
Tutorial: ISE 11.1 and the Spartan3e Board
This tutorial will show you how to:

• Use a combination of schematics and Verilog to specify a design

• Simulate that design

• Define pin constraints for the FPGA (.ucf file)

• Synthesize the design for the FPGA board

• Generate a bit file

• Load that bit file onto the Spartan3e board in your lab kit

This assumes that you’re using a DSL lab machine, or that you’ve installed Xilinx ISE
11.1 on your own machine. This tutorial is specifically for the Spartan3e board.

1 New Project Setup and Verilog Circuit Specification
1. Start the Xilinx ISE 11.1 tool. It should be on the desk top.

2. Create a new project. The Create New Project wizard will prompt you for a location
for your project. Note that by default this will be in the documents and Settings
folder the first time you start up. You’ll probably want to change this to something
in your own folder tree (usually the U:\ directory.

1

3. On the second page of the Create New Project dialog, make sure that you use the
Spartan3E Device Family, XC3S500E Device, FG320 Package, and -5 Speed Grade.
You can also specify HDL as the Top-Level Source Type with XST as the Synthesis
Tool, ISim as the Simulator, and Verilog as the language. These aren’t critical, but
they do save time later.

4. You can skip the other wizard dialogs, or you can use them to create new Verilog file
templates for your project. I usually just skip them and create my own files later.

2

5. Now you want to open a new source file. Use the Project | NewSource menu
choice. This first one will be a Verilog file so make sure you’ve selected Verilog
Module as the type and give it a name. This tutorial calls the example mynand.

6. When you press Next you’ll get a dialog box that lets you define the inputs and
outputs of your new module. Add two inputs (A and B), and one output named Y.
Remember that Verilog is case sensitive!

3

7. When you Finish, you’ll have a template for a Verilog module that you can fill in
with your Verilog code. Click on the mynand.v tab. It looks like this (note that you
can also fill in the spots in the comment header with more information):

4

8. Now you can fill in the rest of the Verilog module to implement some Boolean func-
tion. Implement a NAND for this example. You can use any of the Verilog techniques
that you know about. (see the Brown & Vranesic text from 3700, for example, or any
number of Verilog tutorials on the web.) Note that ISE 10.1 uses Verilog 2001 syntax
where the inputs and outputs are defined right in the argument definition line. This
example uses a continuous assignment statement: assign Y = ∼(A & B); as shown
below. Save the file.

9. In order to use this Verilog code in a schematic, you’ll need to create a schematic
symbol. Select the mynand.v file in the Sources For: | Hierarchy window. Then
in the Processes: mynand window expand the Design Utilities option and double
click Create Schematic Symbol.

You now have a piece of Verilog that you can simulate and synthesize as is, or you can
also use it in a schematic as a component.

5

2 Creating a Schematic
Your project can be totally Verilog, or totally schematics, or a mixture of the two. This
example will feature a mix, just to show you how it can be done.

1. Start by going to Project | NewSource and this time choosing schematic as the type.
I’m calling this fulladd. Can you guess where this is going?

2. In the schematic window you’ll see a frame in which you can put your schematic
components. You can select components by selecting the Symbols tab in the Sources
pane. You should always add titles to your schematics. You do this under the Gen-
eral category selecting the Title symbol. This is normally placed in the bottom right
hand corner. You can fill in the fields of the title by double clicking on it. Add three
copies of mynand from the < -- All Symbols -- > category, and two copies
of the xor2 component from the Logic Category.

6

3. Now use the wiring tool (red line with pencil) to connect up the components to make
a Full Adder. Right click on a wire or component to delete it.

7

4. Use the Add I/O Marker symbol to add pins to export from this circuit. Click on the
red boxes to add them to the nets. Double click on the I/O markers to change their
names, and click on Nets.

