
EXTENDED VERSION OF A PAPER ACCEPTED FOR PUBLICATION IN IEEETRANS. ON CAD, ACCEPTED MARCH 2013 1
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Abstract—Galois field arithmetic is a critical component in
communication and security-related hardware, requiring dedi-
cated arithmetic circuit architectures for greater perfor mance. In
many Galois field applications, such as cryptography, the data-
path size in the circuits can be very large. Formal verification
of such circuits is beyond the capabilities of contemporary
verification techniques. This paper addresses formal verification
of combinational arithmetic circuits over Galois fields of the
type F2k using a computer-algebra/algebraic-geometry based
approach.

The verification problem is formulated as membership testing
of a given specification polynomial in a corresponding ideal
generated by the circuit constraints. Ideal membership testing
requires the computation of a Gröbner basis, which is computa-
tionally very expensive. To overcome this limitation, we analyze
the circuit topology and derive a term order to represent the
polynomials. Subsequently, using the theory Gr̈obner bases over
F2k , we show that this term order renders the set of polynomials
itself a minimal Gr öbner basis of this ideal. Consequently, the
verification test reduces to a much simpler case of Gr̈obner
basis reduction via polynomial division, significantly enhancing
verification efficiency.

To further improve our approach, we exploit the concepts
presented in theF4 algorithm for Gr öbner basis, and show that
our verification test can be formulated as Gaussian elimination on
a matrix representation of the problem. Finally, we demonstrate
the ability of our approach to verify the correctness of, anddetect
bugs in, up to 163-bit circuits in F2163 — whereas verification
utilizing contemporary techniques proves infeasible.

Keywords — Formal verification, Galois fields, arithmetic cir-
cuits, computer algebra, Gröbner bases.

I. I NTRODUCTION

With the spread of Internet and mobile devices, transferring
information safely and securely has become more important
than ever. Galois fields have widespread applications in such
domains, such as in cryptography, error correction codes,
signal processing, etc. Therefore, dedicated hardware (VLSI)
implementations of Galois field arithmetic abound [1] [2]
[3] [4] [5]. In most practical applications, the field size
— and therefore the word-lengths of the operands — can
be very large. For example, the U.S. National Institute for
Standards and Technology (NIST) recommends the use of
Galois fields corresponding to data-path sizes of163-bits or
more for elliptic curve cryptography. The high complexity of
arithmetic operations over such large fields requires circuits
to be (semi-) custom designed — increasing the likelihood
of errors/bugs in the implementation. Such bugs not only
cause unintended operations, but they also manifest themselves
as security vulnerabilitiesopen for exploitation. It has been

shown in [6] that arithmetic bugs in crypto-systems can lead
to full leakage of the secret key. Formal verification of Galois
field arithmetic circuits is therefore imperative.

This paper addresses the problem offormal verification of
combinational circuits that implement Galois field arithmetic
computations.We consider Galois fields of the typeF2k — i.e.
binary Galois extension fields — as these are often the fields
of choice for efficient hardware implementations. Galois field
arithmetic circuits are implementations of some specification
polynomialf . The specificationf may not be limited to simple
polynomial computations such as multiplication (f = A · B)
or squaring (f = X2), but may also specify entire systems,
such as point-addition on elliptic curves overF2k . Givenf as
a specification, and an arithmetic circuit as its implementation,
the purpose of the verifier is to ensure that the circuit imple-
mentation is equivalent to the specification. More formally, the
verification problem is stated as follows:

• Given a Galois fieldF2k , i.e. givenk, along with the
irreducible polynomialP (x) used for field construction.

• The specificationis given as a multi-variate polynomial
f with coefficients fromF2k .

• Theimplementationis given as a gate-levelcombinational
circuit C.

Our objective is to prove that the circuitC correctly
implements the polynomialf . Otherwise we have to generate a
counter-example that excites the bug in the design.This paper
targets verification of only combinational Galois field circuits.
Verification of sequential Galois field circuits is a different
problem, and is beyond the scope of this paper.

A. Approach and Contributions

Our technique utilizes concepts from computer-algebra and
algebraic geometry as the core verification framework. This
enables us to formulate the verification problem as an ideal
membership test using theStrong Nullstellensatz[7] over
Galois fields. Subsequently,Gröbner basis techniques are
employed for this ideal membership test. As Galois field
arithmetic circuits perform computations that are algebraic
in nature, computer-algebra based formulations and decision
procedures provide an efficient and scalable means to address
the verification problem. Our approach and contributions can
be outlined as follows:

• Using polynomial abstractions, the specification and the
implementation circuit are modeled as elements of a
multivariate polynomial ring with coefficients fromF2k .
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• Using the concepts ofStrong Nullstellensatz[7] over
Galois fields, we deduce that the verification problem can
be formulated asmembership testingof the specification
polynomialf in a corresponding (radical)idealgenerated
by the circuit constraints.

• Ideal membership testing requires the computation of
a Gröbner basis[8]. Buchberger’s algorithm [9], em-
ployed for Gröbner basis computation, exhibits high
computational complexity — which is critically tied to
the term orderingused to represent and manipulate the
polynomials. To overcome this limitation, we show that a
specialized term ordering can be derived by analyzing the
topology of the given circuit. Subsequently, we prove that
this term ordering renders the set of polynomials itself
a Gröbner basis —thus obviating the need for Buch-
berger’s algorithm. As a consequence of our deductions,
the verification (ideal membership) test reduces to a much
simpler case of Gröbner basis reduction via polynomial
division.

• We further demonstrate how this Gröbner basis can be
transformed into aminimal Gröbner basis directly by
construction, simplifying the reduction procedure.

• Our approach only requires a polynomial reduction (di-
visions), enabling any general-purpose computer algebra
tool (e.g. SINGULAR [10]) to be employed for such
purposes. Efficient polynomial reduction techniques, such
as those based on theF4 [11] algorithm, have been
proposed in literature. We show thatour term ordering
can be further exploited to engineer an efficientF4-
style polynomial reduction procedure implemented as
Gaussian elimination on a (dense) matrix representation
of the problem.

• We implement the technique as a standalone, custom
verification tool for Galois field arithmetic circuits. Ex-
periments conducted over various custom-designed arith-
metic circuits demonstrate the efficiency and scalability
of our methods. We are able to verify the correctness
of, and detect bugs in, up to163-bit circuits in F2163 ,
whereas contemporary techniques are infeasible beyond
16-bit circuits.

Paper Organization: The rest of the paper is organized as
follows. In the next section, we review the relevant concepts
of Galois fieldsF2k and describe the architectures of the
digital circuits that we have designed and verified through our
approach. Section III reviews related previous work. Section
IV reviews preliminary computer algebra concepts of ideals,
varieties and Nullstellensatz, and how they apply over Galois
fields. Section V describes our problem formulation using
Strong Nullstellensatz and Gröbner bases. Section VI shows
how a term ordering is derived from the circuit that renders the
set of polynomials corresponding to the verification instance
itself a (minimal) Gröbner basis. In Section VII, we show
how F4-style Gröbner basis reduction can be devised on
a matrix for our specific problem. Section VIII describes
the experiments conducted and analyzes the results. Finally,
Section IX concludes the paper.

II. GALOIS FIELDS & H ARDWARE DESIGN

We briefly describe the relevant concepts related to Galois
fieldsF2k ; for more details, interested readers may refer to the
textbook [12]. We also review some VLSI architectures used
for Galois field computations [1] [2] [13] [3] [5] [14]. In our
experiments, we have verified custom designs based on these
architectures.

A Galois field is a field with a finite number of elements.
The number of elementsq of the field is a power of a prime
integer — i.e.q = pk, wherep is a prime integer, andk ≥
1 is a positive integer. Galois fields are denoted asFq and
also GF (q = pk). We are interested in fields wherep =
2 and k > 1 — i.e. binary Galois extension fieldsF2k —
as they are widely employed in hardware implementations of
cryptography primitives.

To constructF2k , we take the polynomial ringF2[x], where
F2 = {0, 1}, and an irreducible polynomialP (x) ∈ F2[x]
of degreek, and constructF2k as F2[x] (mod P (x)). For
example,F8 = F2[x] (mod x3 + x+ 1).

The characteristicof any finite field with unity element1
is the least integern such that1+ · · ·+ 1 (n times)= 0. The
characteristic of fields of the typeFpk is the prime integerp.
Since in our casep = 2, all fields of the typeF2k , for any
givenk, have characteristic 2. As a result, all field operations
are performed modulo the irreducible polynomialP (x) and the
coefficients are reduced modulop = 2; due to which−1 = +1
overF2k .

Any elementA ∈ F2k can be represented in polynomial
form asA = a0 + a1α+ · · ·+ ak−1α

k−1, whereai ∈ F2, i =
0, . . . , k − 1, andα is the root of the irreducible polynomial,
i.e. P (α) = 0. The fieldF2k can therefore be construed as a
k-dimensional vector space overF2.

An important property of Galois fields is that for all
elementsA ∈ Fq, A

q = A, and henceAq −A = 0. Therefore,
the polynomialxq − x vanisheson all points inFq. Such
vanishing polynomialswill form an important part of our ideal
membership formulation.

A. Hardware Implementations of Galois Field Arithmetic

In many Galois field applications, primitive computations
such asADD , MULT, INVERSE etc., are implemented in hard-
ware, and application algorithms are then implemented in
software (e.g. cryptoprocessors [14]). In other cases, theentire
design can be implemented in hardware — such as the point-
addition circuitry [5] used in elliptic curve cryptosystems.

As modular multiplication overF2k is at the heart of
most public-key cryptosystems, efficient VLSI architectures
have been introduced for this computation. These include the
Mastrovito multiplication, Montgomery reduction [2] and the
Barrett reduction [3].

