
ECE/CS 3710 — Computer Design Lab
Lab 1 — Finite State Machine Implementation

and Spartan-3E board mapping

Due Thursday, September 10th, 2009

Laboratory Objectives

This lab will require you to implement a simple finite state controller. This will help refresh your
memory on FSM design, and teach you how to synthesize and map designs to the Spartan-3E FPGA
board.

1. Design a state machine based on a written description of the operation of the system. You can
design the circuit using Verilog, schematics, or a mixture of both.

2. Simulate your state machine by simulating the clock signal and checking that the circuit goes
through the appropriate set of states.

3. Map your circuit to the Spartan-3E board. You can use the built-in 50MHz clock on the Spartan-3E
board for your system clock, and you can use the pushbuttons and LEDs that already exist on the
board for inputs and outputs (defined later in this document).

4. Demonstrate your working circuit.

Thunderbird Turn Signals

The Ford Thunderbird (or at least a simplified model of a Thunderbird) has three tail lights on each
side of the rear of the car. When you engage the turn signal, the lights flash in sequence to indicate the
direction you are going to turn. For example, a very crude drawing of the back of the car is shown in
Figure 1. You can see three lights to indicate a left turn numbered L0, L1, and L2, and three lights to
indicate a right turn numbered R0, R1, and R2. These lights operate in sequence to indicate a turn. An
example sequence of lights for a left turn is shown in Figure 2. In this figure, the open boxes are lights
that are off, and the filled-in boxes are lights that are on. Thus, the filled-in boxes imply asserted signals
that turn on the lights. Basically, the lights turn on in a sequence that points to the direction that you will
be turning the car. The other use for these lights is a hazard indicator. If a hazard is being indicated, all
six lights flash on and then off alternately.

Your job is to design a finite-state controller for these lights. There are three inputs, LEFT, RIGHT, and
HAZ. There are six outputs, L[2:0] and R[2:0] for each of the six tail lights. The operation of the machine
is as follows: Assume the clock controlling the machine is running at the same frequency as the desired
flash of the lights. Anytime the HAZ input is asserted, all six lights should flash on at the same time and
then off at the same time on successive rising clock edges. If there is no hazard, and LEFT is asserted, the
lights should sequence through the left-turn sequence. The lights should go through a complete left-turn
sequence even if LEFT is de-asserted sometime in the middle of the sequence or if RIGHT is asserted in
the middle of a sequence. If HAZ is asserted in the middle of a left-turn sequence, you should immediately
start hazard-flashing. In other words, HAZ has precedence over LEFT or RIGHT. RIGHT causes a similar

1

L2 L1 L0 L2 L1 L0

3700

�
�
�
�
�
� A

A
A
A
A
A

�
�
� A

A
A

Figure 1: 1965 Ford Thunderbird Tail Lights

L2

L2

L2

L2

L1

L1

L1

L1

L0

L0

L0

L0

LEFT TURN��
?

?

?

?

��
R0

R0

R0

R0

R1

R1

R1

R1

R2

R2

R2

R2

Figure 2: Tail Light Sequence for Left Turn

2

sequence of actions indicating a right turn. You may assume that LEFT and RIGHT will never be asserted
simultaneously.

You should use pushbutton switches on the Spartan-3E board for LEFT, RIGHT and HAZ. These
buttons surround the rotary knob on the Spartan-3E board. You should use BTN WEST for LEFT,
BTN EAST for RIGHT, and BTN NORTH for HAZ. The UCF information for these buttons is as fol-
lows. Use this information to fill out the required information in the PACE tool, but use your own signal
names (See the ISE 10.1 Tutorial on the class web site for details).

NET "BTN_EAST" LOC = "H13" | IOSTANDARD = LVTTL | PULLDOWN ;
NET "BTN_NORTH" LOC = "V4" | IOSTANDARD = LVTTL | PULLDOWN ;
NET "BTN_SOUTH" LOC = "K17" | IOSTANDARD = LVTTL | PULLDOWN ;
NET "BTN_WEST" LOC = "D18" | IOSTANDARD = LVTTL | PULLDOWN ;

Note that all parts of this UCF information are important. In particular, if you don’t specify a PULL-
DOWN resistor in the Xilinx pad, the buttons won’t work. The buttons are logic low until pushed. When
they’re pushed they become logic high. See Chapter 2 in the Spartan-3E FPGA Starter Kit Board User
Guide linked to the class web site for more details.

