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Abstract—Galois field arithmetic is a critical component in
communication and security-related hardware, requiring dedi-
cated arithmetic circuit architectures for greater perfor mance. In
many Galois field applications, such as cryptography, the da-
path size in the circuits can be very large. Formal verificaton
of such circuits is beyond the capabilities of contemporary
verification techniques. This paper addresses formal verifiation
of combinational arithmetic circuits over Galois fields of the
type F,x using a computer-algebra/algebraic-geometry based
approach.

The verification problem is formulated as membership testiry
of a given specification polynomial in a corresponding ideal
generated by the circuit constraints. Ideal membership tesng
requires the computation of a Grobner basis, which is computa-
tionally very expensive. To overcome this limitation, we aalyze
the circuit topology and derive a term order to represent the
polynomials. Subsequently, using the theory Gibner bases over
F,., we show that this term order renders the set of polynomials
itself a minimal Grobner basis of this ideal. Consequently, the
verification test reduces to a much simpler case of Gibner
basis reduction via polynomial division, significantly entancing
verification efficiency.

To further improve our approach, we exploit the concepts
presented in the F'4 algorithm for Gr 6bner basis, and show that
our verification test can be formulated as Gaussian eliminabn on
a matrix representation of the problem. Finally, we demonstate
the ability of our approach to verify the correctness of, anddetect
bugs in, up to 163-bit circuits in Fy16s — whereas verification
utilizing contemporary techniques proves infeasible.

Keywords — Formal verification, Galois fields, arithmeticrei
cuits, computer algebra, Grobner bases.

|. INTRODUCTION

shown in [6] that arithmetic bugs in crypto-systems can lead
to full leakage of the secret key. Formal verification of Gslo
field arithmetic circuits is therefore imperative.

This paper addresses the problemfarimal verification of
combinational circuits that implement Galois field arithime
computationsWe consider Galois fields of the tyfig. — i.e.
binary Galois extension fields — as these are often the fields
of choice for efficient hardware implementations. Galoiffie
arithmetic circuits are implementations of some specificat
polynomialf. The specificatiorf may not be limited to simple
polynomial computations such as multiplicatiof € A - B)
or squaring { = X?2), but may also specify entire systems,
such as point-addition on elliptic curves o\y.. Given f as
a specification, and an arithmetic circuit as its implemiaoia
the purpose of the verifier is to ensure that the circuit imple
mentation is equivalent to the specification. More formahg
verification problem is stated as follows:

o Given a Galois fieldFy:, i.e. givenk, along with the

irreducible polynomialP(x) used for field construction.

o The specificationis given as a multi-variate polynomial

f with coefficients fromFys.
« Theimplementations given as a gate-levebmbinational
circuit C.

Our objective is to prove that the circuitC' correctly
implements the polynomigl. Otherwise we have to generate a
counter-example that excites the bug in the desldris paper
targets verification of only combinational Galois field ciits.
Verification of sequential Galois field circuits is a diffate
problem, and is beyond the scope of this paper.

With the spread of Internet and mobile devices, transfgrrin
information safely and securely has become more important I
than ever. Galois fields have widespread applications ih suc’ Approach and Contributions
domains, such as in cryptography, error correction codesOur technique utilizes concepts from computer-algebra and
signal processing, etc. Therefore, dedicated hardwaré[y/L algebraic geometry as the core verification framework. This
implementations of Galois field arithmetic abound [1] [2Enables us to formulate the verification problem as an ideal
[3] [4] [5]. In most practical applications, the field sizemembership test using th8trong Nullstellensat{7] over
— and therefore the word-lengths of the operands — c&dlois fields. Subsequentlyrobner basistechniques are
be very large. For example, the U.S. National Institute fé&mployed for this ideal membership test. As Galois field
Standards and Technology (NIST) recommends the use aithmetic circuits perform computations that are alg&bra
Galois fields corresponding to data-path sizesl@f-bits or in nature, computer-algebra based formulations and aecisi
more for elliptic curve cryptography. The high complexityy oprocedures provide an efficient and scalable means to addres
arithmetic operations over such large fields requires itscuthe verification problem. Our approach and contributions ca
to be (semi-) custom designed — increasing the likelihode outlined as follows:
of errors/bugs in the implementation. Such bugs not only . Using polynomial abstractions, the specification and the
cause unintended operations, but they also manifest thessse implementation circuit are modeled as elements of a
as security vulnerabilitiesopen for exploitation. It has been multivariate polynomial ring with coefficients frofiyx .
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o Using the concepts oBtrong Nullstellensatf7] over 1. GALOIS FIELDS & HARDWARE DESIGN
Galois fields, we deduce that the verification problem can
be formulated asnembership testingf the specification
polynomialf in a corresponding (radicalleal generated
by the circuit constraints.

o Ideal membership testing requires the computation
a Grobner basis[8]. Buchberger’s algorithm [9], em-
ployed for Grobner basis computation, exhibits hig
computational complexity — which is critically tied to

We briefly describe the relevant concepts related to Galois
fieldsFyx ; for more details, interested readers may refer to the
textbook [12]. We also review some VLSI architectures used
fqr Galois field computations [1] [2] [13] [3] [5] [14]. In our

0 . . !

experiments, we have verified custom designs based on these
ﬁlrchitectures.

