
NOR FLASH Programmer
for

Spartan-3E Starter Kit

Ken Chapman
Xilinx Ltd
March 2006

Rev.1

PicoBlaze NOR FLASH Programmer 2

Limited Warranty and Disclaimer. These designs are provided to you “as is”. Xilinx and its licensors make and you receive no
warranties or conditions, express, implied, statutory or otherwise, and Xilinx specifically disclaims any implied warranties of
merchantability, non-infringement, or fitness for a particular purpose. Xilinx does not warrant that the functions contained in these
designs will meet your requirements, or that the operation of these designs will be uninterrupted or error free, or that defects in
the Designs will be corrected. Furthermore, Xilinx does not warrant or make any representations regarding use or the results of
the use of the designs in terms of correctness, accuracy, reliability, or otherwise.

Limitation of Liability. In no event will Xilinx or its licensors be liable for any loss of data, lost profits, cost or procurement of
substitute goods or services, or for any special, incidental, consequential, or indirect damages arising from the use or operation
of the designs or accompanying documentation, however caused and on any theory of liability. This limitation will apply even if
Xilinx has been advised of the possibility of such damage. This limitation shall apply not-withstanding the failure of the essential
purpose of any limited remedies herein.

This design module is not supported by general Xilinx Technical support as an official Xilinx Product.
Please refer any issues initially to the provider of the module.

Any problems or items felt of value in the continued improvement of KCPSM3 or this reference design would be gratefully
received by the author.

Ken Chapman
Senior Staff Engineer – Spartan Applications Specialist
email: chapman@xilinx.com

Limitations

The author would also be pleased to hear from anyone using KCPSM3 or the UART macros with information about your
application and how these macros have been useful.

PicoBlaze NOR FLASH Programmer 3

Design Overview
This design will transform the Spartan-3E device on your Spartan-3E Starter Kit into a NOR FLASH programmer for the Intel StrataFlash memory (IC22).
Using a simple terminal program on your PC such as HyperTerminal, you will be able to manually program individual bytes or download complete
configuration images for the Spartan-3E device using standard MCS files. The design also allows you to read the memory to verify contents, perform memory
ID check and erase operations.

The design is implemented using a single PicoBlaze processor and UART macros occupying under 5% of the XC3S500E device. It is hoped that the design
may be of interest to anyone interested in reading, writing and erasing NOR FLASH as part of their own applications even if it is not used exactly as provided.

HyperTerminal
(or similar)

RS232
Serial Communication

Intel StrataFlash 28F128
128MBit (16 M-Byte)

Parallel NOR FLASH memory

PicoBlaze NOR FLASH Programmer 4

Using the Design
The design is provided as a configuration BIT file for immediate programming of the Spartan XC3S500E provided on the Spartan-3E Starter Kit. Source
design files are also provided for those more interested in the intricacies of the design itself. An example MCS programming file is also provided to enable
you to verify that your set up is working.

Hardware Setup

USB cable.
Used to configure the Spartan-3E

with the PicoBlaze design.

Cable plus devices on board
essentially provide the same

functionality as a Platform Cable
USB to be used in conjunction

with iMPACT.

RS232 Serial Cable.
Used for programming of the SPI

FLASH memory.

Cable connects J9 on the board to
your PC serial port. For this you will

need a male to female straight
through cable (critically pin2-pin2,

pin3-pin3 and pin5-pin5).

+5v supply
Don’t forget to switch on the board too!

(SWP)

PC

Idea – The PicoBlaze NOR programmer design could be programmed into the XCF04S Platform
FLASH device so that it can be loaded directly on the board by changing the J30 jumpers.

PROG
button

J30 configuration mode jumpers and selection chart.
It does not matter which settings you have during the JTAG programming of the XC3S500E from via
the USB cable but remember to set correctly (M1=open, M0=M2=short) for BPI-UP configuration
from the Parallel FLASH once it has been programmed (press PROG button or cycle power).