For reset, you should use SW3 which is the leftmost of the sliding switches on the Spartan-3E board.
The UCF information for the sliding switches is:

NET "SW<0>" LOC = "L13" | IOSTANDARD = LVTTL | PULLUP ;
NET "SW<1>" LOC = "L14" | IOSTANDARD = LVTTL | PULLUP ;
NET "SW<2>" LOC = "H18" | IOSTANDARD = LVTTL | PULLUP ;
NET "SW<3>" LOC = "N17" | IOSTANDARD = LVTTL | PULLUP ;

For your outputs you can use the eight green LEDs on the Spartan-3E board which are right above the
slider switches. Use LED(7:5) for the left turn lights, and LED(2:0) for the right turn lights. The UCF
information for the LEDs is:

NET "LED<7>" LOC = "F9" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
NET "LED<6>" LOC = "E9" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
NET "LED<5>" LOC = "D11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
NET "LED<4>" LOC = "C11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
NET "LED<3>" LOC = "F11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
NET "LED<2>" LOC = "E11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
NET "LED<1>" LOC = "E12" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
NET "LED<0>" LOC = "F12" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;

The Spartan-3E board has a built-in clock oscillator with a frequency of 50MHz. Your design will
need to include a clock divider to get that down into the range where it’s slow enough to be useful as a
turn signal. Think about the frequency at which you see real turn signals and hazard lights blink. That’s
the frequency you’re aiming at. The clock is available on the following pin on the Spartan-3E board:

NET "CLK_50MHZ" LOC = "C9" | IOSTANDARD = LVCMOS33 ;

Again, this is all documented in greater detail in the User Guide linked to the class web site. A tutorial
which describes, among other things, how to apply the UCF information in an ISE project is also linked
to the class web site.

3

Procedure

The design part of any finite state machine project involves producing a state diagram from the written
description of the behavior. You need to understand what the sequence of events is that you want the
machine to go through, which inputs it is using to direct those state transitions, and what the outputs will
be in each state.

Once you have a state machine you can proceed in one of two ways: you can design the next state
logic, output logic, and state register by hand and enter them as a schematic, or you can write a description
of the state diagram in Verilog. Even if you use Verilog, make a schematic symbol for the Verilog code so
that the top-level description of your system is a schematic.

If you decide to build your state machine as a schematic directly (instead of writing Verilog), you
can use any of the gates in the Xilinx library. Note that the flip flops are under the Flip Flop category in
ISE. The components that start with “fd” are “Flip-Flops, D-type”. The number is the width of the flop.
That is, fd8 has 8 flip flops in the symbol with a common clock. A “c” in the name says that it has an
asynchronous clear signal whereas an “r” means that the reset is synchronous. An “e” is a flip flop with
an additional enable signal.

Once you have a state machine that is simulating correctly, follow the procedure in the ISE 10.1
Tutorial on the class web site and synthesize, map, and program the circuit onto the Spartan-3E board.
The working circuit on the Spartan-3E board should be checked off by the instructor or TA.

What to Turn In

All documentation should be e-mailed electronically to teach-3710. Only include the information
requested! Do not include compiled files for the simulator, etc. The best way to do this is to create a report
directory, copy the report information there, and then tar or zip the directory with your information, and
mail the compressed file.

1. A README file describing your results, problems that you encountered, and what files are included
in your documentation.

2. A complete, documented, design of the state machine. This should include a neatly drawn and
labeled state diagram. If you’ve designed the state machine circuit by hand then you need to include
your state table, state encoding, next-state and output equations, and K-maps etc. that show how you
implemented that logic. You should include all schematics for the circuit. If you’ve used Verilog for
the state machine then you need to include Verilog code, and a schematic showing how the Verilog
is used in the top-level system. You also need to turn in all the other schematics/code that you used
for other parts of the system.

3. A circuit simulation using ISE. The testbench file that applies inputs and checks them using “check”
statements should submitted along with a log file of simulation results. Make sure you think about
what it means to test a sequential circuit whose description is a state diagram. You need to run
the machine through enough cycles to demonstrate that it really is doing the right thing. Please
comment your command file, and remember that you don’t want to have to simulate for 50,000,000
cycles before a single state change happens. Simulate the part of the circuit that runs at the human-
speed clock. In this case you can turn in the waveforms that show the circuit moving through the
states instead of explicit Verilog testbench checks of each of those states.

4. Demonstrate your working circuit to the TA or instructor.

4

