
ECE/CS 3710 RISC Processor Specification
ISA FOR PROCESSOR – FALL 2009

ImmHi/Op ImmLo/
Op Code Rdest Code Ext Rsrc

Mnemonic Operands 15–12 11–8 7–4 3–0 Notes (* is baseline)
ADD Rsrc, Rdest 0000 Rdest 0101 Rsrc *
ADDI Imm, Rdest 0101 Rdest ImmHi ImmLo * Sign extended Imm
ADDU Rsrc, Rdest 0000 Rdest 0110 Rsrc
ADDUI Imm, Rdest 0110 Rdest ImmHi ImmLo Sign extended Imm
ADDC Rsrc, Rdest 0000 Rdest 0111 Rsrc
ADDCI Imm, Rdest 0111 Rdest ImmHi ImmLo Sign extended Imm
MUL Rsrc, Rdest 0000 Rdest 1110 Rsrc
MULI Imm, Rdest 1110 Rdest ImmHi ImmLo Sign extended Imm
SUB Rsrc, Rdest 0000 Rdest 1001 Rsrc *
SUBI Imm, Rdest 1001 Rdest ImmHi ImmLo * Sign extended Imm
SUBC Rsrc, Rdest 0000 Rdest 1010 Rsrc
SUBCI Imm, Rdest 1010 Rdest ImmHi ImmLo Sign extended Imm
CMP Rsrc, Rdest 0000 Rdest 1011 Rsrc *
CMPI Imm, Rdest 1011 Rdest ImmHi ImmLo * Sign extended Imm
AND Rsrc, Rdest 0000 Rdest 0001 Rsrc *
ANDI Imm, Rdest 0001 Rdest ImmHi ImmLo * Zero extended Imm
OR Rsrc, Rdest 0000 Rdest 0010 Rsrc * NOP=OR R0,R0
ORI Imm, Rdest 0010 Rdest ImmHi ImmLo * Zero extended Imm
XOR Rsrc, Rdest 0000 Rdest 0011 Rsrc *
XORI Imm, Rdest 0011 Rdest ImmHi ImmLo * Zero extended Imm
MOV Rsrc, Rdest 0000 Rdest 1101 Rsrc *
MOVI Imm, Rdest 1101 Rdest ImmHi ImmLo * Zero extended Imm
LSH Ramount, Rdest 1000 Rdest 0100 Ramount * -15 to 15 (2s compl)
LSHI Imm, Rdest 1000 Rdest 000s ImmLo * s = sign (0=left, 2s comp)
ASHU Ramount, Rdest 1000 Rdest 0110 Ramount -15 to 15 (2s comp)
ASHUI Imm, Rdest 1000 Rdest 001s ImmLo s = sign (0=left, 2s comp)
LUI Imm, Rdest 1111 Rdest ImmHi ImmLo * Load & 8 bit Left Shift
LOAD Rdest, Raddr 0100 Rdest 0000 Raddr *
STOR Rsrc, Raddr 0100 Rsrc 0100 Raddr *
SNXB Rsrc, Rdest 0100 Rdest 0010 Rsrc
ZRXB Rsrc, Rdest 0100 Rdest 0110 Rsrc
Scond Rdest 0100 Rdest 1101 cond
Bcond disp 1100 cond DispHi DispLo * 2s comp displacement
Jcond Rtarget 0100 cond 1100 Rtarget *
JAL Rlink, Rtarget 0100 Rlink 1000 Rtarget *
TBIT Roffset, Rsrc 0100 Rsrc 1010 Roffset Offset = 0 to 15
TBITI Imm, Rsrc 0100 Rsrc 1110 Offset Offset = 0 to 15
LPR Rsrc, Rproc 0100 Rsrc 0001 Rproc
SPR Rproc, Rdest 0100 Rproc 0101 Rdest
DI 0100 0000 0011 0000
EI 0100 0000 0111 0000
EXCP vector 0100 0000 1011 vector
RETX 0100 0000 1001 0000
WAIT 0000 0000 0000 0000