Note – This photograph shows the jumpers in SPI configuration mode

PicoBlaze NOR FLASH Programmer 5

Serial Terminal Setup
Once the design is loaded into the Spartan-3E, you will need to communicate using the RS232 serial link. Any simple terminal program can be used, but
HyperTerminal is adequate for the task and available on most PCs. If you have already use the PicoBlaze SPI programmer reference design then this design
uses exactly the same settings

A new HyperTerminal session can be started and configured as shown in the following steps. These also indicate the communication settings and protocol
required by an alternative terminal utility.

1) Begin a new session with a suitable name.
HyperTerminal can typically be located on your PC at
Programs -> Accessories -> Communications -> HyperTerminal.

2) Select the appropriate COM port (typically COM1 or COM2) from
the list of options. Don’t worry if you are not sure exactly which one is
correct for your PC because you can change it later.

3) Set serial port settings.

Bits per second : 115200
Data bits: 8
Parity: None
Stop bits: 1
Flow control: XON/XOFF

Hint – The design uses XON/XOFF flow control. It may be possible to modify
the design and use higher baud rates to reduce SPI programming time .

PicoBlaze NOR FLASH Programmer 6

HyperTerminal Setup

4 - Disconnect

5 - Open the properties dialogue

To select a different COM port and
change settings (if not correct).

6 - Open Settings

7 - Open ASCII Setup

Ensure boxes are filled in as shown.

The design will echo characters that you type so you do not
need the ‘Echo typed characters locally’ option.

The design transmits carriage return characters (ODHEX) to
indicate end of line so you do need the ‘Append line feeds to
incoming line ends’ option to be enabled.

8 - Connect

Although steps 1, 2 and 3 will actually create a Hyper terminal session, there are few other protocol settings which need to be set or verified for the PicoBlaze
design.

PicoBlaze NOR FLASH Programmer 7

Configure Spartan-3E

Alternatively use iMPACT manually to configure the XC3S500E device on the Spartan-3E Starter Kit via the USB cable.
An iMPACT project file is provided called ‘configure_parallel_flash_memory_uart_programmer.ipf’ or you can set up your own with the BIT file provided.

Configure XC3S500E with provided BIT file
‘parallel_flash_memory_uart_programmer.bit’

Hint – Any warning about ‘JtagClk’ can safely be ignored.

Your terminal session should indicate the design is
working with a version number and simple menu.

The other two devices can
be in BYPASS mode.

The Quick Way!

Unzip all the files into a directory.
Check you have the USB cable connected and the board is turned on.
Double click on the file ‘install_parallel_flash_memory_uart_programmer.bat’.
This should open a DOS window and run iMPACT in batch mode to configure the Spartan device.

Select xc3s500e device and right click to access program option

PicoBlaze NOR FLASH Programmer 8

Talking to PicoBlaze

The welcome message
should appear at start.

Commands can be entered at the > prompt in upper
or lower case

Program command waits for file to be sent

Erase and Erase Blocks commands must be
confirmed with an upper case ‘Y’

Simple menu of commands
(repeat list using ‘H’ help command)

PicoBlaze implements a simple menu.

The following pages describe each command in detail.

PicoBlaze NOR FLASH Programmer 9

‘H’, ‘I’, ‘S’, ‘E’ and ‘B’ Commands
H – Help command displays the simple menu again.

>i
ID= 89 18

I – Read Identification code of the Intel StrataFLASH memory.

This command is a good way to confirm communication with the NOR FLASH is working. The expected response is
89 18 where ’89’ is the Device Manufacturer Code (Intel) and ’18’ is the Memory ID code for the 128Mbit size device
(please see Intel data sheet for more details)

E – Erase command will erase ALL of the 128Mbit memory.

>e

Confirm Erase (Y/n) Y
Erase in Progress
......................
..............
OK

The 128Mbit device is organised into 128 blocks each of 128K-bytes. Each block could take up to 4
seconds to erase although typically it takes only 1 second. Therefore at best this command will take the
best part of 2 minutes to complete and at worst could take over 8 minutes (please see Intel data sheet
for more details).