The completed schematic with the I/O pins defined looks like this:

5. Save the schematic. You are now ready to simulate the circuit which consists of part
schematics (using xor2 from the Xilinx library), and part Verilog (your mynand.v
code). If you go back to the Design tab and look into the Hierarchy pane you will
see that the fulladd schematic includes three copies of mynand.v.

8

3 Simulating your Circuit
Now that you have a saved source file (fulladd is the top file in this case), you can simulate
its behavior. We’ll use the ISE simulator with a testbench to drive the simulation. Note that
the testbench files that drive the simulations are also Verilog files.

To simulate the fulladd circuit:

1. Go to the top left pane and in the Design tab change the Sources For: field to
be Behavioral Simulation. This changes the view to include sources that are inter-
esting for simulation, and also changes the options in the bottom pane to show the
simulation options.

2. You can go to the Project | NewSource menu again or you can select New Source
icon (the page with an orange star). This will bring up the New Source Wizard. In
that dialog select Verilog Test Fixture and type in the name of your testbench file. I
will name my testbench fulladd tb (where the tb stands for testbench). The box
looks like:

9

3. The Next dialog asks you which source you want the testbench constructed from.
Choose fulladd, of course. The code that gets generated includes an instance of the
fulladd schematic named UUT (for Unit Under Test).

10

4. Note that the generated template has some code with an ’ifdef for initializing things.
I don’t use the ’ifdef code. Instead I write my own initial block and driving code for
testing the circuit. Remember that good testbenches ALWAYS use $display state-
ments and “if” checks so that the testbench is self-checking! You could enumerate
all eight possibilities of the inputs and check the outputs. I’m going to get a little
tricky with a concatenation and a loop.

5. Once you fill in the testbench with Verilog code to drive the simulation, you can
simulate the design. Select the fulladd tb.v in the Hierarchy pane, and check the
syntax and run the simulation from the Processes pane.

The output will be displayed as waveforms, and the $display data will show up in the
console as shown (after scrolling all the way to the left and zooming out to see all
the waveforms). You can see that not only do the waveforms show the results of the
simulation, but the $display statements have printed data, and because the circuit is
correctly functioning, no error statements were printed.

11

6. You can change the circuit to have a mistake to show off the self-checking test-
bench. . .

12

It’s easy to tell that something is wrong!

13

4 Synthesizing your circuit to the Xilinx FPGA
Now that you have a correctly simulating Verilog module, you will have the ISE (web-
PACK) tool synthesize your Verilog to something that can be mapped to the Xilinx FPGA.
That is, the Verilog code will be converted by ISE to some gates that are on the FPGA. To
be even more specific, ISE will convert the schematic/Verilog project description into a set
of configuration bits that are used to program the Xilinx part. Those configuration bits are
in a .bit file and are downloaded to the Xilinx part in this section of the tutorial.

You will use your Spartan-3E board for this part of the tutorial. This is known as the
”Spartan 3E Starter Kit” and is a board produced by Xilinx. It is a very feature-laden board
with a Spartan 3e XC3S500E FPGA, 64Mbytes of SDRAM, 128Mbits of flash EPROM,
A/D and D/A converters, RS232 drivers, VGA, PS/2, USB, and Ethernet connectors, a 16
character two-line LCD, and a lot more. You can get more info from Xilinx at

http://www.xilinx.com/products/devkits/HW-SPAR3E-SK-US-G.htm

14

Specifically we need to:

• Synthesize the Verilog code into FPGA configuration

• Assign A, B, and Y to the correct pins on the FPGA that connect to the switches and
LEDs on the S3E board

• Generate a programming file with all this information (.bit file)

• Use the impact tools from Xilinx (part of WebPACK) to configure the FPGA through
the USB connection.

1. Back in the Sources pane, return to the Implementation view and select your ful-
ladd schematic. Now in the bottom (Processes) pane you will see some options
including Synthesize - XST. Double click on this to synthesize your circuit. After
a while you will (hopefully) get the ”Process ’Synthesize’ completed successfully”
message in the console. If you’ve already simulated your circuit and found it to
do what you want, there’s every chance that this will synthesize correctly without
problems.