1



ISA FOR PROCESSOR – FALL 2009

ImmHi/Op ImmLo/
Op Code Rdest Code Ext Rsrc

Mnemonic Operands 15–12 11–8 7–4 3–0 Notes (* is baseline)
Unused OP code 0000 0100
Unused OP code 0000 1000
Unused OP code 0000 1100
Unused OP code 0000 1111
Unused OP code 0100 1111
Unused OP code 1000 0101
Unused OP code 1000 0111
Unused OP code 1000 1xxx

OPCODES, EXTENDED OPCODES, AND CONDITION CODES

Bold face are baseline, blank are unused opcodes

Op Code
Bits 13,12

15,14 00 01 10 11
00 Register ANDI ORI XORI
01 Special ADDI ADDUI ADDCI
10 Shift SUBI SUBCI CMPI
11 Bcond MOVI MULI LUI

Register
Bits 5,4
7,6 00 01 10 11
00 WAIT AND ORI XOR
01 ADD ADDU ADDC
10 SUB SUBC CMP
11 MOV MUL

Special
Bits 5,4
7,6 00 01 10 11
00 LOAD LPR SNXB DI
01 STOR SPR ZRXB EI
10 JAL RETX TBIT EXCP
11 Jcond Scond TBITI

Shift
Bits 5,4
7,6 00 01 10 11
00 LSHI LSHI ASHUI ASHUI
01 LS ASHU
10
11

cond
Bits 9,8/1,0

11,10/3,2 00 01 10 11
00 EQ NE CS CC
01 HI LS GT LE
10 FS FC LO HS
11 LT GE UC

2



ECE/CS 3710 RISC PROCESSOR

The group projects for ECE/CS 3710 will be based on the processor specification given in this document.
The processor specification is based on RISC concepts and can be implemented as a two stage pipeline. It
uses a 16 bit word and address space, although for simplicity, each address refers to a complete word (two
bytes), so the address space is 217 bytes. All instructions are single word. Following the RISC approach,
almost all instructions refer to a 16 entry register file. The highest nibble is the operation code, the next
nibble is usually the destination register address, the remaining byte is an immediate data value for some
instructions, or is split into a four bit operation code extension and a four bit source register address for
other instructions. (A few instructions are different, so read the specifications carefully.) In order to make
the project feasible for most groups in the available time, a “baseline” implementation is also given. This
uses a selected subset of the instructions and the expectation is that implementation of the baseline processor
is the minimum requirement for this course. Each group should plan a customization beyond the baseline,
which makes the processor useful for a particular application. Typically, this may involve adding a few
instructions beyond the baseline, special registers which allow certain operations to be done more efficiently,
and an interface logic to external input/output devices. (Note: most projects are usually much closer to the
baseline, than the full implementation.) All the baseline instructions should be implemented without change,
so that your processor can execute a test program at the end of the term. Added instructions should normally
use the “unused opcodes” which are listed in the Instruction Set Architecture (ISA). If it is necessary to
replace some of the additional instructions (beyond the baseline), discuss it with the instructor. Note that
pipelining is not required, but if you keep instruction memory separate from data memory as shown in the
example, pipelining is not difficult.

A block diagram is given of the architecture of the baseline processor as a guideline, but you are free
to make additions and changes to it, but you should still follow the RISC approach. The following sections
discuss the functions of the instructions. You should also refer to the notes in the list of instructions.

Notes on the Baseline Instruction Set

All ALU instructions (except CMP, CMPI – see below) write the result back to the destination register.
Instructions ending with I are immediate and use the eight least-significant bits of the instruction as data, the
others are direct, (i.e. instruction “op Rsrc/Imm, Rdest” performs:

Rdest← Rdest op Imm (sign extended)
or

Rdest← Rdest op Rsrc
respectively).

For the baseline ECE/CS 3710 processor, the instructions marked with an asterisk in the instruction
table must be implemented. Successive memory addresses can refer to 16 bit words instead of bytes. Of the
baseline subset of instructions, the only ones which can change the program status register (PSR) are the
arithmetic instructions ADD, ADDI, SUB,SUBI, CMP, CMPI. CMP and CMPI perform the same operations
as SUB, SUBI but affect different PSR flags (see below) and do not write back the result. Only flags FLCNZ
are needed for the baseline implementation. ADD, ADDI, SUB,SUBI set the C flag if a carry/borrow from
the most significant bit position occurs when the operands are treated as unsigned numbers, and set the
F flag if an overflow occurs when the operands are treated as two’s complement numbers. (Note: the
processor does not know which interpretation you are using, so you must set both flags appropriately for
each operation.) CMP, CMPI perform a subtraction without write back to Rdest and set the Z flag if the
result is zero, set the L flag if Rsrc/Imm > Rdest when the operands are treated as unsigned numbers (i.e.
when a carry/borrow occurs), and set the N flag if Rsrc/Imm > Rdest when the operands are treated as two’s

