
ECE/CS 3710

Computer Design Lab

Ken Stevens

Fall 2009



ECE/CS 3710

l Computer Design Lab

u Tue & Thu 3:40pm – 5:00pm
Lectures in WEB 110, Labs in MEB 3133 (DSL)

l Instructor: Ken Stevens

u MEB 4506
u Office Hours: After class or by appointment.

l TA: Tyler Day

u Office Hours to be determined



ECE/CS 3710

l Web Page - all sorts of information!

l http://www.eng.utah.edu/∼kstevens/3710/3710.html

l Contacts:

u 3710@list.eng.utah.edu
n Goes to everyone in class
n Must be member of list to post

u teach-3710@list.eng.utah.edu
n Goes to instructor and TA

l No textbook – You’ll receive handouts

u There’s lots of good stuff linked to the web page



Prerequisites

l Digital Logic

u ECE/CS 3700 or equivalent

l Computer Architecture

u ECE/CS 3810 or equivalent

l First assignment is a review of these subjects!

u It’s on the web page now!
u It’s due next Thursday, September 3rd



Class Goal

l Use skills from both 3700 and 3810 to build a moderately sized
project

u Specifically, a computer processor!
u Based on a commercial RISC core

l Team Projects – groups of 3 or 4

u Each group will have to customize the processor for a
particular application
n You choose the application!
n You choose the customizations!
n Be creative and have fun!



Hardware Infrastructure

l Spartan-3E “starter” Board from Xilinx



CAD Software

l Xilinx ISE WebPACK 10.1 / 11.1

u Verilog system definition
u Schematic Capture
u Verilog/Schematic simulation
u Synthesis to the Spartan-3E
u Mapping to the Spartan-3E



The Big Picture



The Big Picture

l You’ll get a Baseline ISA (it’s on the web site)

u Every group must implement these instructions

l There will be labs that require you to design and demonstrate
steps along the way

l Each group will customize their processor

u New instructions
u New I/O
u Other features

l End up demonstrating code running on your processor!



The Big Picture

l Design the datapath using schematics/Verilog

u ALU, register file, shifter, misc. registers, etc.

l Design the control FSM using Verilog

u Remember Verilog state machine design from 3700?

l Use ISE for simulation and synthesis

l The Processor you build runs on the Spartan-3E board

u Memory-mapped I/O
u Keyboard? UART? VGA? Other?



The Short-Term Picture

l Start with a review assignment

l Nest assignment is a Finite State Machine (FSM) mapped to the
Spartan-3E board

u Cool thunderbird tail lights. . .

l Next assignment will be a very small processor

u I’ll provide the mips.v code from Weste/Harris
u I’ll provide the Verilog code for block RAMs
u I’ll provide sample Fibonacci assembly code
u You’ll augment the processor with the ADDI instruction
u You’ll augment the processor with very simple I/O
u You’ll augment the Fibonacci code



The Medium Term Picture

l We’ll hand out lab kits on Tuesday next week during class

u We’ll meet in the DSL, MEB 3133

l Be thinking about who to team up with

u Teams will be 3–4 people
u Good teams have a mix of complementary skills

l Start dreaming about your project

u Mid-term project proposal presentations
n Present your plans and your design so far
n All team members must participate and present



The Long Term Picture

(2010 is an eternity away, eh?)

l Once teams are formed (Late September)

u Start working on your project
u Start with baseline, augment for your application
u Think about memory and I/O
u Think about support software (assemblers, compilers, etc.)
u Think about application software

l The complete working project due at the end of class

u Demo day at the end of the semester
n Same time as CE Senior Project demo day

l Let’s work the seniors!



Design

l What is Design?

u Design is the progression from the abstract to the concrete
u From the idea for the SuperGizmoWidget until you’ve actually

got the real live chip in your hands
u How does one go from an idea to a product?
u How does one go from a specification to a piece of hardware?



Exploit Abstraction

l Design from the top down!

l Start with an understanding of the complete system

u The Big Picture!

l Break it into more manageable chunks

l Describe the chunks in more detail

l Continue until the chunks are easy enough that you can build
them!



Actually. . .

l You can’t really do things totally top-down or totally bottom-up

u Top-down is usually the best place to start
although

u At some point you’ll need to look at the details

l Learning when to switch views is important!

u When do you switch between levels of abstraction?
u Learn by doing with practice



A Couple of Rules

l Don’t build complex systems, build compositions of simple ones!

u Use appropriate abstractions
u Use hierarchy in your designs

l Don’t re-invent the wheel

u Exploit available resources
u Find tools that will help you
u Reuse modules when it makes sense
u Avoid NIH syndrome (This isn’t CalTech. . . )



Digital Design Abstractions

l System Architecture

l Instruction Set Architecture (ISA)

l Register-Transfer Level (RTL)

l Gates

u Boolean logic, FPGAs, gate-arrays, etc. . .

l Circuits – transistors

l Silicon – mask data, VLSI



Another Look at Abstraction



When to Switch Levels?

l When do you switch to a new level in the abstraction hierarchy?

u When does a collection of transistors look like a gate?
u when does a collection of gates look like a register-transfer

level module?

l Engineering judgment! One mark of a good engineer is one who
breaks things up at the appropriate level of abstraction!



Problems With Abstraction

l You may abstract away something important!

u You lose some information when you jump up a level of
abstraction

u When you move down a level you may get swamped in the
details and need to modify the higher level

l Example: An appropriate collection of transistors doesn’t always
behave like a logic gate!

u Slope (rise or fall time) too great
u Metastability
u Other electrical effects

l You may also miss some possible optimizations



Design Validation

l It’s hard to make sure that different models are describing the
same thing

l Write a behavioral model in C, then create a gate-level model in
Xilinx ISE

l How do you know they are the same?

u Simulation?
u Correct-by-construction techniques?
u Formal proofs?
u Cross your fingers?



CAD Tools

l Mask Level

u Magic, Mentor, Cadence, Spice, Spectre, etc.

l Gate Level

u ISE, Mentor, Cadence, COSMOS, IRSIM, Espresso, MisII, etc.

l RT and up – “High Level” descriptions start to look a lot like
software. . .

u Verilog, VHDL, System-C. . .
u ISE-XST, Synopsys, Ambit, Leonardo



High Level Synthesis

l Allows behavioral descriptions

l Larger and more complex systems can be designed

l Abstracts away low-level details

l Design cycle is shortened

l Correct by construction
(if you trust the tools)



Synthesis Drawbacks

l Larger circuits

l Slower circuits

l No innovative circuits

u You can, of course, make some counter-arguments to each of
these drawbacks. . .



Synthesis Tools

l A whole bunch of different CAD tools

u Quite complex

l ISE-XST from Xilinx

u Targets Xilinx FPGAs in particular

l Synopsys is industry leader in general synthesis

u Can also target Xilinx FPGAs
u Try it on your own if you like. . .

l You will get to know the Xilinx CAD tools well