Conceptually, the multiplicationZ = A × B (mod P (x))
in F2k consists of two steps. First,A × B is computed,
and then the result is reduced(mod P (x)). A Mastrovito
implementation [15] [1] is shown in the example below:

Example 2.1: Consider the fieldF24 . We take as inputs:
A = a0 + a1 · α + a2 · α2 + a3 · α3 and B = b0 +



EXTENDED VERSION OF A PAPER ACCEPTED FOR PUBLICATION IN IEEETRANS. ON CAD, ACCEPTED MARCH 2013 3

b1 · α + b2 · α2 + b3 · α3, along with the irreducible poly-
nomial P (x) = x4 + x3 + 1. We have to perform the
multiplication Z = A × B (mod P (x)). The coefficients of
A = {a0, . . . , a3}, B = {b0, . . . , b3} are in F2 = {0, 1}.
Multiplication can be performed as:

a3 a2 a1 a0

× b3 b2 b1 b0
a3 · b0 a2 · b0 a1 · b0 a0 · b0

a3 · b1 a2 · b1 a1 · b1 a0 · b1
a3 · b2 a2 · b2 a1 · b2 a0 · b2

a3 · b3 a2 · b3 a1 · b3 a0 · b3
s6 s5 s4 s3 s2 s1 s0

The resultSum = s0+s1 ·α+s2 ·α2+s3 ·α3+s4 ·α4+s5 ·
α5+ s6 ·α6, where,s0 = a0 · b0, s1 = a0 · b1+a1 · b0, s2 =
a0 · b2 + a1 · b1 + a2 · b0, and so on. Here the multiply “·”
and add “+” operations are performed modulo 2, so they can
be implemented in a circuit using AND and XOR gates. Note
that unlike integer multipliers, there are no carry-chainsin the
design, as the coefficients are always reduced modulop = 2.
However, the result is yet to be reduced modulo the primitive
polynomialP (x) = x4 + x3 + 1. This is shown below:

s3 s2 s1 s0
s4 0 0 s4 s4 · α

4 (mod P (α)) = s4 · (α
3 + 1)

s5 0 s5 s5 s5 · α
5 (mod P (α)) = s5 · (α

3 + α+ 1)
s6 s6 s6 s6 s6 · α

6 (mod P (α)) = s6 · (α
3 + α2 + α+ 1)

z3 z2 z1 z0

The final result (output) of the circuit is:Z = z0 + z1α +
z2α

2 + z3α
3; wherez0 = s0 + s4 + s5 + s6; z1 = s1 + s5 +

s6; z2 = s2 + s6; z3 = s3 + s4 + s5 + s6.
In cryptosystems, multiplication is often performed re-

peatedly – e.g., for exponentiation. For such applications,
Montgomery and Barrett architectures [2] [13] [16] [3] over
Galois fields are employed for faster computation.

Montgomery Reduction: Montgomery reduction (MR)
computes:

MR(A,B) = A ·B ·R−1 (mod P (x))

whereA,B arek-bit inputs,R is suitably chosen asR = αk,
R−1 is multiplicative inverse ofR in F2k , andP (x) is the
irreducible polynomial. Since Montgomery reduction cannot
directly computeA ·B (mod P (x)), we need to pre-compute
A ·R andB · R, as shown in Figure 1.

MR 

MR 

MR 

MR 
A R

B R

R
2

R
2

A B R

A

B

G=A B (mod P)

"1"

Fig. 1: Montgomerymultiplication overF2k using four Mont-
gomery reductions.

EachMRblock in Fig. 1 represents a Montgomery reduction
step, which is a hardware implementation of the algorithm
shown in Algorithm 1. The algorithm is referred from [2].

Barrett Reduction: Similar to Montgomery reduction, tra-
ditional Barrett reduction [16] needs a pre-computed valueof
the reciprocal/inverse of modulusP (x). The recent approach

ALGORITHM 1: Montgomery Reduction Algorithm [2]

Input : A,B ∈ F2k ; irreducible polynomialP (x).
Output : Z = A ·B · x−k (mod P (x)).
Z :=0
for (i = 0; i ≤ k − 1; ++i ) do

Z := Z + Ai ·B /*Ai is the ith bit of A*/;
Z := Z + Z0 · P (x)
/*Z0 is the least significant bit of Z*/;
Z := Z/x /*Right shift Z by 1 bit*/;

end

of [3] avoids such a pre-computation of inverses and simplifies
the hardware implementation.

Based on Barrett reduction, a multiplier can be designed in
two steps: multiplicationR = A×B and a subsequent Barrett
reductionG = R (mod P ). In our experiments, we have
verified custom implementations of each of the Mastrovito,
Montgomery and Barrett multipliers.

Point Addition over Elliptic Curves: The main operations
of encryption, decryption and authentication in elliptic curve
cryptography (ECC) rely onpoint additionsand doubling
operations on elliptic curves designed over Galois fields. In
general, this requires computation of multiplicative inverses
over the field - which is expensive. Modern approaches rep-
resent the points in projective coordinate systems,e.g., the
López-Dahab (LD) projective coordinate [5], which eliminates
the need for multiplicative inverses and improves the efficiency
of these operations.

Example 2.2: Consider point addition in López-Dahab
(LD) projective coordinate. Given an elliptic curve:Y 2 +
XY Z = X3Z + aX2Z2 + bZ4 overF2k , whereX,Y, Z are
k-bit vectors that are elements inF2k and similarly,a, b are
constants from the field. Let (X3, Y3, Z3) = (X1, Y1, Z1) +
(X2, Y2, 1) represent point addition over the elliptic curve.
ThenX3, Y3, Z3 can be computed as follows:

A = Y2 · Z2
1 + Y1

B = X2 · Z1 +X1

C = Z1 ·B
D = B2 · (C + aZ2

1 )

Z3 = C2

E = A · C
X3 = A2 +D + E

F = X3 +X2 · Z3

G = X3 + Y2 · Z3

Y3 = E · F + Z3 ·G

Example 2.3: Consider point doubling in LD projective
coordinate system. Given an elliptic curve:Y 2 + XY Z =
X3Z + aX2Z2 + bZ4. Let (X3, Y3, Z3) = 2(X1, Y1, Z1),
then
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X3 = X4
1 + b · Z4

1

Z3 = X2
1 · Z2

1

Y3 = bZ4
1 · Z3 +X3 · (aZ3 + Y 2

1 + bZ4
1 )

In the above computations, polynomial multiplication and
squaring operations can be implemented in hardware using
Montgomery or Barrett reductions overF2k . In our experi-
ments, we verify circuit implementations of point additionand
doubling based on the above examples.

III. R EVIEW OF PREVIOUS WORK

The verification problem addressed in this paper is a com-
binational equivalence checking (CEC) problem, where the
specification (polynomial) and the implementation (circuit)
are given at different levels of abstraction. To make use of
contemporary gate-level CEC tools, we can transform the
polynomial specification into a specification circuit (“golden
model”) and check its equivalence against the implementation
circuit. Canonical decision diagrams (BDDs [17] and their
word-level variants [18]), implication-based methods [19],
And-Invert-Graph (AIG) based reductions [20] [21], circuit-
SAT solvers [22], etc., are among the many techniques that can
be employed for this CEC. When one circuit is synthesized
from the other, this problem can be efficiently solved using
AIG-based reductions (e.g. the ABC tool [23]) and circuit-
SAT solvers (e.g., CSAT [22]).Equivalence checking tools,
such as [24] [25] [26], etc., are also offered by CAD vendors,
which have even larger capacity than academic tools.Synthe-
sized circuits generally contain many sub-circuit equivalences
which AIG and CSAT based tools can identify and exploit
for verification. However,when the circuits are functionally
equivalent but structurally very dissimilar1, none of the con-
temporary techniques, including ABC and CSAT, offer a prac-
tical solution. Automatic formal verification of largecustom-
designed arithmetic circuitslargely remains unsolved today.
Our experiments also demonstrate the inability of AIG/ABC
and Circuit-SAT solvers to solve our problems.

Graph-based canonical DAG representations of Boolean
functions such as BDDs [17], OKFDDs [27], BMDs [28] and
MODDs [29], etc. are ill-suited for such modulo-arithmetic
applications, particularly over large finite fields. While BMDs
were proposed for verification of integer multipliers, the repre-
sentation is not efficient for modulo arithmetic computations.
MODDs [29] were presented as a canonical DAG represen-
tation for Galois field polynomials overF2k . However, they
also suffer from the size explosion problem. As every node
in the MODD may have up tok children, the composition
and reduction operations are rather complicated for MODDs
and make verification over large fields infeasible. The work
of [30] presents a DAG representation for synthesis and
verification of multi-output polynomials over finite integer

1For example, the golden model may be a Mastrovito multiplier, and the
implementation may be a Montgomery multiplier. This is alsothe case when
the “abstraction-gap” between the specification and the implementation is very
large –e.g.a polynomial specification versus a circuit implementation.

ringsZ2k , k > 1. Since their canonical reduction rules employ
the theory of polynomial functions over finite integer rings
[31], this approach is not directly applicable over finite fields
F2k . Similarly, the work of [32] is also only applicable for
verification of integer-modulo-arithmeticover Z2k at word-
level/RTL, and not over Galois field circuits.

This verification problem is also very hard for SAT solvers,
due to the large circuit size, and the presence of AND-XOR
structures. Contemporary Satisfiability Modulo Theory (SMT)
solvers employ a mixture of theories for reasoning – however,
none of them employ polynomial equation solving over Galois
fields (which is itself a very hard problem). Therefore, in our
experiments, we have used the quantifier-free bit-vector (QF-
BV) theories of SMT solvers to verify Galois field circuits. As
shown in our experiments,none of BDDs, SAT, SMT solvers,
and ABC can prove design correctness beyond16-bit circuits.