A Galois field is a field with a finite number of elements.

the term orderingused to represent and manipulate thghe numbgr of e'e'”ge”‘ﬁ of the_ field IS a power of a prime
polynomials. To overcome this limitation, we show that '€98F — 1-€.¢ = p", wherep is a prime integer, and >
specialized term ordering can be derived by analyzing e!S @ positive Lnteger. Galois fields are denotedigsand
topology of the given circuit. Subsequently, we prove th S0 GF(q = p®). We are interested in fields whege =

this term ordering renders the set of polynomials itse andk > 1 — € binary G§I0|s extenspn fieldB. L
a Grobner basis —thus obviating the need for Buch-2S they are widely employed in hardware implementations of

cryptography primitives.

berger’s algorithm As a consequence of our deductions; o
the verification (ideal membership) test reduces to a much1© constructs:, we take the polynomial ring[x], where
{0,1}, and an irreducible polynomiaP(z) € Fy[z]

simpler case of Grobner basis reduction via polynomigl2 -
division of degreek, and constructFy. as Fo[z] (mod P(zx)). For

— 3
« We further demonstrate how this Grobner basis can F§2MPIeFs =Fa[z] (mod o +a +1). _
transformed into aminimal Grobner basis directly by The characteristicof any finite field with unity element

construction, simplifying the reduction procedure. is the least integen such thatl + --- 41 (n times)= 0. The
« Our approach only requires a polynomial reduction (dfgharac_tenstlc of fields of the_ty[:iEpk is the prime integep.
visions), enabling any general-purpose computer algebti1C€ in our case = 2, all fields of the typeFy:, for any

tool (e.g. SINGULAR [10]) to be employed for such 91Ven k, have characteristic 2. As a result, all field operations

purposes. Efficient polynomial reduction techniques, su@€ Performed modulo the irreducible polynomiidlr) and the
as those based on the4 [11] algorithm, have been coefficients are reduced moduylo= 2; due to which—1 = +1
proposed in literature. We show thatir term ordering ©VerFae. . .
can be further exploited to engineer an efficiefit- Any elementA € F,. can be represented in polynomial
style polynomial reduction procedure implemented 48 a8SA =ao+aia+ - +ak—1ak__11 wherea; € Fy,i =
Gaussian elimination on a (dense) matrix representatidh - - - - ¥ — 1, andais the root of the irreducible polynomial,
of the problem. |.e._P(a) = 0. The field 5« can therefore be construed as a
. We implement the technique as a standalone, custdirfimensional vector space OVEg.
verification tool for Galois field arithmetic circuits. Ex- AN important property of Galois fields is that for all
periments conducted over various custom-designed ariiementsd € Fy, A7 = A, and henced? — A = 0. Therefore,
metic circuits demonstrate the efficiency and scalabilif€ Polynomialz? — z vanisheson all points inF;. Such
of our methods. We are able to verify the correctne¥@nishing polynomialwill form an important part of our ideal
of, and detect bugs in, up tb63-bit circuits in Fyis, Membership formulation.
whereas contemporary techniques are infeasible beyond

16-bit circuits. A. Hardware Implementations of Galois Field Arithmetic

In many Galois field applications, primitive computations

Paper Organization: The rest of the paper is organized aSUCh asADD, MULT, INVERSE etc., are implemented in hard-
follows. In the next section, we review the relevant consepvare, and application algorithms are then implemented in
of Galois fieldsF,. and describe the architectures of th&oftware (e.g. cryptoprocessors [14]). In other casesetitiee
digital circuits that we have designed and verified through odesign can be implemented in hardware — such as the point-
approach. Section Il reviews related previous work. $ecti addition circuitry [5] used in elliptic curve cryptosystem
IV reviews preliminary computer algebra concepts of ideals As modular multiplication overF,. is at the heart of
varieties and Nullstellensatz, and how they apply over Baldnost public-key cryptosystems, efficient VLSI architeetur
fields. Section V describes our problem formulation usingave been introduced for this computation. These include th
Strong Nullstellensatz and Grobner bases. Section VI sholastrovito multiplication, Montgomery reduction [2] anklet
how a term ordering is derived from the circuit that rendbes t Barrett reduction [3].
set of polynomials corresponding to the verification insean  Conceptually, the multiplicatiol = A x B (mod P(z))
itself a (minimal) Grobner basis. In Section VII, we showin F,: consists of two steps. Firstd x B is computed,
how F4-style Grobner basis reduction can be devised @nd then the result is reduced@mod P(z)). A Mastrovito
a matrix for our specific problem. Section VIII describesmplementation [15] [1] is shown in the example below:
the experiments conducted and analyzes the results. yinall Example 2.1: Consider the fielfl,«. We take as inputs:
Section IX concludes the paper. A=oqa +a-a+a-ao®>+a3-a®and B = by +
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by - o + by - % + b3 - o3, along with the irreducible poly- ALGORITHM 1: Montgomery Reduction Algorithm [2]
nomial P(z) = z* + 2% + 1. We have to perform the input: A, B € F,; irreducible polynomialP(z).
multiplication Z = A x B (mod P(z)). The coefficients of Output: Z = A- B -z~ (mod P(z)).