In any case, there is lots of interesting information in the synthesis report (the data
in the console window). It’s worth looking at, although for this amazingly simple
example there isn’t anything that fascinating.

Make sure that you end the process with a green check for this process. If you get
something else, especially a red X, you’ll need to fix errors and re-synthesize.

15

2. Now, because we’re headed towards putting this on the Xilinx FPGA on the Spartan-
3E board, we need to set some constraints. In particular, we need to tell ISE which
pins on the Xilinx chip we want A, B, Cin assigned to so that we can access those
from switches, and where we want Cout and Sum so we can see those on the LEDs
on the Spartan-3E board. Go to the Processes pane and expand User Constraints
so you can select Floorplan Area/IO/Logic.

This will open a whole new tool called PlanAhead (replacing the old PACE tool)
which you can use to set your pin constraints. You may have to agree to add a UCF
(Universal Constraints File) file to your project. You should agree to this.

16

If you are asked for a software update, decline.

3. The PlanAhead tools lets you set a number of different types of constraints on how
the circuit is mapped to the Xilinx part. For now we’ll just use the pin constraints in
the UCF file.

In the bottom part of the screen you can find your pins in the I/O Ports pane. You
can set their location in the Location field. How do you know which pins to assign
the signals to in order to use the switches and LEDs on the Spartan-3E board? You
look in the Spartan-3E Starter Kit Users Manual which is linked to the class web site,
and also available from Xilinx at

http://www.xilinx.com/support/documentation/boards and kits/ug230.pdf

For now I’ll just tell you that the four sliding switches on the Spartan-3E board are,
from left to right as you’re looking at the board with the LCD at the bottom, are on
pins N17, H18, L14, and L13. Here’s the diagram from the User Guide:

17

and the UCF info is:

This tells you how to fill out the information in PlanAhead for the switches. I’ll put
Cin, A, and B on Sw3, Sw2, and Sw1. You do this in the I/O Port Properties pane
above the left part of the I/O Ports pane after selecting the pin you want to constrain.

18

4. The LEDs are also described in the User Guide:

I’ll use LED1 and LED0 as Cout and Sum.

19

Note that it is important to get all the details of the pins correct as they’re described in
the manual! The switches won’t function properly without the pullup, for example,
and the LEDs really need to have the drive strength set. This is done in the Configure
section of the I/O Port Properties pane.

5. Now Save the PlanAhead settings.

6. When you exit you’ll see that a fulladd.ucf file has been added to the project.

You can also edit fulladd.ucf by opening it in a text editor. It’s just a text file with
constraints formatted as shown in the User Guide.

7. With your source file selected (fulladder in this case), double click the Implement
Design process in the Processes pane. This will translate the design to some-
thing that can physically be mapped to the particular FPGA that’s on our board (the
xc3s500e-5fg320 in this case). You should see a green check mark if this step fin-
ishes without issues. If there are issues, you need to read them for clues about what
went wrong and what you should look at to fix things.

20

8. If you expand the Implement Design tab (which is not necessary) you will see that
the Implement Design process actually consists of three parts:

(a) Translate: Translate is the first step in the implementation process. The Trans-
late process merges all of the input netlists and design constraint information
and outputs a Xilinx NGD (Native Generic Database) file. The output NGD file
can then be mapped to the targeted FPGA device.

(b) Map: Mapping is the process of assigning a design’s logic elements to the
specific physical elements that actually implement logic functions in a device.
The Map process creates an NCD (Native Circuit Description) file. The NCD
file will be used by the Place and Route process.

(c) Place and Route: Place and Route uses the NCD file created by the Map pro-
cess to place and route your design. Place and Route outputs an NCD file that
is used by the bitstream generator (BitGen) to create a (.bit) file. The Bit file
(see the next step) is what’s used to actually program the FPGA.