The theorem-proving approach of [33] verifies Galois field
arithmetic algorithms overF2k . The authors devise a decision
procedure based on variable elimination and term re-writing
and demonstrate a correctness proof of a sub-block of a Reed-
Solomon decoder. The employed algebraic simplification rules
can be beneficial only when the sentences are independent of
the irreducible polynomial. Otherwise, their approach requires
decision overF2 which is infeasible for large circuits. The
work of [34] solves similar problems as those of [33]. They
make use of OKFDDs [27] to canonically represent the circuit
constraints. Moreover, instead of verifying circuits overF2k

directly, [34] verifies the circuits over its equivalent composite
field GF ((2m)n), where a non-prime k = m · n. Their
approach has no benefit ifk is prime – say, whenk = 163
for elliptic curves. Also, the size-explosion of FDDs limits
their approach to 16-bit (F216 ) circuits, as shown in their
experiments.

The paper [35] describes the high-level modeling language
Cryptol, and its verification tool-set, that is designed for
verification of cryptographic algorithms. A Cryptol description
can be further synthesized into hardware. For verification,the
decision procedures employed in their tools make use of AIG-
based reductions (SAT-sweeping) and SAT/SMT-solving. For
applications where AIGs/SAT/SMT-techniques fail,Cryptol
tool-set has no benefit.

Symbolic computer algebra techniques have been used for
verification of integer arithmetic circuits [36] [37] and also
for decision procedures over Galois fields [38].In [36], the
authors verify integer arithmetic circuits hierarchically using
polynomial algebra techniques. Their approach analyzes sub-
circuit components and models the implementation by way
of integer equations. The functionality of the sub-circuits is
verified using Gröbner basis computations. However, the paper
does not address any improvements to the core Gröbner basis
computational engine.

The paper [37] addresses verification of finite precision
integer datapath circuits using the concepts of Gröbner bases
over the ringZ2k . They model the circuit constraints by
way of arithmetic-bit-level (ABL) polynomials ({G}), and
formulate the verification test as an equivalent variety subset
problem. To solve this, first they derive a term order that
already makes{G} a Gröbner basis. Then they compute a
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normal form f of the specificationg w.r.t. {G}. They test
if f is a vanishing polynomial overZ2k [32]; if so, circuit
correctness is established. In [39], the authors further show that
the vanishing polynomial test can be omitted by formulating
the problem directly overQ := Z2k [X ]/〈x2 − x : x ∈ X〉.

The work of [38] shows how to use Gröbner bases tech-
niques to count the zeros of a polynomial ideal over Galois
fields. The authors then follow-up with an approach for
quantifier eliminationover Galois fields [40]. These papers
address the mathematical problem formulation (theory) andal-
gorithmic solutions; efficiency/improvements in Gröbnerbasis
computation and application to design verification is beyond
the scope of these works.

An important set of recent papers [41] [42] [43] on the
BLUEVERI tool from IBM needs special mention: The
authors present a methodology and toolset to verify Galois
field circuits for error correcting codes against an algorithmic
spec. The implementation consists of a set of (pre-designed
and verified) circuit blocks that are interconnected to formthe
error correcting system. The spec is given as a set of design
constraints on a “check file”. Their objective is to prove the
equivalence of the implementation against this check file. They
model the verification instance as a data-flow graph, represent
each sub-circuit block with its known (word-level) polynomial
overFq, and formulate the verification problem using theWeak
Nullstellensatz— i.e. to check if thevariety of the algebraic
system “spec 6= implementation” is empty — for which they
use a Gröbner basis engine. Their main contributions are:
i) a “term re-writing” to specify the algorithmic description
using polynomials (ideal); and ii) integrating an AIG-style
[20] Boolean solver with their word-level decision procedure,
with lazy signal computations and Boolean reasoning. For
final verification, the polynomial system is then given to a
computer algebra tool (SINGULAR [10]) to computea reduced
Gröbner basis. However, improvements to the core Gröbner
basis computational engine are not the subject of their work.

In contrast,our investigations go beyond theBLUEVERI

work by addressing further improvements to the Gröbner basis
computation.

In our own previous work [44] [45] and [46], we have
verified implementations of Galois fieldmultiplier circuits –
particularly, Mastrovito and Montgomery implementations. In
[44] [45], we use theWeak Nullstellensatzformulation to prove
that the “specification6= implementation” (miter) is infeasible,
and use a Gröbner basis engine as the decision procedure. We
heuristicallyderive a variable order to represent the monomial
terms. Using our heuristic, we are able to verify only up to
96-bit circuits [45]. In the presence of bugs, our heuristicis
inefficient in that the Gröbner basis computation runs into
memory explosion beyond 16-bit circuits.

This paper is an extended version of our conference paper
[46]. In this work, we draw inspirations from [38] [37]
[39] [11], and build upon their results to develop automatic
verification techniques for Galois field arithmetic circuits.

IV. COMPUTER ALGEBRA PRELIMINARIES

We review basic commutative algebra concepts related to
ideals, varieties, Nullstellensatz and Gröbner bases, and their

application over Galois fields; the material is referred from [7]
[8] and [38].

Let F be a field and letF[x1, . . . , xd] be the polynomial
ring over F with indeterminatesx1, . . . , xd. A monomial in
variablesx1, · · · , xd is a product of the formX = xα1

1 ·
xα2

2 · · ·xαd

d , where αi ≥ 0, i ∈ {1, . . . , d}. A polynomial
f ∈ F[x1, . . . , xd], f 6= 0, is written as a finite sum of terms
f = c1X1+c2X2+ · · ·+ctXt. Herec1, . . . , ct are coefficients
andX1, . . . , Xt are monomials. To systematically manipulate
the polynomials, amonomial ordering> is imposed such
that X1 > X2 > · · · > Xt. It is a well-ordering on
the set of all monomials such that multiplication with a
monomial preserves the ordering2. Subject to such an ordering,
lt(f) = c1X1, lm(f) = X1, lc(f) = c1, are theleading term,
leading monomialand leading coefficientof f , respectively.
Similarly, tail(f ) = c2X2 + · · ·+ ctXt.

Polynomial reduction: Let f, g be polynomials. If a non-
zero termcX of f is divisible by the leading term ofg, then
we say thatf reducesto r modulog, denotedf

g−→ r, where
r = f − cX

lt(g) · g. Similarly, f can be reduced (divided) w.r.t. a
set of polynomialsF = {f1, . . . , fs} to obtain a remainderr,

denotedf
F−→+ r, such that no term inr is divisible by the

leading term of any polynomial inF .
Ideals and varieties:An ideal J generated by polynomials

f1, . . . , fs ∈ F[x1, . . . , xd] is:

J = 〈f1, . . . , fs〉 = {
s

∑

i=1

hi · fi : hi ∈ F[x1, . . . , xd]}.

The polynomialsf1, . . . , fs form the basis or generators ofJ .
Let a = (a1, . . . , ad) ∈ Fd be a point, andf ∈

F[x1, . . . , xd] be a polynomial. We say thatf vanisheson
a if f(a) = 0.

For any idealJ = 〈f1, . . . , fs〉 ⊆ F[x1, . . . , xd], the affine
variety of J overF is:

V (J) = {a ∈ Fd : ∀f ∈ J, f(a) = 0}.

In other words, the variety corresponds to the set of all
solutions tof1 = . . . fs = 0.

Definition 4.1: For any subsetV of Fd, the ideal of poly-
nomials that vanish onV , called thevanishing ideal ofV , is
defined as:

I(V ) = IF(V ) = {f ∈ F[x1, . . . , xd] : ∀a ∈ V, f(a) = 0}.

Proposition 4.1: If a polynomialf vanishes on a varietyV ,
thenf ∈ I(V ).

A. Radicals and Nullstellensatz

Definition 4.2: Let J ⊂ F[x1, . . . , xd] be an ideal. The
radical of J is defined as

√
J = {f ∈ F[x1, . . . , xd] : ∃m ∈

N, fm ∈ J}.
When J =

√
J , then J is said to be aradical ideal.

Moreover,I(V ) is a radical ideal. The Strong Nullstellensatz
establishes the correspondence between radical ideals and
varieties.

2Lexicographic (lex), degree-lexicographic (deglex), degree-reverse-
lexicographic (degrevlex) are examples of monomial orderings.
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Theorem 4.1: Strong Nullstellensatz[8]: Let F be an alge-
braically closed field, and letJ be an ideal inF[x1, . . . , xd].
Then we haveI(V (J)) =

√
J .

We are concerned with Galois fields, which are not alge-
braically closed. When a fieldF is not algebraically closed,
then the above result can be suitably applied over the algebraic
closure ofF.

Corollary 4.1: Let F be an arbitrary field andJ be an ideal
in F[x1, . . . , xd]. Let F denote the algebraic closure ofF, and
let V

F
(J) denote the variety ofJ overF. ThenIF(VF

(J)) =√
J .

B. Strong Nullstellensatz over Galois Fields

Nullstellensatz admits a special form over Galois fields. We
state the following results of Nullstellensatz over Galoisfields,
proofs of which can be found in [38].

Proposition 4.2:Let Fq be a Galois field ofq elements. For
all elementsA ∈ Fq, we haveAq − A = 0. Therefore, for a
polynomialxq − x, we haveV (xq − x) = Fq.

The polynomials of the form{xq−x} are called thevanish-
ing polynomialsof the field. LetF0 = {xq

1−x1, . . . , x
q
d−xd},

then J0 = 〈xq
1 − x1, . . . , x

q
d − xd〉 is the ideal of all

vanishing polynomials inFq[x1, . . . , xd]. Below, we use the
concept of sum of ideals: given idealsI1 = 〈f1, . . . , fs〉 and
I2 = 〈g1, . . . , gt〉, then idealI1+I2 = 〈f1, . . . , fs, g1, . . . , gt〉.

Lemma 4.1:From [38]: For any idealJ ⊆ Fq[x1, . . . , xd],
J + J0 = J + 〈xq

1 − x1, . . . , xq
d − xd〉 is radical. In other

words,
√
J + J0 = J + J0.