A = {ao,...,a3},B = {bo,...,b3} are inF, = {0,1}. Z =0

Multiplication can be performed as: for (i=0;4¢<k—1++) do
P P Z:=Z+A;-Bl*A; is the " bit of A*/;

b b b b Z:=Z+ % P(a)
X 3 2 L 0 /+Zy is the least significant bit of Z*/;
as-bo az2-bo ai-bo ao-bo Z:=Z/x|+*Right shift Z by 1 bit=*/;
a3~b1 a2~b1 a1~b1 GO'bl end

a3~bz a2~bz a1~bz a0~bz
az-bz a2 bz a1-bz ap-bs
S6 S5 S4 S3 S2 S1 S0

The resultSum = sg+s1-a+sz-a?+s3-0° 4 54-a* + 55-
a® + Sg '046, where,sg = ag-bg, s1 =ag-b1+ai-by, s2 =
ag - ba + a1 - by + as - bg, and so on. Here the multiply-™ ) o . .
and add “+” operations are performed modulo 2, so they can Based on Ba_rre_ztt r_educt|0n, a multiplier can be designed in
be implemented in a circuit using AND and XOR gates. Not&© Steps: multiplicatioriz = A x B and a subsequent Barrett
that unlike integer multipliers, there are no carry-chainghe reductionG = R (mod P). In our experiments, we have
design, as the coefficients are always reduced mogo?. verified custom implementations of each of the Mastrovito,

However, the result is yet to be reduced modulo the primitidontgomery and Barrett multipliers.

of [3] avoids such a pre-computation of inverses and sinaglifi
the hardware implementation.

polynomial P(z) = z* + 2 + 1. This is shown below: Point Addition over Elliptic Curves: The main operations
ss S2 S1 S of encryption, decryption and authentication in elliptieree
s2 0 0 s4|s1-a" (mod P(a)) = sq-(a® +1) cryptography (ECC) rely orpoint additionsand doubling
s5 0 85 s5|s5-a° (mod P(a)) =s5-(a® +a+1) operations on elliptic curves designed over Galois fields. |
s6 s6 S6 S¢|s6-a’ (mod P(a)) =s6-(a®+a®+a+1) general, this requires computation of multiplicative irses
23 22 21 20 over the field - which is expensive. Modern approaches rep-

The final result (output) of the circuit isZ = zp + z1a¢ + resent the points in projective coordinate systems, the
2902 + z30°; Wherezg = so+ s4 + 5+ s6; 21 = s1+ 5+ Ldépez-Dahab (LD) projective coordinate [5], which elimirste
S¢; 22 = So + Sg; 23 = 83 + S4 + S5 + Sg. the need for multiplicative inverses and improves the efficy

In cryptosystems, multiplication is often performed reef these operations.
peatedly — e.g., for exponentiation. For such applications Example 2.2: Consider point addition in spez-Dahab
Montgomery and Barrett architectures [2] [13] [16] [3] ove{| p) projective coordinate. Given an elliptic curve’? +

Galois fields are employed for faster computation. XYZ = X3Z +aX?Z%+bZ* overFo., where X,Y, Z are
Montgomery Reduction: Montgomery reduction (MR) _pit vectors that are elements iy, and similarly, a, b are
computes: constants from the field. LefXG, Y3, Z3) = (X1, Y1, Z1) +
. (X3, Y, 1) represent point addition over the elliptic curve.
MR(A,B)=A-B-R™ (mod P(x)) ThenXs, Vs, Z3 can be computed as follows:

where A, B arek-bit inputs, R is suitably chosen a& = o*,
R~ is multiplicative inverse ofR in F,x, and P(z) is the
irreducible polynomial. Since Montgomery reduction canno A=Yy 2%+ 1
directly computed - B (mod P(x)), we need to pre-compute Be Xy 204 X
A- R andB - R, as shown in Figure 1. = Azl

C=127-B
D =DB?.(C+aZ?)
Zs = C?
E=A-C

X3 =A4+D+E

F=X35+ X575
Fig. 1: Montgomerymultiplication overF,. using four Mont- G=X3+Yy Z3
gomery reductions. Ys=FE -F+ 72 -G

EachMRblock in Fig. 1 represents a Montgomery reduction
step, which is a hardware implementation of the algorithm
shown in Algorithm 1. The algorithm is referred from [2]. Example 2.3: Consider point doubling in LD projective
Barrett Reduction: Similar to Montgomery reduction, tra- coordinate system. Given an elliptic curvE? + XY Z =
ditional Barrett reduction [16] needs a pre-computed valile X*Z + a X222 + bZ*. Let (X3, Y3, Z3) = 2(X1, Y1, Z1),
the reciprocal/inverse of modulu3(z). The recent approachthen
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rngsZs,x, k > 1. Since their canonical reduction rules employ
Xo= Xt 1b. 7t the the_ory of polyn_omial fl_mctions over finite inte_zg_er r_ings
I L [31], this approach is not directly applicable over finitddge
Zs=Xi- 73 F,.. Similarly, the work of [32] is also only applicable for
Yz =bZ} - Z3+ X3 - (aZ3 + Y72+ bZ}) verification of integer-modulo-arithmetiover Z,. at word-
level/RTL, and not over Galois field circuits.
This verification problem is also very hard for SAT solvers,
In the above computations, polynomial multiplication angdlue to the large circuit size, and the presence of AND-XOR
squaring operations can be implemented in hardware usktguctures. Contemporary Satisfiability Modulo Theory (§M
Montgomery or Barrett reductions ov&h:. In our experi- solvers employ a mixture of theories for reasoning — however
ments, we verify circuit implementations of point addit@nd none of them employ polynomial equation solving over Galois

doubling based on the above examples. fields (which is itself a very hard problem). Therefore, irr ou
experiments, we have used the quantifier-free bit-vectér (Q
Ill. REVIEW OF PREVIOUS WORK BV) theories of SMT solvers to verify Galois field circuitssA