9. At this point you can look at the Design Summary (tab selecting the view in the top
right quadrant of the tool) to find out all sorts of things about your circuit. One thing
that you might want to check is to click on the Pinout Report and check that your
signals were correctly assigned to the pins to which you wanted them assigned.

21

10. Now double click the process: Generate Programming File. This will generate the
actual configuration bits into a .bit file that you can use to program your Spartan-3E
board to behave like your circuit (in this case a full adder).

11. Now that you have the programming file, you can program the Spartan-3E board
using the iMPACT tool and the USB cable on your PC/laptop. First, make sure that
the jumpers on your Spartan-3E board are installed correctly. In particular, check
that the configuration options are correctly set. The configuration options are at the
top of the board near the RS232 interfaces.

22

The jumpers on the J30 headers must be set for JTAG programming. This means that
only the middle pins of the header should have a jumper on them. See the following
illustration from the User Guide. Your board should look like this!

12. Now that you have the jumpers set correctly, you can plug in the power to your
Spartan-3E board and connect the USB cable between the Spartan-3E and your PC.
The on/off switch is on the top left of the board. Then when you turn on the power,
the PC should recognize the Xilinx cable/board and install the drivers. (You may go
through a few iterations of installations.)

23

13. Once the PC has recognized the USB connection to the Spartan-3E board, you can
use the Process Configure Target Device to start up the iMPACT tool to program
the FPGA.

14. The first time you Configure Target Device for a new project, you’ll get the follow-
ing message about setting up an iMPACT file. You can click OK here and start up
the iMPACT tool.

15. Again, the first time you do this for a given project, you’ll get the iMPACT tool.

24

16. Double click on Boundary Scan in the iMPACT Flows pane. Then right click in
the right pane to add a device or initialize JTAG chain and select Initialize Chan....
You’ll then get the following menu:

Click Yes, browse to your project, and select fulladd.bit for the xc3s500e device
(your FPGA).

You’ll then be able to select to including configuration files for the SPI ports or BPI
PROM. Select No.

You’ll then be asked to assign a configuration files for the other parts. Select Bypass
for both the xcf04s and xc2c64.

25

You’ll then see the following screen. You can click OK without changing the default
settings.

26

17. Now you can select the Spartan-3E (the xc3s500e) and right click to get a dialog.
Select Program in this dialog to program the FPGA.

You should see the following indication that the programming has succeeded. You
should also see the xc-done LED (a little yellow LED underneath the J30 jumper on
the board) light up if the programming is successful, and the following should show
up in iMPACT:

18. Your circuit should now be running on the Spartan-3E board. If you’ve followed this
tutorial you should now be able to set the sw3, sw2, and sw1 switches and look for
the full adder output on LED1 and LED0.

19. You can now save your changes as file fulladd.ipf.

20. If you make changes and want to reload the bit file to the FPGA (after making
changes, for example), you can restart the iMPACT tool using the Manage Con-
figuration Project (iMPACT) option under Configure Target Device in ISE.

27

At this point you can right click on the xc3s500e as before to program, or double
click on Program in the iMPACT Processes pane.

That’s it! You’re done!

28

5 Overview of the Procedure
1. Design the circuit that you would like to map to the Xilinx part on the FPGA. You

can use schematics, or Verilog, or a mixture of both.

2. Simulate your circuit using the ISE Simulator and a Verilog testbench to provide
inputs to the circuit. Use ”if” statements in your testbench to make it self-checking.

3. Generate a UCF file to hold constraints such as pin assignments (later we’ll use the
UCF file for other constraints like timing and speed).

4. Assign the I/O pins in your design to the pins on the FPGA that you want them
connected to.

5. Synthesize the design for the FPGA using the XST synthesis tool.

6. Implement the design to map it to the specific FPGA on the Spartan-3E board.

7. Generate the programming .bit file that has the bitstream that configures the FPGA.

8. Program the FPGA using the bitstream with the iMPACT tool.

29