B – Erase Blocks command will erase blocks 0 to 2 only. This covers the address range 000000 to 05FFFF which is consistent with the storage of a
configuration file for the XC3S500E device. This command is faster that the ‘E’ command and will leave the upper memory unchanged

The erase blocks command can take up to 12 seconds per sector (4 seconds per block). Typically this
command will take 3 seconds to complete.

Note that the device will be completely erased using this command and hence you will be asked to
confirm the operation with an upper case ‘Y’.

You will be asked to confirm the operation with an upper case ‘Y’.

>s
80

S – Read the status register of the Intel StrataFLASH memory.

The 8-bit status register is used during programming and erase operations. The MSB (bit7) indicated when the memory is ready (1)
or busy (0). The lower bits all indicate errors of some kind and therefore the only desirable response ’80’ hex. This design performs
no error checking or clearing but you could add these functions if required (please see Intel data sheet for more details).

>b

Confirm Erase (Y/n) Y
Erase in Progress
...
OK

PicoBlaze NOR FLASH Programmer 10

‘P’ Command
P – Program command.

Enter the ‘P’ command and a message
prompting you for the MCS file will appear.

This is the most important command as it will allow you to program the StrataFLASH device with a configuration bit stream suitable for the XC3S500E to
load from at power up, pressing the PROG button or using multi-boot techniques. Later in this documentation we will consider how to prepare an MCS file
and what is actually happening, but for now this page shows how to program the provided example file ‘frequency_counter_prom.mcs’ into the memory.

In HyperTerminal, select the ‘Transfer’ menu and then select the
‘Send Text File’ option (Note: Do not use the ‘Send File’ option).

Navigate to the appropriate directory and select the desired
MCS file which in this case is ‘frequency_counter_prom.mcs’.

Hint If you accidentally enter the ‘P’ command you can get out by carefully
typing the end of file record found in an MCS file which is…..
:00000001FF

1

2

3

Once you are happy with your selection click on ‘Open’.

You will need to change ‘Files of type’ to
‘All files (*.*)’ to see the MCS files listed.

4

PicoBlaze NOR FLASH Programmer 11

‘P’ Command continued

Programming will start immediately and will be indicated by a running display list of hexadecimal numbers. Each number indicates
the address currently being programmed in the NOR FLASH memory as defined in the MCS file. For the XC3S500E the final address
displayed is 045470 and hence this can be used to monitor progress.

Programming will typically take 80 seconds to complete. This time is almost entirely as a result of the RS232 serial interface and
why it will be useful to investigate higher baud rates in future. The programming will complete with ‘OK’ and a return to the > prompt.

It should now be possible to set the J30 mode jumpers to BPI-UP mode and press the PROG button on the board to reconfigure the
Spartan device directly from the new configuration image stored in the NOR FLASH..

Obviously once you have reconfigured the Spartan-3E using the image stored in FLASH memory the programmer design
will have been replaced. So if you want to use the programmer design again, you must reload it via iMPACT.
If iMPACT fails to configure the Spartan-3E with the programmer then modify the J30 jumpers to select a mode other
than BPI UP or DOWN (say Master serial) and try again. This is an issue with Spartan-3E devices of the ‘stepping 0’
version which were fabricated before April 2006.

If you used the supplied MCS file, then your board should now have been transformed into a 200MHz frequency counter.
This design also uses PicoBlaze and is available as a reference design from www.xilinx.com/s3estarter.

PicoBlaze NOR FLASH Programmer 12

‘R’ Command
The read command allows you to observe 256 consecutive bytes stored in the StrataFLASH memory.

R – Read command.

Hint: Data in an erased device will be ‘FF’ so if you read ’00’ it has been programmed. It is common for a configuration bit file to contain many ’00’
bytes especially if the design is relatively small.

The display will indicate the address of the first of 16 bytes shown on
each line followed by the 16 successive bytes.

This example shows the end of the configuration image loaded
programmed using the ‘frequency_counter_prom.mcs’ file.

After entering the ‘R’ command you will be prompted to enter a start address.
You should then enter a 6 digit hexadecimal value 000000 to FFFFFF.
Entering an illegal hex character will result in the ‘address=‘ prompt being repeated.