The verification problem addressed in this paper is a coghRown in our experimentsione of BDDs, SAT, SMT solvers,
binational equivalence checking (CEC) problem, where ti@nd ABC can prove design correctness beybéwbit circuits.
specification (polynomial) and the implementation (citgcui The theorem-proving approach of [33] verifies Galois field
are given at different levels of abstraction. To make use 8fithmetic algorithms ovelf,:. The authors devise a decision
contemporary gate-level CEC tools, we can transform tfgocedure based on variable elimination and term re-vgitin
polynomial specification into a specification circuit (“gen and demonstrate a correctness proof of a sub-block of a Reed-
model”) and check its equivalence against the implemantatiSolomon decoder. The employed algebraic simplificatioasul
circuit. Canonical decision diagrams (BDDs [17] and theigan be beneficial only when the sentences are independent of
word-level variants [18]), implication-based methods ][19the irreducible polynomial. Otherwise, their approachuiess
And-Invert-Graph (AIG) based reductions [20] [21], cireui decision overF, which is infeasible for large circuits. The
SAT solvers [22], etc., are among the many techniques timat o4ork of [34] solves similar problems as those of [33]. They
be employed for this CEC. When one circuit is synthesizétlake use of OKFDDs [27] to canonically represent the circuit
from the other, this problem can be efficiently solved usingonstraints. Moreover, instead of verifying circuits oV
AlG-based reductions (e.g. the ABC tool [23]) and circuitdirectly, [34] verifies the circuits over its equivalent cpasite
SAT solvers (e.g., CSAT [22])Equivalence checking tools, field GF((2™)"), where anon-primek = m - n. Their
such as [24] [25] [26], etc., are also offered by CAD vendorgpproach has no benefit if is prime — say, wherk = 163
which have even larger capacity than academic t@®ysithe- for elliptic curves. Also, the size-explosion of FDDs lisit
sized circuits generally contain many sub-circuit equimakes their approach to 16-bitF:s) circuits, as shown in their
which AIG and CSAT based tools can identify and explogXperiments.
for verification. Howeverwhen the circuits are functionally ~The paper [35] describes the high-level modeling language
equivalent but structurally very dissimifgrnone of the con- Cryptol, and its verification tool-set, that is designed for
temporary techniques, including ABC and CSAT, offer a pragerification of cryptographic algorithms. A Cryptol desation
tical solution. Automatic formal verification of largeustom- can be further synthesized into hardware. For verificatioa,
designed arithmetic circuittargely remains unsolved today.decision procedures employed in their tools make use of AIG-
Our experiments also demonstrate the inability of AIG/AB®ased reductions (SAT-sweeping) and SAT/SMT-solving. For
and Circuit-SAT solvers to solve our problems. applications where AIGs/SAT/SMT-techniques falryptol

Graph-based canonical DAG representations of Booletgpl-set has no benefit.
functions such as BDDs [17], OKFDDs [27], BMDs [28] and Symbolic computer algebra techniques have been used for
MODDs [29], etc. are ill-suited for such modulo-arithmetig/erification of integer arithmetic circuits [36] [37] andsal
applications, particularly over large finite fields. WhiléiBs for decision procedures over Galois fields [38].[36], the
were proposed for verification of integer multipliers, tepre- authors verify integer arithmetic circuits hierarchigallsing
sentation is not efficient for modulo arithmetic computasio polynomial algebra techniques. Their approach analyzbs su
MODDs [29] were presented as a canonical DAG represegircuit components and models the implementation by way
tation for Galois field polynomials oveF,.. However, they Of integer equations. The functionality of the sub-cirsuii
also suffer from the size explosion problem. As every noderified using Grobner basis computations. However, tiepa
in the MODD may have up td children, the composition does not address any improvements to the core Grobner basis
and reduction operations are rather complicated for MOD@@mMputational engine.
and make verification over large fields infeasible. The work The paper [37] addresses verification of finite precision
of [30] presents a DAG representation for synthesis areteger datapath circuits using the concepts of Grobnsedba
verification of multi-output polynomials over finite intege over the ringZ,.. They model the circuit constraints by

way of arithmetic-bit-level (ABL) polynomials{(G}), and

_For example, the golden model may be a Mastrovito multiptiexd the — formylate the verification test as an equivalent varietysstib
implementation may be a Montgomery multiplier. This is atlse case when