The above is a very powerful result, as it implies that any
ideal J ∈ Fq[x1, . . . , xd] can be easily turned into a radical
ideal by addingJ0, without changing the zero-setV (J) over
Fq. And, based on the above, the following result can be easily
deduced:

Theorem 4.2: Strong Nullstellensatz overFq: For any Ga-
lois field Fq, let J ⊆ Fq[x1, . . . , xd] be an ideal, and let
J0 = 〈xq

1 − x1, . . . , x
q
d − xd〉 be the ideal of all vanishing

polynomials. LetVFq
(J) denote the variety ofJ overFq. Then,

I(VFq
(J)) = J + J0 = J + 〈xq

1 − x1, . . . , xq
d − xd〉.

Proof: Let Fq denote the algebraic closure ofFq. There-
fore, Fq ⊃ Fq, and we have:

VFq
(J) = V

Fq
(J) ∩ Fd

q

= V
Fq
(J) ∩ VFq

(J0)

= V
Fq
(J) ∩ V

Fq
(J0)

= V
Fq
(J + J0)

Therefore,I(VFq
(J)) = I(V

Fq
(J + J0)) =

√
J + J0, from

Corollary 4.1. Moreover, Lemma 4.1 says that(J + J0) is
radical, so

√
J + J0 = J + J0. Consequently, we have that

I(VFq
(J)) = J + J0.

C. Gröbner Basis of Ideals

An ideal J may have many different generators: it is
possible to have sets of polynomialsF = {f1, . . . , fs} and
G = {g1, . . . , gt} such thatJ = 〈f1, . . . , fs〉 = 〈g1, . . . , gt〉
andV (J) = V (f1, . . . , fs) = V (g1, . . . , gt). Some generating

sets are “better” than others, i.e. they are a better representation
of the ideal. AGröbner basisis one such representation which
allows to solve many polynomial decision questions.

Definition 4.3: [Gröbner Basis] [From [8]] For a mono-
mial ordering >, a set of non-zero polynomialsG =
{g1, g2, · · · , gt} contained in an idealJ , is called a Gröbner
basis forJ ⇐⇒ ∀f ∈ J , f 6= 0, there existsi ∈ {1, · · · , t}
such thatlm(gi) divides lm(f); i.e., G = GB(J) ⇔ ∀f ∈
J : f 6= 0, ∃gi ∈ G : lm(gi) | lm(f).

In our context, Gröbner bases theory provides adecision
procedure to test for membership in an ideal. As a conse-
quence of Definition 4.3, the setG is a Gröbner basis of ideal
J , if and only if for all f ∈ J , dividing f by polynomials of
G gives 0 remainder:G = GB(J) ⇐⇒ ∀f ∈ J, f

G−→+ 0.
Buchberger’s algorithm [9], shown in Algorithm 2, com-

putes a Gröbner basis over a field. Given polynomialsF =
{f1, . . . , fs}, the algorithm computes the Gröbner basisG =
{g1, . . . , gt}. In the algorithm,

Spoly(f, g) =
L

lt(f)
· f − L

lt(g)
· g

whereL = LCM(lm(f), lm(g)), wherelm(f) is the leading
monomial off , and lt(f) is the leading term off .

ALGORITHM 2: Buchberger’s Algorithm

Input : F = {f1, . . . , fs}
Output : G = {g1, . . . , gt}
G := F ;
repeat

G′ := G;
for each pair{f, g}, f 6= g in G′ do

Spoly(f, g)
G′

−→+ r ;
if r 6= 0 then

G := G ∪ {r} ;
end

end
until G = G′;

We now describe our verification problem formulation using
Strong Nullstellensatz overF2k , and its solution using Gröbner
bases and Buchberger’s algorithm.

V. V ERIFICATION PROBLEM FORMULATION

We are given a Galois fieldFq, with q = 2k, k > 1, along
with the irreducible polynomialP (x). Let α be the root of
P (x), i.e. P (α) = 0. The specification is given asZ =
F(A1, A2, . . . , An), where eachAi represents a word-level
input, Z is the word-level output;Z,A1, A2, . . . , An ∈ Fq,
andF is the polynomial function describing the input-output
relation.This specification can be modeled as a multivariate
polynomial f : Z − F(A1, A2, . . . , An); or equivalently as
f : Z + F(A1, A2, . . . , An), as−1 = +1 overF2k .

Also given is a gate-level combinational circuitC. The bit-
level primary inputs of the circuit are{aj0, aj1, . . . , ajk−1}, for
j = 1, . . . , n, and the primary outputs are{z0, . . . , zk−1}.
Hereaji , zi ∈ F2, i = 0, . . . , k − 1, j = 1, . . . , n.
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The word-level and bit-level correspondences are the fol-
lowing:

A1 = a10 + a11α+ · · ·+ a1k−1α
k−1

...

An = an0 + an1α+ · · ·+ ank−1α
k−1

Z = z0 + z1α+ z2α
2 + · · ·+ zk−1α

k−1

(1)

Our goal is to formally prove that∀Aj ∈ Fq, the
circuit correctly implements the specificationf : Z +
F(A1, A2, . . . , An) = 0 over Fq. Otherwise, we have to
produce a counter-example that excites the bug in the design.

Problem Modeling: We analyze the given circuitC and
model all the Boolean gate-level operators as polynomials over
F2 (⊂ F2k), using the following one-to-one mapping over
B → F2:

¬a → a+ 1 (mod 2)

a ∨ b → a+ b+ a · b (mod 2)

a ∧ b → a · b (mod 2)

a⊕ b → a+ b (mod 2)

(2)

where a, b ∈ F2 = {0, 1}. To this set of Boolean polyno-
mials extracted from the circuit, we append the polynomials
corresponding to Eqns. (1) that relate the bit-level and word-
level variables. We model these circuit constraints as the set of
polynomialsF = {f1, . . . , fs} over the ringFq[x1, . . . , xd],
as f1, . . . , fs have coefficients inFq. We denote the ideal
generated by these polynomials asJ = 〈f1, . . . , fs〉. Similarly,
the specification polynomialf ∈ Fq[x1, . . . , xd].

Example 5.1: As an example, we describe the problem
modeling for a 2-bit multiplier overF22 . The multiplier
specification isZ = A · B, where Z,A,B ∈ F22 , and
P (x) = x2+x+1, s.t.P (α) = 0. The specification is modeled
as a polynomialf : Z+A ·B. The circuitC is given in Fig. 2.
Variablesa0, a1, b0, b1 are primary inputs,z0, z1 are primary
outputs, andc0, c1, c2, c3, r0 are intermediate variables. The
gate⊗ corresponds to AND-gate, i.e. bit-level multiplication
modulo 2. The gate⊕ corresponds to XOR-gate, i.e. addition
modulo 2.

a�

a�

b �

b �

c
�

c
�

c
�

c
�

r �

�

�

Fig. 2: A 2-bit multiplier overF(22).

Every gate in the circuit is modeled as a polynomial in
F2. For example, the AND gatec0 = a0 ∧ b0 is modeled as
f1 : c0+a0 ·b0. Similarly,f2 : c1+a0 ·b1, f3 : c2+a1 ·b0, f4 :
c3+a1 ·b1, f5 : r0+c1+c2, f6 : z0+c0+c3, f7 : z1+r0+c3.

To this set, we addf8 : A+a0+a1α, f9 : B+b0+b1α, f10 :
Z + z0 + z1α. Then idealJ = 〈f1, . . . , f10〉.

To prove that the specification (f ) matches the imple-
mentation (J) at all points in the design space, we need
to checkwhether or notf vanishes on the varietyVFq

(J).
This is because for all pointp ∈ VFq

(J), if f(p) =
0, then Z + F(A1, A2, . . . , An) = 0 implies that Z =
F(A1, A2, . . . , An). On the other hand, iff(p) 6= 0 for some
point p, thenp corresponds to the bug in the design. Now if
f vanishes onVFq

(J), we know from Proposition 4.1 thatf
should be a member ofI(VFq

(J)). The Strong Nullstellensatz
over Fq (Theorem 4.2) tells us thatI(VFq

(J)) = J + J0 =
〈f1, . . . , fs, xq

1 − x1, . . . , x
q
d − xd〉. Therefore,we need to

test whether or notf is a member of the idealJ + J0.
If f ∈ (J + J0), correctness of the circuit is established.
Otherwise, there is a bug in the design. To test iff ∈ (J+J0),
it is required to compute a Gröbner basis of(J+J0), for which
we can use Buchberger’s algorithm.

We now have a complete approach to solve our problem: i)
derive the set of polynomialsF = {f1, . . . , fs} corresponding
to the circuit instance; ii) append vanishing polynomials for
all variables in our systemF0 = {xq

1 − x1, . . . , x
q
d − xd}; iii)

compute a Gröbner basisG of {F, F0} using Buchberger’s
algorithm; iv) reduce the specification polynomialf w.r.t. G.
If f

G−→+ 0, then the circuit is correct; otherwise there is
definitely a bug in the design.

Gröbner basis Complexity: For our specific problem of
computing a Gröbner basis forJ + J0 overFq, the following
result is known [38]:

Theorem 5.1:Let J = 〈f1, . . . , fs, xq
1−x1, . . . , x

q
d−xd〉 ⊂

Fq[x1, . . . , xd] be an ideal. The time and space complexity of
Buchberger’s algorithm to compute a Gröbner basis ofJ is
bounded byqO(d) assuming that the length of inputf1, . . . , fs
is dominated byqO(d).

In our caseq = 2k, and whenk andd (all the variables in
our system) are large, this complexity may make verification
infeasible. In the next section, we show that a term order can
be derived, by analyzing the topology of the given circuit, that
makes{f1, . . . , fs, xq

1−x1, . . . , x
q
d−xd} itself a Gröbner basis

— obviating the need to apply Buchberger’s algorithm.

VI. OBVIATING THE NEED FOR BUCHBERGER’ S

ALGORITHM

To improve Buchberger’s algorithm, variations of the chain
and product criteria are applied.

Lemma 6.1:[Product Criterion [47]] Let f, g ∈
F[x1, · · · , xd] be polynomials. If the equality
lm(f) · lm(g) = LCM(lm(f), lm(g)) holds, then

Spoly(f, g)
G−→+ 0.