PicoBlaze NOR FLASH Programmer 13

‘W’ Command
The write byte command allows you to write a single byte at any address.

R – Write Byte command.

Hint: FLASH memory only allows logic ‘1’ to be converted to
logic ‘0’ when writing data. Bits can only be restored to logic
‘1’ when erasing complete blocks such that all locations
contain ‘FF’. It is possible to modify data using the write
command providing the ‘1’ to ‘0’ rule is observed.

This read display shows how address 0454BC
has been modified to 42 hex.

After entering the ‘W’ command you will be prompted to enter an address.
You should then enter a 6 digit hexadecimal value 000000 to FFFFFF.
Entering an illegal hex character will result in the ‘address=‘ prompt being repeated.

You will then be prompted to enter the data value and you should enter a 2 digit
hexadecimal value 00 to FF.
Entering an illegal hex character will result in the ‘data=‘ prompt being repeated.

PicoBlaze NOR FLASH Programmer 14

MCS files and Device configuration

:020000040000FA
:10000000FFFFFFFF5599AA660C000180000000E089
:100010000C800680000000060C80048000008CA785
:100020000C800380804304C90C00038000000000A2
:100030000C000180000000900C0004800000000013
:100040000C000180000000800C0002000A8028598A
:1000500000000000000000000000000000000000A0
:100060000000000000000000000000000000000090
:100070000000000000000000000000000000000080
:100080000000000000000000000000000000000070
:100090000000000000000000000000000000000060
:1000A0000000000000000000000000000000000050
:1000B0000000000000000000000000000000000040
:1000C0000000000000000000000000000000000030
:1000D0000000000000000000000000000000000020
:1000E0000000000000000000000000000000000010
:1000F0000000000000000000000000000000000000
etc

An MCS file contains additional information to define the storage address which PicoBlaze interprets as well as obtaining the configuration data. How an
MCS file defines the addresses is beyond the scope of this document at this time, but in general the first lines of the MCS file defining an FPGA BPI-UP
configuration from NOR FLASH will be associated with address zero (000000) and each line contains 16 data bytes to be stored in sequential locations.

If we look at the supplied MCS example file ‘frequency_counter_prom.mcs’ the first configuration data byes can be identified in each line. Having
programmed the NOR FLASH memory, it is possible to read back those same data bytes with the ‘R’ command with start address ‘000000’.

Start of MCS file with byte data highlighted in blue

PicoBlaze NOR FLASH Programmer 15

Preparing an MCS file
This design has been provided so that a ‘default’ MCS programming file generated by the ISE tools can be used. The following images indicate how that
may be achieved but is not intended to replace existing documentation for PROM generation.

1) Select ‘Generate PROM’ in Project Manger

2) This launches iMPACT in which you need to select the PROM File Formatter mode.
(You probably need to expand the upper left window as shown here or pan down to see it).

PicoBlaze NOR FLASH Programmer 16

Preparing an MCS file
3) Select

‘Generic parallel PROM’
‘MCS’ file format

and provide a file name and location.
4) Select the density from the list (The 128Mbit device supplied on
the Starter Kit board equates to 16M-bytes) from the drop down
list and then click ‘Add’ so that it appears in the centre box.

This stage also provides the ability to perform multi-boot designs
and set the loading direction for BPI-UP and BPI-DOWN
configuration modes. In this case the simple (default) BPI-UP
mode will be used and therefore the configuration should be
stored at address zero upwards.

5) Summary
Page

PicoBlaze NOR FLASH Programmer 17

Preparing an MCS file
6) You are now presented with a picture of the PROM contents and an ‘Add Device’ box encouraging you to add your first device.
Click ‘OK’ to continue.
(If the ‘Add Device’ box does not appear, then right click where it is marked ** below and select ‘Add Xilinx Device…’)

6) Navigate to the required configuration BIT file, select the file then click ‘Open’.

**

7) The picture updates to
show the BIT file at the
beginning of the PROM.