the “abstraction-gap” between the specification and théamentation is very problem. To solve this, "f'rSt they _derlve a term order that
large —e.g.a polynomial specification versus a circuit implementation already makeg G} a Grdbner basis. Then they compute a
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normal form f of the specificationy w.r.t. {G}. They test application over Galois fields; the material is referred ]
if f is a vanishing polynomial oveZ,. [32]; if so, circuit [8] and [38].
correctness is established. In [39], the authors furthewghat Let F be a field and leff[z,...,24] be the polynomial
the vanishing polynomial test can be omitted by formulatingng over F with indeterminatesy,...,z4. A monomialin
the problem directly ove@ := Z,x[X]/ (2% — 2 : 2 € X). variableszy,--- , x4 is a product of the formX = z{* -
The work of [38] shows how to use Grobner bases techs?---z5¢, wherea; > 0,i € {1,...,d}. A polynomial
niques to count the zeros of a polynomial ideal over Galof € F[x1,...,zq], f # 0, is written as a finite sum of terms
fields. The authors then follow-up with an approach fof = ¢; X1 +coXo+---+c¢; X;. Herecy,. .., ¢, are coefficients
quantifier eliminationover Galois fields [40]. These paperand Xy, ..., X; are monomials. To systematically manipulate
address the mathematical problem formulation (theory)and the polynomials, amonomial ordering> is imposed such
gorithmic solutions; efficiency/improvements in Grobbesis that X; > X, > ... > X,. It is a well-ordering on
computation and application to design verification is beyorthe set of all monomials such that multiplication with a
the scope of these works. monomial preserves the orderfn@ubject to such an ordering,
An important set of recent papers [41] [42] [43] on theét(f) = c; Xy, Im(f) = X1, le(f) = 1, are thdeading term
BLUEVERI tool from IBM needs special mention: Theleading monomiaknd leading coefficienof f, respectively.
authors present a methodology and toolset to verify GaldSmilarly, tail(f) = co X2 + - - - + ¢, X;.
field circuits for error correcting codes against an aldonic Polynomial reduction: Let f, g be polynomials. If a non-
spec. The implementation consists of a set of (pre-designesto termcX of f is divisible by the leading term aof, then
and verified) circuit blocks that are interconnected to fohe we say thatf reducesto » modulog, denotedf —% r, where
error correcting system. The spec is given as a set of desjga: f — % -g. Similarly, f can be reduced (divided) w.r.t. a
constraints on a “check file”. Their objective is to prove thget of polynomialsF’ = {f1,..., fs} to obtain a remainder,

equivalence of the implementation against this check fiteyT denotedyf L+ r, such that no term im is divisible by the
model the verification instance as a data-flow graph, reptes?eading term of any polynomial it

each sub-circuit block with its known (word-level) polyn@h | 4eais and varieties: An ideal .J generated by polynomials

overF,, and forml_JIate the verifi_cation p_roblem using Weak Fiyeosfo €Flan, ... 24 is:

Nullstellensatz— i.e. to check if thevariety of the algebraic

system $pec# implementatiohis empty — for which they -

use a Grobner basis engine. Their main contributions are: J={fr o) = {Z hi - fi+ hi € Fley, .. ]}

i) a “term re-writing” to specify the algorithmic descripti =t

using polynomials (ideal); and ii) integrating an AlG-gtyl The polynomialsfi,..., f; form the basis or generators &f
[20] Boolean solver with their word-level decision proceelu  Let a = (a1,...,a5) € F? be a point, andf €
with lazy signal computations and Boolean reasoning. FBtz1,...,za] be a polynomial. We say that vanisheson
final verification, the polynomial system is then given to & if f(a) = 0.

computer algebra tool (S8GULAR [10]) to computea reduced ~ For any idealJ = (f1,..., fs) € Flz1,...,zq], the affine

Grobner basis. However, improvements to the core Grobnriety of J over[F is:
basis computational engine are not the subject of their work - q. -

In contrast,our investigations go beyond thBLUEVERI V(J)={aeF":vf € J f(a) =0}
work by addressing further improvements to the Grobner basis other words, the variety corresponds to the set of all
computation. . solutions tof; = ... f, = 0.

In our own previous work [44] [45] and [46], we have pefinition 4.1: For any subset’ of F¢, the ideal of poly-

verified implementations of Galois fielshultiplier circuits — nomials that vanish oftY, called thevanishing ideal ofV, is
particularly, Mastrovito and Montgomery implementatiols Jefined as:

[44] [45], we use th&Veak Nullstellensatprmulation to prove
that the “specificationt implementation” (miter) is infeasible, (V) = Ip(V) = {f € Flx1,...,74] : Va € V, f(a) = 0}.
and use a Grdbner basis engine as the decision procedure. V\fg . i . . .
e : ) - Proposition 4.1:1f a polynomial f vanishes on a variety,
heuristicallyderive a variable order to represent the monom|ﬁl1
X . . enfel(V).
terms. Using our heuristic, we are able to verify only up to
.96-b.it.circgits [45]. In theﬂpresence. of bugs, our heuriiﬂig A. Radicals and Nullstellensatz
inefficient in that the Grobner basis computation runs into o _ .
memory explosion beyond 16-bit circuits. Defmmon 42 L_et J C Flxy,...,z4] be an ideal. The
This paper is an extended version of our conference paﬁ%g'fnm of J is defined asv'J = {f € Flzy,...,z4] : Im €
[46]. In this work, we draw inspirations from [38] [37] N, f™e J}. ) ) ) _
[39] [11], and build upon their results to develop automatic When J = \/7 then J is said to be aradical ideal
verification techniques for Galois field arithmetic cirsuit ~ Moreover,I(V) is a radical ideal. The Strong Nullstellensatz
establishes the correspondence between radical ideals and

IV. COMPUTERALGEBRA PRELIMINARIES varieties.

. We reVi?W_ basic commutative algebra concepts reIaFEd tQLexicographi(: leX), degree-lexicographic dégley, degree-reverse-
ideals, varieties, Nullstellensatz and Grobner bases,tla@ir lexicographic ¢egreviex are examples of monomial orderings.
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Theorem 4.1: Strong Nullstellensd®]: Let F be an alge- sets are “better” than others, i.e. they are a better reptatien
braically closed field, and lef be an ideal inF[xy,...,x4]. o0fthe ideal. AGrdbner basids one such representation which
Then we haved (V(.J)) = v/ J. allows to solve many polynomial decision questions.