3



complement numbers (N can be computed as the exclusive-or of L and the sign bits of Rsrc/Imm and Rdest).
All other baseline instructions leave the flags unchanged.

Jcond, Bcond are absolute and relative jumps respectively based on the condition codes specified in the
condition code (cond) table. (See Table 1.)

JAL (jump and link) stores the address of the next instruction in Rlink, and jumps to Rtarget. Its main
use is for subroutine calls. Return with a JUC Rlink (where Rlink is the same register used to store the link).

LSH is a logical left shift by the number of bits specified in Rsrc/Imm treated as a signed twos comple-
ment number (which must be in the range -15 to +15). A negative left shift is effectively a right shift.

LOAD and STOR instructions load to, and store from the data memory location whose address is in
register Raddr. The NOP instruction is really OR r0, r0 and does not need to be implemented separately.
Unconditional jumps (JUMP) and branches (BR) are equivalent to JUC and BUC respectively, so do not
need separate implementation either. Compilers may have these alternative instruction ops for convenience.

LUI (load upper immediate) loads the 8 bit immediate data into the upper (most significant) bits of the
destination register.

MOV copies the source register or immediate into the destination register.

Notes on the Additional Instructions

In a full implementation, PSR (program status register) is a dedicated 16 bit register with flag entries (in the
following order, MSB at the left) rrrrIPE0NZF00LTC, where the “r” entries are reserved, the “0” entries
are zeros, I, E are used for interrupt processing, T, P are for program tracing (debugging), and the rest are
flags have been defined elsewhere.

ADDU does the same as ADD but does not affect the PSR flags.
ADDC does the same as ADD except the C flag is also added in. It affects the same flags.
ASHU does an arithmetic left shift interpreting both operands as signed twos complement.
MUL multiplies: Rdest ¡– Rsrc/Imm * Rdest. High order bits are truncated if they do not fit in Rdest.

No flags are affected.
SUBC does the same as SUB except that the C flag is also subtracted. It affects the same flags.
SNXB converts the 8-bit operand in Rsrc to 16 bits in Rdest with sign-extension.
Scond sets Rdest = 1 if the condition is true (i.e. if the bit in the PSR is set), and resets Rdest = 0 if it is

false (same condition codes as jump and branch instructions).
DI, EI, EXCP, RETX deal with interrupts and exceptions. Ask if you are interested in implementing any

of them.
LPR, SPR load the PSR from Rsrc and store PSR into Rdest, respectively.
TBIT copies the bit in position offset to the F flag of the PSR.
WAIT suspends program execution until an interrupt occurs (or for ever, if interrupts are not imple-

mented).
ZRXB converts the 8-bit operand in Rsrc to 16 bits in Rdest with zeros-extension.

4



COND valued for Jcond, Bcond, and Scond instructions

Mnemonic Bit Pattern Description PSR Values
EQ 0 0 0 0 Equal Z=1
NE 0 0 0 1 Not Equal Z=0
GE 1 1 0 1 Greater than or Equal N=1 or Z=1
CS 0 0 1 0 Carry Set C=1
CC 0 0 1 1 Carry Clear C=0
HI 0 1 0 0 Higher than L=1
LS 0 1 0 1 Lower than or Same as L=0
LO 1 0 1 0 Lower than L=0 and Z=0
HS 1 0 1 1 Higher than or Same as L=1 or Z=1
GT 0 1 1 0 Greater Than N=1
LE 0 1 1 1 Less than or Equal N=0
FS 1 0 0 0 Flag Set F=1
FC 1 0 0 1 Flag Clear F=0
LT 1 1 0 0 Less Than N=0 and Z=0
UC 1 1 1 0 Unconditional N/A

1 1 1 1 Never Jump N/A

5