PicoBlaze NOR FLASH Programmer 18

Preparing an MCS file
8) Right click where it is marked ** below and select ‘Generate File…’

9) The file is written to the directory specified in step 3 and the process is complete.
**

PicoBlaze NOR FLASH Programmer 19

Design Files
For those interested in the actual design implementation, the following pages provide some details and an introduction to the source files provided. This
description may be expanded in future to form a more complete reference design. As well as these notes, the VHDL and PicoBlaze PSM files contain many
comments and descriptions describing the functionality.

The source files provided for the reference design are…..

parallel_flash_memory_uart_programmer.vhd

uart_tx_plus.vhd

bbfifo_16x8.vhd

kc_uart_tx.vhd

Top level file and main description of hardware.
Contains I/O required to disable other devices on the board which may otherwise interfere with the
StrataFLASH memory communication.

PicoBlaze program source assembler code

kcpsm3.vhd PicoBlaze processor for Spartan-3E devices.

progctrl.vhd

uart_tx.vhd

bbfifo_16x8.vhd

kc_uart_tx.vhd

UART transmitter and receiver with 16-byte FIFO buffers.

parallel_flash_memory_uart_programmer.ucf I/O constraints file for Spartan-3E Starter Kit
and timing specification for 50MHz clock.

progctrl.psm

Assembled program for PicoBlaze (stored in a Block memory)

Note: Files shown in green are not included with the reference design as they are all provided with PicoBlaze download. Please visit the PicoBlaze
Web site for your free copy of PicoBlaze, assembler and documentation. www.xilinx.com/picoblaze

‘uart_tx_plus.vhd’ is the same as the ‘uart_tx.vhd’ supplied with PicoBlaze
except that the ‘buffer_data_present’ signal has also been brought out to
provide better support for XON/XOFF flow control.

PicoBlaze NOR FLASH Programmer 20

PicoBlaze Design Size
The images and statistics on this page show that the design occupies just 161 slices and 1 BRAM. This is only 3.5% of the slices and 5% of the BRAMs
available in an XC3S500E device and would still be less than 17% of the slices in the smallest XC3S100E device.

Number of occupied Slices: 161 out of 4,656 3%
Number of Block RAMs: 1 out of 20 5%

Total equivalent gate count for design: 79,043

PicoBlaze and the UART macros make extensive use of the distributed
memory features of the Spartan-3E device leading to very high design
efficiency. If this design was replicated to fill the XC3S500E device, it
would represent the equivalent of over 1.5 million gates. Not bad for a
device even marketing claims to be 500 thousand gates �

MAP report

FPGA Editor view Floorplanner view

XC3S500E

PicoBlaze Circuit Diagram

buffer_full

uart_rx receive

serial_in

clk

data_out

reset_buffer

buffer_data_present

en_16_x_baud

read_buffer

buffer_half_full
rx_half_full

rx_full

rx_data_present

read_from_uart

rx_data
rx_female

buffer_full

uart_tx_plus
transmit

data_in

clk

serial_out

reset_buffer

en_16_x_baud

write_buffer

buffer_half_full

tx_half_full

tx_full

out_port
tx_female

write_to_uart

5

baud_count

Decode 26

clk

en_16_x_baud

UART macros include 16-byte
FIFO buffers

baud_timer

buffer_data_present
tx_data_present

strataflash_byte

counter

s
t
a
t
u
s
_
p
o
r
t

* Other devices on the Starter Kit board
are disabled to prevent interference with
NOR FLASH.

interrupt_control

XOR
rx_half_full_event

‘JTAG_loader’ allows rapid
PicoBlaze code development.