The above result states that when the leading monomials
of f, g are relatively prime, thenSpoly(f, g) always reduces
to 0 moduloG. Thus Spoly(f, g) need not be considered
in Buchberger’s algorithm. If we could analyze the given
circuit and derive a term order such that every polynomial
pair (f, g) in the generating set has relatively prime leading
monomials, thenSpoly(f, g)

G−→+ 0. Consequently, the
set of polynomials{f1, . . . , fs} extracted from the circuit
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(corresponding idealJ) and represented using such a term
order would itself constitute a Gröbner basis ofJ . In [37],
the authors derive exactly such a term order, and the similar
concept can be applied in our case.

Note that: i) since the circuit constraints{f1, . . . , fs} are
modeled as polynomials inF2, they contain only multi-linear
monomial terms; ii) the output of a gate is uniquely computed,
and it always appears as a “single variable term” in the
polynomials; iii) the circuit is acyclic. Letxi be the output
variable of any gateHi in the circuit, and letxp1, . . . , xpj

denote variables that are the inputs to the gateHi. If we can
represent the polynomialsfi such thatxi > every monomial
in the variablesxp1, . . . , xpj , then all (fi, fj), i 6= j have
relatively prime leading monomials and{f1, . . . , fs} is a
Gröbner basis (this concept was described in Proposition 2
[37], which we rephrase below).

Proposition 6.1:Let C be any arbitrary combinational cir-
cuit. Let {x1, . . . , xd} denote the set of all variables (signals)
in the circuit, i.e. the primary input, intermediate and primary
output variables. Perform areverse topological traversalof the
circuit and order the variables such thatxi > xj if xi appears
earlier in the reverse topological order. Impose a lex term order
to represent each gate as a polynomialfi, s.t.fi = xi+tail(fi).
Then the set of all polynomials{f1, . . . , fs} forms a Gröbner
basis, aslt(fi) and lt(fj) for i 6= j are relatively prime.

Example 6.1: Consider, again, the 2-bit multiplier overF22

shown in Fig. 2. Variablesa0, a1, b0, b1 are primary inputs,
z0, z1 are primary outputs, andc0, c1, c2, c3, r0 are interme-
diate variables.

Perform a “reverse topological traversal” of the circuit.
Starting from the primary outputs, traverse the circuit to the
primary inputs, and order the gates according to the their
(reverse) topological levels. The primary outputsz0, z1 are
both at level-0, variablesr0, c0, c3 are at level-1, c1, c2 are
at level-2, and the primary inputsa0, a1, b0, b1 are at level-
3. We order the variables{z0 > z1} > {r0 > c0 > c3} >
{c1 > c2} > {a0 > a1 > b0 > b1}. Using this variable
order, we impose a lex term order on the monomials. Then all
the circuit polynomials have relatively prime leading terms,
as shown below:

f1 : c0 + a0 · b0, lm = c0; f2 : c1 + a0 · b1, lm = c1

f3 : c2 + a1 · b0, lm = c2; f4 : c3 + a1 · b1, lm = c3

f5 : r0 + c1 + c2, lm = r0; f6 : z0 + c0 + c3, lm = z0

f7 : z1 + r0 + c3, lm = z1

In our formulation, we also have word-level variables
Z,A1 . . . , An ∈ Fq. They can also be accommodated in this
term order by imposing{Z} > {A1 > · · · > An} > {z0 >
z1} > {r0 > c0 > c3} > {c1 > c2} > {a0 > a1 > b0 > b1}.

To perform the reverse topological traversal, the circuit is
considered as a graph, where the gates are represented by
nodes and the wires represented by edges. Topological sort
of the graph is then performed from the primary outputs to
the primary inputs to derive the variable order.

As a result of Proposition 6.1, the set of polynomials
F = {f1, . . . , fs} is a Gröbner basis forJ . Note thatF0 =
{xq

1 − x1, . . . , x
q
d − xd} is a Gröbner basis forJ0. However,

we have to compute a Gröbner basis ofJ + J0 = 〈F, F0〉 =
〈f1, . . . , fs, xq

1 − x1, . . . , x
q
d − xd〉. Not all polynomial pairs

in {f1, . . . , fs, xq
1 − x1, . . . , x

q
d − xd} have relatively prime

leading monomials.
Consider a polynomialfi ∈ F . Using our term order,

we havefi = xi + tail(fi); i.e. the leading monomial of
fi is a single variable termxi, corresponding to the output
of a gate. Clearly, the pair(xi + tail(fi), xq

i − xi), fi ∈
F, xq

i − xi ∈ F0 do not have relatively prime leading
monomials. In fact, the pairs(xi + tail(fi), x

q
i − xi) are the

only ones to be considered for Gröbner basis computation,
as all other pairs have relatively prime leading terms. This
motivated us to investigate further the result of the reduction:

Spoly(xi + tail(fi), x
q
i − xi)

F,F0−→+ r. We state and prove the
following:

Theorem 6.1:Let q = 2k, and letFq[x1, . . . , xd] be a ring
on which we have a monomial order>. Let I be a subset of
{1, . . . , d}. For all i ∈ I, let fi = xi+Pi (wherePi = tail(fi))
such that all indeterminatesxj that appear inPi satisfyxi >
xj . Then the setG = {fi : i ∈ I} ∪ {xq

1 − x1, . . . , x
q
d − xd}

is a Gröbner basis.
Proof: According to Buchberger’s Theorem (Theorem

1.7.4 in [8]), we need to show that for allf, g ∈ G,
Spoly(f, g)

G→+ 0. Let F = {f1, . . . , fs}, F0 = {xq
1 −

x1, . . . , x
q
d − xd}, and G = F ∪ F0. Lemma 6.1 shows

that if f, g ∈ G, have relatively prime leading terms, then
Spoly(f, g)

G→+ 0. So the only case where Lemma 6.1 does
not apply is whenf = xi + Pi and g = xq

i − xi. Then
Spoly(f, g) = xq−1

i f − g = Pix
q−1
i + xi. In what follows,

it is important to note that the indeterminates appearing inPi

are all less thanxi.
First of all,Pix

q−1
i +xi−Pix

q−2
i (xi+Pi) = P 2

i x
q−2
i +xi,

which shows thatPix
q−1
i + xi

xi+Pi−→ P 2
i x

q−2
i + xi.

Next, P 2
i x

q−2
i + xi − P 2

i x
q−3
i (xi + Pi) = P 3

i x
q−3
i + xi.

Continuing in this fashion, we getP q−1
i xi + xi −P q−1

i (xi +
Pi) = xi + P q

i , and finallyxi + P q
i − (xi + Pi) = P q

i − Pi.
Hence,

Pix
q−1
i + xi

xi+Pi−→ P 2
i x

q−2
i + xi

xi+Pi−→ P 3
i x

q−3
i + xi

xi+Pi−→ · · ·

· · · xi+Pi−→ P q
i + xi

xi+Pi−→ P q
i − Pi.

In other words,Spoly(xi + tail(fi), x
q
i − xi)

F→+ P q
i − Pi.

Over the Galois fieldFq, P q
i − Pi is a vanishing polynomial.

Therefore,P q
i −Pi ∈ I(V (J0)) = 〈xq

1−x1, . . . , x
q
d−xd〉. By

Lemma 6.1,F0 = {xq
1 − x1, . . . , x

q
d − xd} is Gröbner basis.

ThereforeP q
i − Pi

F0→+ 0 which gives thatP q
i − Pi

G→+ 0,

asF0 ⊂ G. In conclusion,∀f, g ∈ G, Spoly(f, g)
G→+ 0 and

henceG is a Gröbner basis.
This Gröbner basisG = F ∪ F0 can be further simplified

to a minimal form.
Definition 6.1: [From [8]] A Gröbner basis G =

{g1, . . . gt} is called minimal if: (i) ∀i, lc(gi) = 1; and (ii)
∀i 6= j, lm(gi) does not dividelm(gj).

In other words, for a Gröbner basis to be minimal, two
conditions have to be satisfied: i) all polynomials in the basis
are monic, i.e their leading coefficient is 1; and ii) the leading
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monomial of any polynomial does not divide the leading
monomial of any other polynomial in the basis.

Lemma 6.2:[From [8]] Let G = {g1, . . . , gt} be a Gröbner
basis of idealJ . If lm(g2) divides lm(g1), then{g2, . . . , gt}
is also a Gröbner basis ofJ .

SupposeG = {g1, . . . , gt} is a Gröbner basis such that
lm(g2) divideslm(g1). If any polynomialf is such thatlm(f)
is divisible bylm(g1), thenlm(f) is also divisible bylm(g2).
Therefore,g1 is a redundant element of the Gröbner basis and
can be eliminated fromG. Moreover, each remaininggi ∈ G
can be made monic by dividinggi by lc(gi). When all such
redundant elements are removed, a minimal Gröbner basis
is obtained [8]. Based on Definition 6.1, we can generate a
minimal Gröbner basisG of J + J0 directly by construction,
as given below.