We are concerned with Galois fields, which are not alge- Definition 4.3: [Grébner Basis| [From [8]] For a mono-
braically closed. When a fieldl is not algebraically closed, mial ordering >, a set of non-zero polynomial&; =
then the above result can be suitably applied over the agebr{g;, g2, -, g;} contained in an ideal, is called a Grobner
closure ofF. basis forJ < Vf e J, f #0, there exists € {1,--- ,t}

Corollary 4.1: LetF be an arbitrary field and be an ideal such thatim(g;) dividesim(f); i.e., G = GB(J) & Vf €
in Flzy,...,zq]. LetF denote the algebraic closure Bf and J: f #0,3g; € G : Im(g;) | Im(f).

let V&(.J) denote the variety off overF. Then Ip(Vi(J)) = In our context, Grobner bases theory providedegision
V. procedure to test for membership in an ide&ls a conse-
guence of Definition 4.3, the sét is a Grobner basis of ideal
B. Strong Nullstellensatz over Galois Fields J, if and only if for all f € J, dividing f by polynogwials of
Nullstellensatz admits a special form over Galois fields. We gives 0 remainderi = GB(J) <= Vf e J, f — 0.
state the following results of Nullstellensatz over Gafigfds,  Buchberger’s algorithm [9], shown in Algorithm 2, com-
proofs of which can be found in [38]. putes a Grobner basis over a field. Given polynomials-
Proposition 4.2:LetF, be a Galois field of; elements. For {/f1,- .-, fs}, the algorithm computes the Grobner basis-
all elementsA € I, we haveA? — A = 0. Therefore, for a {g1.--.,g:}. In the algorithm,
polynomialz? — z, we haveV (z? — z) =F,.
The polynomials of the forjz? —z} are called thevanish- Swol I S
: , : ° . poly(f,9) = f g
ing polynomial®of the field. LetFy = {z{—x1,..., 28 —24}, It(f) It(g)
— q _ q _ i i
then J.O = (7 Tl Td za) is the ideal of all where L = LCM(Im(f),lm(g)), wherelm(f) is the leading
vanishing polynomials ir¥,[z1, ..., z4]. Below, we use the monomial of £. andii() is the leading term o
concept of sum of ideals: given ideals = (f1,..., fs) and fi (f) 9 ¥

Iy = <gl, R ,gt>, then ideal[l—i-IQ = <f1, ey fs,gl, . 7gt>-
Lemma 4.1:From [38]: For any ideal/ C F,[x1,...,24], ALGORITHM 2: Buchberger's Algorithm

J+Jo = J+ (@] —x1,..., ) — xq4) is radical. In other Input: F = {fi,..., fs}

words,v/J + Jo = J + Jy. Output: G = {g1,...,9¢}
The above is a very powerful result, as it implies that arﬁ = I

. . . . epeat

ideal J € Fy[x1,...,x4) can be easily turned into a radical e et

ideal by addingJy, without changing the zero-s&t(.J) over for each pair{f, g}, f g in & do

F,. And, based on the above, the following result can be easily Spoly(f, g) R
) + ’

deduced: if 0 then
Theorem 4.2: Strong Nullstellensatz ou&y: For any Ga- G:=Gu{r};
lois field Fy, let J C Fylzi,...,z4] be an ideal, and let end
Jo = (2] — x1,...,2% — x4) be the ideal of all vanishing t'lerg o
until G = G';

polynomials. Lefk, (/) denote the variety of overF,. Then,
I(Ve, () =J+Jo=J+ (xf —x1,..., ) — x4).

Proof: Let F, denote the algebraic closure Bf. There-  \ye now describe our verification problem formulation using
fore, Fy O F,, and we have: Strong Nullstellensatz ové,:, and its solution using Grobner
bases and Buchberger’s algorithm.
Vi, (J) = Ve(J)NFg
VE(J) N Vr,(Jo) V. VERIFICATION PROBLEM FORMULATION

= V() NVg(h) We are given a Galois fielll,, with ¢ = 2% k > 1, along

= VE(J—F Jo) with the irreducible polynomialP(z). Let o be the root of
P(z), i.e. P() = 0. The specification is given ag =

Therefore.I(Vk, (J)) = I(Vy,(J + Jo)) = vJ + Jo, from F(AL, A% ... A™), where eachA’ represents a word-level
Corlollary 4.1. Moreover, Lemma 4.1 says that + Jy) is input, Z is the word-level outputZ, A', A2, ..., A" € F,,
radical, sov'J + Jo = J + Jo. Consequently, we have thatand]—" is the polynomial function describing the input-output
I(Ve,(J)) = J + Jo. relation. This specification can be modeled as a multivariate

polynomial f : Z — F(A', A% ... A"); or equivalently as

C. Grobner Basis of Ideals f:Z+F(AY, A2 ... A"), as—1 = +1 overFy.
An ideal J may have many different generators: it is Also given is a gate-level combinational circdit The bit-
possible to have sets of polynomials = {fi,..., f;} and level primary inputs of the circuit aréa}, af,...,aj_,}, for