port_id

kcpsm3 processor

instruction

write_strobe

clk

out_port

read_strobe

address

reset

interrupt_ackinterrupt

in_port

i
n
s
t
r
u
c
t
i
o
n

a
d
d
r
e
s
s

spi_prog

program_rom

instruction

addressclk

port_id

out_port

r
e
a
d
_
s
t
r
o
b
e

interrupt_ack

interrupt

in_port

JTAGproc_reset

clk

k
c
p
s
m
3
_
r
e
s
e
t

10

spi_rom_cs

spi_dac_cs

spi_adc_conv

read_from_uart

write_to_uart

input_ports

0
1

2

strataflash_sts strataflash_d

Vcc

*
*

*
*

lcd_rw

lcd_e
*
*

platformflash_oe

5

6

w
r
i
t
e
_
s
t
r
o
b
e

7

4

3

strataflash_oe

strataflash_ce

strataflash_we

strataflash_read

[7:0]

[15:8]

[23:16]

strataflash_a

strataflash_read

[23:0]

[7:0]

The design uses the NOR FLASH in byte access mode
meaning that the upper data bits [15:8] are unused at all times.

Vcc Please see User Guide UG230 to review the signal
connections required to/from the StrataFLASH memory

PicoBlaze NOR FLASH Programmer 22

Reading StrataFLASH
Reading the StrataFLASH NOR memory is relatively straightforward. The only issue for PicoBlaze is that it does not have a 24-bit address range and
therefore multiple ports are used to achieve the operation.

SF_byte_read: OUTPUT s9, SF_addr_hi_port
OUTPUT s8, SF_addr_mi_port
OUTPUT s7, SF_addr_lo_port
LOAD s1, 05
OUTPUT s1, SF_control_port
LOAD s1, 06
LOAD s1, 06
INPUT s0, SF_data_in_port
OUTPUT s1, SF_control_port
RETURN

Set 24-bit address form which to read

Set controls for read

Deselect StrataFLASH memory

Read data

Bit 0 - strataflash_read=‘1’
Enables memory outputs (strataflash_oe=‘0’)
Tri-states the Spartan outputs (strataflash_d=‘Z’)

Bit 1 - strataflash_ce=‘0’
Enables memory

Bit 2 - strataflash_we=‘1’
Write enable is off (read operation)

50MHz clock

strataflash_a

LO
A

D

O
U

TP
U

T

O
U

TP
U

T

LO
A

D

LO
A

D

IN
P

U
T

O
U

TP
U

T

R
E

TU
R

N

O
U

TP
U

T

O
U

TP
U

T

Actual
read point

All PicoBlaze instructions execute in 2 clock cycles and the design uses the 50MHz clock source on the board. This makes all timing of the design easy to
predict and to ensure that the specifications for the StrataFLASH memory are met.

strataflash_oe

strataflash_ce

strataflash_we

strataflash_d Spartan driving

100ns

The access time of the memory is 75ns (see Intel data sheet for details).
By including an additional LOAD instruction, the time between setting the
controls to read the memory and the actual point of reading is increased
by 40ns and the access time in adequate.

Note that the input port multiplexer is pipelined which means that the data
from the memory is captured on the first clock edge of the INPUT
instruction (as indicated) and then passed into the ‘s0’ register on the
second clock edge.

Hint – Data is read from the memory when it is in ‘read array’ mode
(which is the default mode after power up). However, the same read
operation is used to access memory status and device information
when in other modes.

PicoBlaze NOR FLASH Programmer 23

Writing to StrataFLASH
The basic format of a write operation is not so different to that of a read operation. However, the act of writing a byte to the StrataFLASH memory shown on
this page is only one part of a process in actually writing data into the memory array such that it is stored and available to read (see following pages).

SF_byte_write: OUTPUT s9, SF_addr_hi_port
OUTPUT s8, SF_addr_mi_port
OUTPUT s7, SF_addr_lo_port
OUTPUT s1, SF_data_out_port
LOAD s1, 00
OUTPUT s1, SF_control_port
LOAD s1, 06
LOAD s1, 06
OUTPUT s1, SF_control_port
RETURN

Set 24-bit address form which to read

Set controls for read

Deselect memory

Bit 0 - strataflash_read=‘0’
Disables memory outputs (strataflash_oe=‘1’)
Enables the Spartan data outputs