Corollary 6.1: Given the polynomial ring
Fq[x1, . . . , xd], q = 2k, on which we have the monomial order
> specified in Proposition 6.1. Given the set of polynomials
F = {f1, . . . , fs} ∈ Fq[x1, . . . , xd], representing the circuit
C. LetXPI ⊂ {x1, . . . , xd} denote the set of all primary input
variables of the circuit. LetFPI

0 = {x2
i − xi : xi ∈ XPI},

be the set of (bit-level) vanishing polynomials
corresponding to all primary input variables. Then the
setG = F ∪ FPI

0 = {f1, . . . , fs} ∪ {x2
i − xi : xi ∈ XPI} is

a minimal Gröbner basis.
Proof: We have already shown in Theorem 6.1 thatG =

F ∪ F0 is a Gröbner basis. Moreover, in our problem, all
polynomials inG are monic. Furthermore, our ideal basisG
consists of two sets of polynomials: i) polynomials of the form
fi = xi + tail(fi), fi ∈ F ; and ii) the vanishing polynomials
x2k

i − xi ∈ F0 for i = 1, . . . , d. Our monomial order ensures
that in fi = xi + tail(fi), xi corresponds to either a primary
output variable or an intermediate variable of the circuit.Bit-
level primary inputs of the circuit (xi ∈ XPI ) never occur as
leading terms offi because a primary input is not an output of
any gate in the circuit. Therefore,∀xi ∈ ({x1, . . . , xd}−XPI),
there always existsfi with lm(fi) = xi which will divide the
leading monomial of the vanishing polynomialx2k

i − xi. In
such cases,x2k

i − xi, xi /∈ XPI can be removed from the
basis, due to Lemma 6.2. By eliminating all such vanishing
polynomials corresponding to the non-primary-input variables,
we will obtainG = {f1, . . . , fs} ∪ {x2k

i − xi : xi ∈ XPI}.
Finally, since bit-level variablexi ∈ F2 ⊂ F2k , x2

i −xi = 0,
we obtainG = {f1, . . . , fs} ∪ {x2

i − xi : xi ∈ XPI} as the
minimal Gröbner basis.

While we can obtain a minimal Gröbner basisG directly
by construction, unfortunately, wecannot obtain a reduced
Gröbner basis without actually performing the reduction.This
is because in a reduced Gröbner basis, tail(fi) is also reduced
w.r.t. lt(fj), for all i 6= j. However, a reduced Gröbner basis
is not necessary for ideal membership testing.

A. Our Overall Approach

The verification problem is setup inF2k [x1, . . . , xd], on
which we impose the monomial order> as derived above. The
set of polynomialsF = {f1, . . . , fs} is derived/extracted from

the circuit. The setFPI
0 = {x2

i −xi : xi ∈ XPI} is generated
as the set of all bit-level vanishing polynomials corresponding
to the primary inputs. Then the setG = F ∪ FPI

0 forms a
minimal Gröbner basis of the idealJ+J0 = 〈f1, . . . , fs, x2k

1 −
x1, . . . , x

2k

d − xd〉. We reduce the specification polynomialf

w.r.t. G: f
G→+ r. If r = 0, thenf ∈ J + J0 and the circuit

is correct. Otherwise, ifr 6= 0, there is a bug in the design.
Moreover, if r 6= 0, then the monomial order ensures that
r contains only the primary input variables. To show this,
assume thatr 6= 0 and r contains either an intermediate
or a primary output variablexj . Since there always exists
a polynomialfj in G with lm(fj) = xj , r can be further
reduced byfj. Continuing in this fashion, all the terms with
non-primary-input (intermediate or primary output) variables
can be eliminated, andr contains only primary inputs. Finally,
in the presence of a bug, any assignment to the (primary-input)
variables that makesr 6= 0, provides a counter-example for
debugging. A SAT-solver can find such an assignment in no
time asr is simplified by Gröbner basis reduction. Our results
therefore obviate the need tocomputea Gröbner basis using
Buchberger’s algorithm. The setG is already a Gröbner basis,
and verification can be performed by the reduction:f

G→+ r.

VII. I MPROVING POLYNOMIAL DIVISION USING

F4-STYLE REDUCTION

The most intensive computational step in our approach is

that of polynomial divisionf
F,FPI

0−→ + r. When the circuit
C is very large, the polynomial set{F, FPI

0 } also becomes
extremely large. This division procedure then becomes the
bottleneck in verifying the equivalence. In principle, this
reduction can be performed using contemporary computer-
algebra systems —e.g., the SINGULAR [10] tool, which
is widely used within the verification community [37] [39]
[46]. In our work, we have also performed experiments with
SINGULAR. However, as in any “general-purpose” computer
algebra tool, the data-structures are not specifically optimized
for circuit verification problems. Moreover, SINGULAR also
limits the number of variables (d) that it can accommodate
in the system tod < 32767; this limits its application to
large circuits. Therefore, to further improve our approach, we
exploit the relatively recent concept ofF4-style polynomial
reduction [11] — which implements polynomial division using
row-reductions on a matrix — to develop a custom verification
tool to perform this Gröbner basis reduction efficiently.
Faugère’s F4 approach [11] presents a new algorithm

to compute a Gröbner basis. It uses the same mathemati-
cal principles as Buchberger’s algorithm. However, instead
of computing and reducing oneS-polynomial at a time,
it computes manyS-polynomials in one step and reduces
them simultaneously using sparse linear algebra on a matrix
(triangulation). In our formulation, since we already havea
Gröbner basis, no S-polynomials are computed. We only need
to perform the subsequent Gröbner basis reduction, for which
theF4 technique can be very efficient. We now show how our

reduction problemf
F,FPI

0−→ + r can be represented and solved
on a matrix. First, let us consider the following example that
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demonstrates the main concepts behind the reduction approach
of F4.

Example 7.1: Consider the lex term order withx > y > z
on the ring Q[x, y, z]. Given F = {f1 = 2x2 + y, f2 =
3xy2 − xy, f3 = 4y3 − 1}, consider one step of Buchberger’s

algorithm: S(f1, f2)
f1,f2,f3−−−−−→+ r. We have,Spoly(f1, f2) =

1
3x

2y + 1
2y

3 = f4. The reductionSpoly(f1, f2)
f1,f2,f3−→ +

(− 1
6y

2+ 1
8 ) is done as follows: Sincelt(f1) | lt(f4), f4

f1−→ h
is computed as:

h = f4 −
lt(f4)

lt(f1)
f1 = f4 −

1

6
yf1 =

1

2
y3 − 1

6
y2;

Now lt(f2) does not divide any term inh, but lt(f3) | lt(h),
so h

f3−→ r:

r = h− lt(h)

lt(f3)
f3 =

1

2
y3 − 1

6
y2 − 1

8
f3 = −1

6
y2 +

1

8

This reduction procedure can also be simulated on a matrix
using Gaussian elimination. The reduction above requires
the computation of16yf1 and 1

8f3. Ignoring the coefficients
1
6 ,

1
8 , we can generate all the monomials required in the

reduction process: i.e. monomials off4, yf1, f3, and setup
the problem of cancellation of terms as Gaussian elimina-
tion on a matrix. Monomials off4, yf1, f3 are, respectively,
{x2y, y3}, {x2y, y2}, {y3, 1}. Let the rows of a matrixM cor-
respond to polynomials[f4, yf1, f3], and columns correspond
to all the monomials (in lex order)

[

x2y, y3, y2, 1
]

. Then the
matrixM shows the representation of these polynomials where
the entryM(i, j) is the coefficient of monomial of columnj
present in the polynomial of rowi.

M =





x2y y3 y2 1

f4
1
3

1
2 0 0

yf1 2 0 1 0
f3 0 4 0 −1





Now, reducingM to a row echelon form using Gaussian
elimination gives:

M =





x2y y3 y2 1

f4
1
3

1
2 0 0

h = f4 − 1
6yf1 0 1

3 − 1
6 0

r = h− 1
8f3 0 0 − 1

6
1
8





The last row(0, 0,− 1
6 ,

1
8 ) accounts for polynomial− 1

6y
2+

1
8y which is equal to the reduction resultr obtained before.

This approach generates all the monomial terms that are
required in the division process, and the coefficients required
for cancellation of terms are accounted for by elementary
row reductions in the subsequent Gaussian elimination. Based
on the above concepts, a matrix can be constructed for our

problem:f
F,FPI

0−→ + r.
Definition 7.1: Let L = [f1, . . . , fm] be a list ofm poly-

nomials. LetML be an ordered list of monomials of elements
of L and letn be the number of elements inML. DefineM
as them × n matrix which associates the polynomials ofL
to rows and monomials ofML to columns. Entry in rowi,
columnj is the coefficient of thejth element ofML in fi.

ALGORITHM 3: Generating the Matrix for Polynomial Reduction

Input : f, F = {f1, . . . , fs}, term order>

Output : A matrix M representingf
f1,...,fs−−−−−→+ r

/*L = set of polynomials, rows of M*/;
L:={f} ;
i:=1;
/*ML = the set of monomials, columns of M */;
ML:={ monomials of f} ;
mon:= theith monomial ofML;
while mon /∈ PrimaryInputs do

Identify fk ∈ F satisfying:lm(fk) can dividemon ;
/*add polynomial fk to L as a new row in M

*/;
L := L ∪ mon

lm(fk)
· fk ;

/*Add monomials to ML as new columns in M

*/;
ML:=ML ∪ {monomials of mon

lm(fk)
· fk} ;

i := i+ 1;
mon:= theith monomial ofML;

end
Gaussian Elimination onM ;
return r = last row ofM ;

Algorithm 3 describes our procedure to generate the matrix
M of polynomials corresponding to our verification instance.
The main idea is to setup the rows and columns of the matrix in
a way that polynomial division can be subsequently performed
by applying Gaussian elimination onM . In the algorithm, the
set of polynomialsF = {f1, . . . , fs} correspond to the circuit
constraints. The term ordering derived from the topological
analysis of the circuit is imposed to represent the polynomials.
The specification polynomialf is to be reduced w.r.t.F =
{f1, . . . , fs}. Initially, L = {f} is inserted as the first row of
the matrix andML constitutes the (ordered) list of monomials
of f . Then, in every iterationi, a polynomialfk ∈ F is
identified such thatlm(fk) divides theith monomial (mon)
of ML; this is to enable cancellation of the corresponding
monomial term. The computationL := L ∪ mon

lm(fk)
· fk in the

while-loop, generates the polynomials required for reduction3.
The list ML is updated to include monomials ofmon

lm(fk)
· fk.

Finally, the iteration in the loop terminates when monomial
mon consists solely of primary input variables. This is because
primary inputs are never a leading term of any polynomial;
therefore, no polynomialfk ∈ F exists which can dividemon.
Moreover, due to our term order, oncemon consists of only
primary inputs, all remaining monomials will also contain only
primary input variables. Clearly, no more polynomialsfk need
to be generated inL, and the loop terminates.