G ={g1,...,9¢} such that = (fi,..., fs) = (91,-..,9:) j = 1,...,n, and the primary outputs argz,...,2x_1}.
andV(J) =V (fi,...,fs) = V(g1,...,9:). Some generating Herea’, z; € F5,i =0,...,k—1, j=1,...,n.
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The word-level and bit-level correspondences are the fdle this set, we addls : A+ag+a1a, fo: B+bog+bi, fio:

lowing: Z + 20+ z1c. Then ideald = (f1, ..., f10)-
L L . L e To prove that the specificationf) matches the imple-
A =aptaatFa mentation ) at all points in the design space, we need

to checkwhether or notf vanishes on the varietyr, (J).
(1) This is because for all poinp € Vi, (J), it f(p) =
A" =ag+afa+-+ap_a 0, then Z + F(A', A2,... A") = 0 implies thatZ =
Z=z0+z1a+ 200>+ + 251571 F(AY, A% ... A™). On the other hand, if (p) # 0 for some
_ point p, thenp corresponds to the bug in the design. Now if
Our goal is to formally prove thatvA’ € [, the f vanishes ok, (J), we know from Proposition 4.1 that
circuit correctly implements the specificatiop : Z + should be a member df(V&, (7). The Strong Nullstellensatz
F(AY A% ... A") = 0 over F,. Otherwise, we have to over F, (Theorem 4.2) tells us that(Vk, (J)) = J + Jo =
produce a counter-example that excites the bug in the desigp, ..., f,, ! — z1,...,2% — x4). Therefore,we need to
Problem Modeling: We analyze the given circuif’ and test whether or notf is a member of the ideall + Jj.
model all the Boolean gate-level operators as polynomias o If f < (J + Jy), correctness of the circuit is established.
Fy (C Fae), using the following one-to-one mapping oveOtherwise, there is a bug in the design. To tegt i (J+ Jo),
B — Fo: itis required to compute a Grobner basig df+.Jy ), for which
we can use Buchberger’s algorithm.
We now have a complete approach to solve our problem: i)

k—1

me—a+l (mod?2) derive the set of polynomialg = {f1, ..., fs} corresponding

aVb—a+bta-b (mod?2) 2 to the circuit instance; ii) append vanishing polynomials f
aAb—a-b (mod 2) all variables in our systenty = {2 — z1,..., 2% — x4}; iii)

a®b—a+b (mod?2) compute a Grobner basis of {F, Fy} using Buchberger’s

algorithm; iv) reduce the specification polynomjahw.r.t. G.

wherea,b € Fy = {0,1}. To this set of Boolean polyno- s <, then the circuit is correct; otherwise there is
mials extracted from the circuit, we append the polynomialfsfinitely a bug in the design.

corresponding to Eqns. (1) that relate the bit-level anddwor G, spner basis Complexity: For our specific problem of
level variables. We model these circuit constraints aséhes computing a Grobner basis for+ J, overF,, the following

polynomials F' = {f1,..., fs} over the ringF,[z1,...,%4], result is known [38]:

as fi,..., fs have coefficients inf,. We denote the ideal Theorem 5.1:Let.J — (froeoor for @l=a1, ... 2% —2q) C
generated by these polynomials.as- (f1, ..., fs). Similarly, F,lz1,...,z4) be an ideal. The time and space complexity of
the specification polynomiaf € Fy[x1,. .., z4. Buchberger’s algorithm to compute a Grobner basis/af

Example 5.1: As an example, we describe the problesgunded by;©(@ assuming that the length of inp#it, . . . , fs
modeling for a 2-bit multiplier overF,2. The multiplier s dominated by 0.
specification isZ = A - B, where Z,A, B € Fy, and  |n our case; = 2¥, and whenk andd (all the variables in
P(z) = 2*+x+1,s.t. P(e) = 0. The specification is modeledor system) are large, this complexity may make verification
as a polynomialf : Z+A-B. The circuitC' is given in Fig. 2. infeasible. In the next section, we show that a term order can
Variablesao, a1, bo, by are primary inputs.zo, z; are primary pe derived, by analyzing the topology of the given circtiitt
outputs, andcg, c1, co, c3, 79 are intermediate variables. Themakes{fl, o foxl—ay, ... 2l —x,4) itself a Grobner basis

gate ® corresponds to AND-gate, i.e. bit-level multiplication_ opyiating the need to apply Buchberger’s algorithm.
modulo 2. The gates corresponds to XOR-gate, i.e. addition

modulo 2. VI. OBVIATING THE NEED FOR BUCHBERGER S

ALGORITHM

To improve Buchberger’s algorithm, variations of the chain
and product criteria are applied.

Lemma 6.1:[Product Criterion [47]] Let f,g €
Flxy,--- ,xzq] be polynomials. If the equality
Im(f) - Im(g) = LCM(Im(f),Im(g)) holds, then

G
Spoly(f,g) —+ 0.