Bit 1 - strataflash_ce=‘0’
Enables memory

Bit 2 - strataflash_we=‘0’
Write enable is active

50MHz clock

strataflash_a

LO
A

D

O
U

TP
U

T

O
U

TP
U

T

LO
A

D

LO
A

D

O
U

TP
U

T

R
E

TU
R

N

O
U

TP
U

T

O
U

TP
U

T

Actual write
point

All PicoBlaze instructions execute in 2 clock cycles and the design uses the 50MHz clock source on the board. This makes all timing of the design easy to
predict and to ensure that the specifications for the StrataFLASH memory are met.

strataflash_oe

strataflash_ce

strataflash_we

strataflash_d Spartan driving

120ns

The setup time to write data to the memory is 60ns(see Intel data sheet for
details). As shown, the design allows plenty of margin by including an
additional LOAD instruction.

Set byte to be written to memory

O
U

TP
U

T

PicoBlaze NOR FLASH Programmer 24

Storing 1-Byte in StrataFLASH
To actually store a byte of data in the StrataFLASH memory something more than a simple write operation is required. The following describes the process
which must be followed to store a single byte at a specified address.

SF_single_byte_write: LOAD s1, 40
CALL SF_byte_write
LOAD s1, s0
CALL SF_byte_write
CALL wait_SF_ready
RETURN

wait_SF_ready: LOAD sE, 00
LOAD sD, 00

wait_SF_loop: ADD sD, 01
ADDCY sE, 00
CALL SF_byte_read
TEST s0, 80
JUMP Z, wait_SF_loop
CALL set_SF_read_array_mode
RETURN

Write ’40’ hex
with required 24-bit address

24-bit address
8-bit data

Write data byte
with same 24-bit address

Read Status Register

Test Bit7
Ready(1) / Busy(0) Flag

Byte is stored in memory

Ready Busy

This process is implemented by the PicoBlaze
code shown here. The data must be provided
in register ‘s0’ and the 24-bit address in
register set [s9,s8,s7].

Before writing the actual data, a command byte ’40’ hex must be written to tell the memory that
a single byte is to be written to the array at the specified address.

Then the actual data is written.

The memory then internally executes the write of the data into the FLASH array. This can take up to 175µs to
complete and the memory is generally unavailable during this time. PicoBlaze is able to determine that the
memory is busy by reading the status register and
Testing bit7. This is achieved using a normal read
operation because the device will automatically
enter the ‘read status register’ during this process.
The PicoBlaze code is shown to the right and
includes a counter which could be used to
determine exactly how long the program cycle
takes to complete.

Write ’FF’ hex Writing ‘FF’ hex places the memory back to the default
‘read array’ mode such that data can once again be read
from any address.

Hint – The strataflash_sts signal can also be used to determine the ready/busy status but
care is needed because this signal can take up to 500ns to be asserted.

PicoBlaze NOR FLASH Programmer 25

Storing up to 32 Bytes
Although bytes can be written individually, the write cycle time can become significant. For example, when this design is programming an XC3S500E
configuration into the memory, most lines of the MCS file define 16 bytes of data. Programming these individually could take up to 16 × 175µs = 2.8ms
which is equivalent to the time taken to transmit 32 characters on the 115200 baud UART. Since this would cause the UART FIFO buffer to overflow, the
XON-XOFF flow control would come into play and ultimately slow the whole MCS programming sequence down as the communication is continuously
interrupted.

The StrataFLASH offeres a ‘buffer write’ programming procedure which reduced the average programming time. The buffer allows up to 32 bytes to be
written into a buffer at high speed which are then stored in the FLASH array incurring only one write cycle penalty of up to 654µs. Therefore writing more
than 4 bytes using this buffer technique will be faster than individual byte programming. In this design, the 16-bytes defined in each line of the MCS file are
programmed this way such that the 654µs maximum delay only equates to the transmission of 8 characters on the UART interface and the communication
does not need to be interrupted resulting in the shortest download time.