Using the setL as rows andML as columns, a matrixM
is constructed and Gaussian elimination is applied to reduce
it to row-echelon form. The last row in the reduced matrix
corresponds to the reduction resultr. Let us describe the
approach using an example.

Example 7.2: Consider the reduction related to verification
of theF22 multiplier circuit of Fig. 2. Given specificationf :

3Recall that the divisionfi
fk

= fi−
lt(fi)
lt(fk)

·fk = fi−
lc(fi)
lc(fk)

·
lm(fi)
lm(fk)

·fk.

In the algorithm, the computationmon
lm(fk)

· fk corresponds tolm(fi)
lm(fk)

· fk
used in the division.
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M =

























Z AB Ba0 Ba1 z0 z1 r0 a0b0 a0b1 a1b0 a1b1

f 1 1 0 0 0 0 0 0 0 0 0
f3 1 0 0 0 1 α 0 0 0 0 0
Bf1 0 1 1 α 0 0 0 0 0 0 0
a0f2 0 0 1 0 0 0 0 1 α 0 0
a1f2 0 0 0 1 0 0 0 0 0 1 α
f5 0 0 0 0 1 0 0 1 0 0 1
f6 0 0 0 0 0 1 1 0 0 0 1
f4 0 0 0 0 0 0 1 0 1 1 0

























(a) Matrix M generated by Algorithm 3

M =

























Z AB Ba0 Ba1 z0 z1 r0 a0b0 a0b1 a1b0 a1b1

row1 = f 1 1 0 0 0 0 0 0 0 0 0
row2 = f3 − row1 0 1 0 0 1 α 0 0 0 0 0
row3 = Bf1 − row2 0 0 1 α 1 α 0 0 0 0 0
row4 = a0f2 − row3 0 0 0 α 1 α 0 1 α 0 0
row5 = αa1f2 − row4 0 0 0 0 1 α 0 1 α α α2

row6 = f5 − row5 0 0 0 0 0 α 0 0 α α α2 + 1
row7 = αf6 − row6 0 0 0 0 0 0 α 0 α α α2 + α+ 1
r = αf4 − row7 0 0 0 0 0 0 0 0 0 0 α2 + α+ 1

























(b) M reduced to row echelon form via Gaussian Elimination

Fig. 3: F4-style Polynomial reduction on a matrix for Example 7.2.

Z +AB, and the circuit polynomialsf1 : A+ a0 + a1α, f2 :
B+ b0 + b1α, f3 : Z + z0 + z1α, f4 : r0 + a0b1 + a1b0, f5 :
z0+a0b0+a1b1, f6 : z1+r0+a1b1. HereP (x) = x2+x+1,

and P (α) = 0. We have to computef
f1,...,f6−−−−−→+ r. Note

that, for simplicity, variablesc0, c1, c2, c3 from Fig. 2 have
been substituted by functions on primary inputs. The imposed
ordering corresponds to the one obtained due to Proposition
6.1: i.e. lex withZ > A > B > z0 > z1 > r0 > a0 > a1 >
b0 > b1. The algorithm constructs the matrix as follows:

1) Initialization: L = {f} = {Z + AB}. ML =
{Z,AB}, i = 1,mon = Z (ith monomial ofML).

2) Iteration 1: Identify a polynomialfk ∈ F s.t.
lm(fk) | mon. Clearly, fk = f3 = Z + z0 + z1α. Then,
L = L∪ mon

lt(fk)
· fk = L∪ f3. Therefore,L = {f, f3} and

ML = {Z,AB, z0, z1}, i = 2 andmon = AB.
3) Iteration 2: fk = f1 = A + a0 + a1α because

lm(f1) | mon. Therefore,L = L∪ AB
A

·f1 = L∪Bf1 =
{f, f3, Bf1} and ML = {Z,AB,Ba0, Ba1, z0, z1}, i =
3,mon = Ba0.

4) Iteration 3: fk = f2 = B + b0 + b1α as lt(f2) | mon.
Therefore,L = L∪ mon

lt(fk)
·fk = L∪ Ba0

B
·f2 = L∪a0f2.

So,L = {f, f3, Bf1, a0f2} and the monomial setML =
{Z,AB,Ba0, Ba1, z0, z1, a0b0, a0b1}, i = 4,mon =
Ba1.

5) Continuing in this fashion. . .
6) Iteration 7:L = {f, f3, Bf1, a0f2, a1f2, f5, f6, f4}, ML =

{Z,AB,Ba0, Ba1, z0, z1, r0, a0b0, a0b1, a1b0, a1b1}, i =
8,mon = a0b0.

7) Iteration 8: Sincemon = a0b0 contains only the primary
inputs, no polynomial inF has a leading term that can
cancelmon, so the loop terminates. The matrixM can
be constructed usingL as rows andML as columns.

Fig. 3a shows the matrixM , and its subsequent Gaussian

elimination is shown in Fig. 3b. The last row of the reduced

matrix corresponds to the reductionf
f1,...,fs−→ + r, wherer =

(α2 + α + 1) · (a1b1). Note that sinceα is the root of the
irreducible polynomialP (x) = x2 + x + 1, we have that
α2 + α + 1 = 0 in F22 , and hencer = 0. In conclusion,

f
f1,...,fs−→ + 0, and the circuit correctly implementsf .

Other implementation issues:Recall that in our problem,
we also have to account for bit-level vanishing polynomialsof
primary input variables:FPI

0 = {x2
i − xi : xi ∈ XPI}. In our

algorithm, if we encounter a bit-level variablexi with degree
n ≥ 2, we replacexn

i = xi. Consequently, no specific entries
for vanishing polynomials in the matrix need to be created.
Moreover, it is also possible to encounter coefficientsαn,
wheren ≥ k in F2k . We precomputeαk, . . . , α2k−2 modulo
the primitive polynomialP (x), store them in a table, and use
these reduced values as coefficients in the matrix for reduction.

As discussed by Faugére in [11], the sparse linear algebra
approach ofF4 simulatesmultivariate polynomial division on
a matrix, as it requires the generation of all monomials and
polynomials utilized in the division process. Therefore, the
complexity of generating the matrix using Algorithm 3, in
the worst case, is the same as that of multivariate polynomial
division. Moreover, the arithmetic complexity of Gaussian
elimination over ann×n matrix is known to beO(n3) [48].

The above approach is implemented as a standalone, custom
verification tool, which inputs a Boolean gate-level circuit
netlistC and a specification polynomialf . The tool performs
a reverse topological traversal of the circuit and derives the
term order to represent polynomials. Then, Algorithm 3 is
invoked to construct the matrixM ; Gaussian elimination is
finally performed onM to obtain the verification result via

reduction:f
F,FPI

0−→ + r. Our tool is written in C++.
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VIII. E XPERIMENTAL RESULTS

Using our setup, we perform formal verification of several
large, custom-designed, Galois field arithmetic circuits in F2k .
These circuits include Mastrovito [15], Montgomery [2] and
Barrett multipliers [3], along with ECC point addition and
doubling circuits [5]. Verification experiments are conducted
with both bug-free and with buggy circuits. To compare our
approach against contemporary verification techniques, we
also experiment with SAT, SMT, ABC [23] solvers, and the
SINGULAR tool [v. 3-1-3] [10]. The circuit designs (C) are
given as gate-level netlists: these are translated to different
formats: CNF, SMTLIB, BLIF/EQN, and polynomials, that are
used by SAT, SMT, BDD/ABC and SINGULAR, respectively.
Our experiments are conducted on a desktop with2.40GHz
Intel CoreTM2 Quad CPU with8GB memory running64-bit
Linux. A few of these circuit benchmarks are made available
to the community through the website[49].

A. Evaluation of SAT/SMT/BDD/ABC based methods

In our problems, while the implementation is given as
a circuit, the specification is given as aword-level poly-
nomial. Bit-level solvers cannot readily verify a circuitC
against apolynomial. Therefore, we convert the polynomial
specification into a gate-level,golden circuit. Then, using
conventional equivalence checking approaches, we create a
miter with the specification and the implementation, and use
SAT/SMT/BDD/ABC methods to check if it is unsatisfiable.

For SAT, BDDs and ABC, we use a, pre-designed
Mastrovito-style bit-level circuit as the golden model, and
verify it against the given circuit. For SMT experiments, the
designs are modeled at bit-vector level using QF-BV theories,
maintaining a BV-level abstraction whenever possible (the
circuits are described at partial-product level using bit-vectors).
Table I shows the results of verification of the Mastrovito
multiplier (golden model) against a Montgomery multiplier
implementation. None of BDDs, SAT, SMT and ABC solvers
can verify the correctness of circuits beyond 16-bits.

TABLE I: Runtime for verification of correct multiplier circuits over
F2k for BDDs, SAT, ABC, SMT-solver based methods. TO = timeout
of 10hrs.

Word size of the operandsk-bits
Solver 8 12 16

MiniSAT 22.55 TO TO

CryptoMiniSAT 7.17 16082.40 TO

PrecoSAT 7.94 TO TO

PicoSAT 14.85 TO TO

Yices 10.48 TO TO

Beaver 6.31 TO TO

CVC TO TO TO

Z3 85.46 TO TO

Boolector 5.03 TO TO

Sonolar 46.73 TO TO

SimplifyingSTP 14.66 TO TO

ABC 242.78 TO TO

BDD 0.10 14.14 1899.69

The approach employed by ABC [23] for combinational
equivalence checking uses an integration of AIG rewriting
via structural hashing, simulation, mitering and SAT, and it
is considered to be state-of-the-art. In [21], the authors have

shown that using such an approach, verification between a
given design and its synthesized counterpart can be efficiently
performed for large circuits, even for industrial designs.The
success of these techniques is attributed to being able to find a
large number of internal node equivalences — which reduces
the overall verification complexity. However, when not many
internal node equivalences can be identified, such techniques
prove to be infeasible.

