.4 GHz. However, if the problem were to occur there are several

possible solutions. One solution is to send out the image data at regular intervals, rather than

streaming it live. Another is to scale down the image quality. If all else fails, we could just do

the image processing onboard.

4) Balance [YELLOW]: If the weight we add makes the quadcopter unbalanced, it could cause the

quadcopter to drift and potentially ruin our stabilzation code. [Possible solution]: We will try to

minimize this risk as much as possible by evenly distributing weight around the quadcopter. If

it proves impossible to balance the quadcopter this way, then we could use the information from

the infrared sensors to detect drift and adjust the motors accordingly.
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IX. BILL OF MATERIALS

Part Part Number Vendor Cost

Quadcopter CrazyFlie 2.0 BitCraze $240

Ultrasonic Sensor MB1020 Maxbotix $25

Camera OV3640 Digikey $10

PCB (appox. 4 in.2) N/A Local Fab $20

Camera MCU STM32F407 Digikey $15

Infrared LEDs (4) COM-09349 SparkFun $4

Infrared Sensors (4) TSOP38238 SparkFun $8

Total Cost: $322

X. DELIVERABLES, DEMONSTRATION, STRETCH GOALS

Our baseline goal is to demonstrate collision detection on the drone during flight. Once we get this

to work, we will turn all our efforts towards integrating the camera module and writing the central

application. We will consider our project 100% successful if we can get these three aspects working.

There are several things we could do to demonstrate our working project. A good test of the collision

detection would be to push our hand towards the quadcopter. If it is working, then the quadcopter should

fly away so that the hand never touches it. We could extend this test and have two people “push” the

quadcopter back and forth to each other as though they were playing catch. A good demonstration of

the image processing and central application would be to display a QR code somewhere in a room and

release the quadcopter. The quadcopter should search the room until it finds the QR code. Once it finds

it, it could send a message to the central application telling its location.

We don’t exactly have a lot of stretch goals for this project; right now we’re just concentrating on

completing our baseline goals. If we were to finish early then the next step would probably be to scale our

application up to handling two quadcopters at a time. We could even implement some kind of protocol

so that different quadcopters could forward messages between each other.

XI. CONCLUSION

At this time we have successfully connected an ultrasonic sensor to a CrazyFlie. We were even able

to program the CrazyFlie such that when the sensor detects an impending crash, the quadcopter adjusts

its flight path to try to go in the opposite direction. The program doesn’t work perfectly (it fails about
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half the time), but we have learned some important lessons:

1) The CrazyFlie flies extremely erratically. Even the slightest movement on the joystick causes the

quadcopter to veer wildly.

2) The CrazyFlie’s source code is poorly documented. It took us several hours of digging through

code to make even the smallest changes.

3) The CrazyFlie is surprisingly durable. We crashed it several times (some of them pretty severe)

and they didn’t seem to make a dent in it.

The first item is why we want to get the proximity sensors up and running as quickly as possible.

Once we have sensor data in all four directions, we can use this to improve the quadcopter’s stabilization

algorithms by detecting drift and compensating for it.

Although this project will be difficult, we are pretty excited about it. This is basically the ideal

computer engineering project because it involves a lot of hardware design, low level programming, and

high level programming. If we can get it working properly then it should make for a pretty neat demo.
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