SF_buffer_write: LOAD s1, E8
CALL SF_byte_write
CALL SF_byte_read
TEST s0, 80
JUMP Z, SF_buffer_write
LOAD s1, sA
SUB s1, 01
CALL SF_byte_write
LOAD s3, data_start

write_buffer_loop: FETCH s1, (s3)
CALL SF_byte_write
ADD s7, 01
ADDCY s8, 00
ADDCY s9, 00
ADD s3, 01
SUB sA, 01
JUMP NZ, write_buffer_loop
LOAD s1, D0
CALL SF_byte_write
CALL wait_SF_ready
RETURN

This buffer write process is implemented by the PicoBlaze code shown here
and the process is described further on the next page.

PicoBlaze makes use of the scratch pad memory in this application. First it
reads a line of the MCS file which it stores in scratch pad memory. It is then
able to determine:-

• The 24-bit start address for the data which it holds in register set [s9,s8,s7].
• The number of bytes defined by the line, and hence the number of bytes to
be written to the memory. This byte count is held in register ‘sA’.

The buffer write routine reads the data from the scratch pad memory and
writes it to the NOR memory.

PicoBlaze NOR FLASH Programmer 26

StrataFLASH Write to
Buffer Process

Write ’E8’ hex
with 24-bit start address

24-bit start address
Byte data (up to 32 bytes)
Byte count (01 to 20 hex)

Bytes are now stored
in memory

Write ’FF’ hex

The buffer write command byte ’E8’ hex must be written to tell the
memory that a multiple byte write procedure is required.

Read Status Register

Test Bit7
Ready(1) / Busy(0) Flag

Ready Busy

It is possible that the memory is not ready to deal with the request,
so the memory automatically enters the ‘read status register’ mode
such that the ready/busy flag can be read and checked. If the
device is busy the buffer write command must be repeated until it is
ready to continue.

Write byte count -1 State number of bytes less one (now in the range 00 to 1F hex).

Increment address

The corresponding number of data bytes must be written to the memory.
The supplied routine copies each byte from scratch pad memory and also
increments the 24-bit address as each byte as it is written.

Write data byte with
24-bit address

count bytes

Write ’D0’ hex
with 24-bit address

The ‘confirm write’ command byte ’D0’ completes the buffer programming
and the memory then performs the actual programming of the data into the
FLASH array. This is the part which could take up to 654µs so again the
device automatically enters ‘read status register’ mode such that the
ready/busy flag can be read and checked. Once ready, the ‘read array’ mode
can be restored with the ‘FF’ command byte.

Read Status Register

Test Bit7
Ready(1) / Busy(0) Flag

Ready Busy

PicoBlaze NOR FLASH Programmer 27

XON/XOFF Flow Control
When the NOR FLASH device executes a program command it could take up to 654µs to complete. At the same time the PC will continue to transmit the
MCS file at 115200 baud rate. This could mean that 8 characters are transmitted whilst PicoBlaze is waiting for the memory to be free for writing again.
Officially the 16 byte FIFO buffer on the UART receiver should be adequate for this, but any additional delays could make this marginal and cause overflow.
For this reason, the design incorporates a degree of XON/XOFF soft control to enable this design to work at without errors.

Note: Although the design includes soft flow control, it is not a comprehensive solution and should only be used as a starting point for other designs. In
particular the response to XON/XOFF command characters received from the PC is handled entirely in software and is rather crude at this time.

The principle requirement of flow control, as explained above, is to limit the flow from the PC to the PicoBlaze design. This is achieved by a combination of
hardware and software employing interrupts.

rx_half_full

interrupt

interrupt_ack

UART_TX

UART_RX Data flow from PC is halted

XOFF XON

The hardware detects when the ‘half_full’ flag on the receiver buffer changes state and generates an interrupt to the PicoBlaze. When PicoBlaze responds to
the interrupt it clears the hardware interrupt automatically with the ‘interrupt_ack’ signal. The interrupt service routine then decides what action to take by
reading the status of the ‘half_full’ flag. If the flag is High, then it indicates the buffer has at least 8 characters waiting to be read and so it immediately
transmits and XOFF character on the UART transmitter. If the flag is Low, then it indicates the buffer has started to empty and it is able to immediately send
an XON character to restore the data flow from the PC.