The multiplier architectures that we experiment with, are
structurally very dissimilar. Indeed, the approach of [23][21]
is unable to identify and merge internal node equivalenciesin
the miter — mostly because they do not exist. We describe
the following experiments to demonstrate this effect. The
specification (golden model) and the implementation circuits
are given as input to the ABC tool, and the total number
of nodesN1 are counted in the miter. Then, we invoke the
equivalence checking engine of ABC. Just before the “fraig-
swept and reduced” miter is given to the SAT solver for
equivalence proof, we count the total number of nodesN2

in the reduced miter. ThenN1−N2

N1

reflects the internal node
equivalencies identified and merged to create the reduced
miter.

In Table II, the internal node equivalencies identified be-
tween Mastrovito and Montgomery multipliers are reported
for various bit-widths. For verification between Montgomery
and Barrett architectures, the data is reported in Table III. It
can be seen from the results that ABC is unable to find many
internal node equivalences. For this reason, such techniques
are inefficient for verification of our applications.

TABLE II: Node equivalences: Mastrovito versus Montgomery
multipliers.N1, N2 are the number of nodes counted before and after
structural hashing, respectively.

Sizek 8 16 32 64 96 128 163
N1 218 832 2226 7412 15576 26422 42273
N2 198 756 2160 7232 15384 26098 41947

Similarity 9.17% 9.13% 2.96% 2.42% 1.23% 1.23% 0.77%

TABLE III: Node equivalences: Barrett versus Montgomery mul-
tipliers. N1, N2 are the number of nodes counted before and after
structural hashing, respectively.

Sizek 8 16 32 64 96 128 163
N1 208 774 2108 7221 15293 26108 41835
N2 196 713 2074 7105 15197 25907 41672

Similarity 4.29% 7.89% 1.62% 1.61% 0.63% 0.77% 0.39%

B. Computing a Gr̈obner basis using Singular

Conceptually, our approach requires the computation of a
Gröbner basis, and then to conduct a polynomial reduction
(ideal membership testing). Without deducing the result of
Theorem 6.1 and Corollary 6.1, if we use SINGULAR to
computea Gröbner basis using the term order of Proposition
6.1, we can only verify the correctness up to48-bit multipliers.
Beyond that, the Gröbner basis engine encounters a memory
explosion. This result is shown in Table IV.
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TABLE IV: Verification of Mastrovito multipliers by computing
Gröbner bases usingSINGULAR. MO=out of 8G memory.

Operand Sizek 16 32 48 64 96
#variables 323 1155 2499 4355 9603

#polynomials 291 1091 2403 4227 9411
#terms 1793 7169 16129 28673 64513

Time (sec) 0.94 93.80 1174.27 MO MO

C. Evaluation of Our Approach

Our approach only requires a polynomial reduction (divi-

sion) for the verification test:f
F,FPI

0−−−−→+ r and to check if
r = 0? Results for verification of Mastrovito multipliers using
only this polynomial reduction are shown in Table V. We
experiment with : i) SINGULAR to perform the reduction using
the REDUCE command, denoted (Singular) in the table; and ii)
our ownF4-style reduction approach. We also experimented
with bug-catching in incorrect designs; the bugs are introduced
by arbitrarily inter-changing the wires (variables)xi with xj ,
for some i 6= j. In such cases, we obtained a non-zeror.
We used a SAT-solver to find a SAT assignment tor 6= 0,
and the counter-example was generated in negligible amount
of time. As shown in Table V, both SINGULAR and ourF4
approach can verify the correctness of up to163-bit Mastrovito
multipliers – corresponding to the practical NIST-specified
Galois fieldF2163 . However, ourF4-style approach is almost
2.5X faster.

TABLE V: Runtime for verifying bug-free and buggy Mastro-
vito multipliers using our approach. TO = timeout of 10hrs.
Time is given in seconds.

Operand sizek: 32 64 96 128 160 163
#variables 1155 4355 9603 16899 26243 27224

#polynomials 1091 4227 9411 16643 25923 26989
#terms 7169 28673 64513 114689 179201 185984

Bug-free (Singular) 1.41 112.13 758.82 3054 9361 16170
Bug-free (F4) 0.83 39.23 243.16 1138 3496 6537

Bugs (Singular) 1.43 114.86 788.65 3061 9384 16368
Bugs (F4) 0.84 40.01 249.84 1152 3530 6592

TABLE VI: Runtime for verifying bug-free and buggy Mont-
gomery multipliers. TO = timeout of 10hrs. Time is given in
seconds.∗ denotesSINGULAR’s capacity exceeded.

Operand sizek 32 48 64 96 128 163
#variables 1194 2280 4395 6562 14122 91246

#polynomials 1130 2184 4267 6370 13866 89917
#terms 10741 18199 40021 55512 134887 484738

Bug-free (Singular) 1.50 11.03 27.70 1802.75 10919 ∗

Bug-free (F4) 0.86 4.47 10.11 700.59 4539 18374

Bugs (Singular) 1.52 11.10 28.18 1812.15 11047 ∗

Bugs (F4) 0.88 4.49 10.12 709.03 4564 17803

The results for the verification of Montgomery multipliers
are shown in Table VI. Montgomery multipliers are signif-
icantly larger than Mastrovito multipliers. If we represent a
polynomial for every gate in the design, then we create too
many variables (d) in the system, exceeding SINGULAR ’ S

capacity (d ≤ 32767). For this reason, we have to clus-
ter/partition the circuit according to a signal’s fanin cone, and
construct a polynomials for each cluster. Moreover, we ensure
that our term ordering constraint is not violated. With such
efforts, we are able to verify Montgomery multipliers up to
128-bits, beyond which we still exceedSINGULAR’ S capacity.
However, ourF4-style approach has no such limitation, and it
is also> 2X faster than theREDUCEoperation of SINGULAR.
Similarly, the results for verification of Barrett multipliers are
shown in Table VII.

TABLE VII: Runtime for verifying bug-free and buggy Barrett
multipliers. TO = timeout of 10hrs. Time is given in seconds.

Operand sizek 32 48 64 96 128 163
#variables 1103 2389 4146 9216 16072 26847

#polynomials 1041 2263 4004 8986 15008 25746
#terms 6757 15228 26452 60824 107454 174571

Bug-free (Singular) 1.31 22.12 103.30 724.14 2865 14048
Bug-free (F4) 0.76 7.95 37.45 239.64 1098 6428

Bugs (Singular) 1.32 23.06 106.02 734.63 2947 14836
Bugs (F4) 0.76 7.97 37.91 241.39 1135 6501

Tables VIII and IX depict the results for verification of
ECC point addition and point doubling circuits. As described
in Section II, these circuit designs are based on the López-
Dahab coordinate system [5]. In the circuits, polynomial
multiplication is implemented using Barrett reduction. Our
approach can verify163-bit ECC operations — previously
unachievable by other verification techniques.

TABLE VIII: Verification of correct ECC point addition cir-
cuits. Run-time given in seconds.

Operand sizek 48 64 96 128 160 163
#variables 3623 6854 13986 28468 30237 31384

#polynomials 3489 6612 12548 26835 28319 30024
#terms 86482 123544 288720 509660 604740 646129

Runtime(Singular) 118 557 3598 15346 47290 81016
Runtime(F4) 42 268 1427 6471 19832 35240

TABLE IX: Verification of correct ECC point doubling cir-
cuits. Run-time given is seconds.

Operand sizek 48 64 96 128 160 163
#variables 3321 6409 12230 26493 29015 30442

#polynomials 3204 6257 10981 24867 26918 28359
#terms 42324 61274 142733 243452 297465 313145

Runtime(Singular) 54 263 1532 8012 21493 36439
Runtime(F4) 26 98 683 3128 7648 15235

IX. CONCLUSIONS

A formal approach to model and verify arithmetic circuits
over Galois fieldsF2k using a computer-algebra based ap-
proach is presented in this paper. Given a specification poly-
nomial f overF2k , and a gate-level combinational circuitC,
we formally prove thatC correctly implementsf ; or disprove
the equivalence. The verification problem is formulated as
membership testing of the specification polynomialf in a
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(radical) idealJ + J0 = 〈f1, . . . , fs, x2k

1 − x1, . . . , x
2k

d − xd〉;
whereJ = 〈f1, . . . , fs〉 corresponds to the ideal generated by
polynomials extracted from the circuit, andJ0 = 〈x2k

i − xi〉
corresponds to the ideal of vanishing polynomials of the field.
The formulation is derived from the application of Strong
Nullstellensatz overF2k . Subsequently, a Gröbner basisG of
the ideal (J +J0) can be computed and the ideal membership
test can be decided via Gröbner basis reduction.

The Gröbner basis (Buchberger’s) algorithm, however, ex-
hibits high computational complexity, which is very suscepti-
ble to the term orderings used to represent and manipulate the
polynomials. We show that a specific term ordering can be
derived by performing a topological analysis of the circuit.
This term ordering renders the set of polynomials itself a
(minimal) Gröbner basis – thus obviating the need to apply
Buchberger’s algorithm. As a consequence of our theoretical
deductions, the verification test reduces to a much simpler case
of polynomial reduction:f

G→+ r, which is performed using
multivariate polynomial division. To perform this reduction
efficiently, we engineer anF4-style approach — where the
reduction is performed via Gaussian elimination on a matrix
representation of the problem.

Our approach is implemented as a custom verification tool,
which is used to conduct experiments for verification of a
variety of custom-designed Galois field arithmetic circuits.
Using our approach, we can verify up to 163-bit Galois
field circuits, whereas contemporary verification approaches
are impractical. As compared to the use of a general-purpose
computer algebra tool (SINGULAR), our F4-style reduction
approach gives approximately 2.5X speed-up.

As future work, we would like to develop computer al-
gebra techniques for verification of sequential circuits that
perform Galois field arithmetic computations. For verification
of such circuits, it is required to analyze the state-space of
the sequential circuit. This will require the study of quantifier
elimination techniques using Gröbner bases over Galois fields,
such as those presented in [40]. We will investigate whether
and how the formulations of [40] can be made scalable using
the techniques presented in this paper.
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