The above result states that when the leading monomials

_ i o of f,g are relatively prime, thetbpoly(f, g) always reduces
Fig. 2: A 2-bit multiplier over[F(2?). to 0 moduloG. Thus Spoly(f,g) neéd n)ot be considered
in Buchberger's algorithm. If we could analyze the given

Every gate in the circuit is modeled as a polynomial igircuit and derive a term order such that every polynomial
F,. For example, the AND gate, = ag A by is modeled as pair (f,g) in the generating set has relatively prime leading
f1:cotao-bo. Similarly, f : ¢c1+ag-b1, f3:catai-by, f4: monomials, thenSpoly(f,g) £>+ 0. Consequently, the
cstai-by, fs:ro+ci+ca, fo:zotcotes, friz1+ro+es.  set of polynomials{fi,..., fs} extracted from the circuit
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(corresponding ideall) and represented using such a terrmve have to compute a Grdbner basis.bf- Jy = (F, Fy) =

order would itself constitute a Grobner basis .bf In [37], (fi,..., fs, ] —z1,..., 2% — 24). Not all polynomial pairs
the authors derive exactly such a term order, and the similar{fi,..., fs, 2{ — z1,...,2} — 24} have relatively prime
concept can be applied in our case. leading monomials.

Note that: i) since the circuit constrain{yi, ..., fs} are Consider a polynomialf; € F. Using our term order,

modeled as polynomials s, they contain only multi-linear we have f; = z; + tail(f;); i.e. the leading monomial of
monomial terms; ii) the output of a gate is uniquely computed; is a single variable term;, corresponding to the output
and it always appears as a “single variable term” in thef a gate. Clearly, the paifz; + tail(f;), «! — z;), fi €
polynomials; iii) the circuit is acyclic. Let:; be the output F, z! — z; € F, do not have relatively prime leading
variable of any gateff; in the circuit, and letz,;, ..., x,; monomlals In fact, the pairke; + tail(f;), z! — «;) are the
denote variables that are the inputs to the ddtelf we can only ones to be considered for Grobner baS|s computation,

represent the polynomial§ such thatx; > every monomial as all other pairs have relatively prime leading terms. This

in the variableszyi, ..., zp,;, then all (f;, f;),i # j have motivated us to investigate further the result of the reiduct
relatively prime leading monomials anflfi, ..., fs} is &  Spoly(x; + tail(f;), 2! — ;) =2, r. We state and prove the
Grobner basis (this concept was described in Propositionteflowing:

[37], which we rephrase below). Theorem 6.1:Let ¢ = 2%, and letF,[z1, ..., z4] be a ring

PrOpOSltlon 6.1:Let C be any arbltrary combinational cir- on which we have a monomial Orde,r Let I be a subset of
cuit. Let{z1,...,z4} denote the set of all variables (signalsy1, ... d}.ForallieI,letf; = 2;+P; (whereP; = tail(f;))
in the circuit, i.e. the primary input, intermediate anchpairy  sych that all indeterminates; that appear in?; sat|sfy:vZ

output variables. Performraverse topological traversaif the zj. Thenthe seG = {fi:i € I} U{a? —z1,...,2% — x4}
circuit and order the variables such that> «x; if x; appears js a Grobner basis.
earlier in the reverse topological order. Impose a lex terteo Proof: According to Buchberger's Theorem (Theorem

to represent each gate as a polynonfijab.t. f; = ;+tail(f;). 1.7.4 in [8]), we need to show that for alf,g € G,

Then the set of all polynomial§fi, ..., fs} forms a Grobner Spol S 0. Let F — Foo— {29 _
basis, adt(f;) andit(f;) for i # j are relatively prime. poly(f,g) =+ UnoooJsh Fo = {ay

_ ; _ ° L T1,...,28 —xq}, and G = F U F,. Lemma 6.1 shows
Example 6.1: Consider, again, the 2-bit multiplier o8& hat if £, 4 ¢ @, have relatively prime leading terms, then
shown in Fig. 2. Variables, a1, by, by are primary inputs,

; ot o int Spoly(f,g) Enr 0. So the only case where Lemma 6.1 does
20,71 are primary outputs, andy, c1, ¢, 3, ro are interme- | apply is whenf = z; + P, and g = 2 — a;. Then
diate variables. !

N . ., . Spoly(f,g) = x7 ' f —g = Paz? ' + z,. In what follows,

Perform a “reverse topological traversal” of the circuit. ..* ! ! . oo
Starting from the primar; out%uts traverse the circuit teet ;rI: ;Tﬁ)gsrga?r:;; note that the indeterminates appearing;in
primary inputs, and order the gates according to the their First of all Pxé 1+x-—Pa:q’2(x +P) = P2 q72+x_
(reverse) topological levels. The primary outputs z; are i TR q_lz Zit ) 12 = v
both at level-0, variablesy, co, c5 are at level-1, ¢y, ¢, are  Which shows tga’PCU tr Prap = + ;. s
at level-2, and the primary inputso, s, by, b; are at level- _ Next, Pral™ 4z, — Prai™(x; +1P) = Plai™ +ai.
3. We order the variable$zo > 21} > {ro > ¢y > ¢3} > continuing in this fashion, we g&®/ "z; + x; — Pf (@i +
{c1 > &} > {ap > a1 > by > by}. Using this variable ©i) = @i + P, and finallyz; + P — (z; + P;) = P = P;.
order, we impose a lex term order on the monomials. Then &IFNCe,
the circuit polynomials have relatively prime leading term

q—1 EH'Pw 2 q 2 wrt-Pt 3 q 3 +P¢
as shown below: Pz, +w Prey "+ Plai™ 42, ==

. 17+P1 Pq ] 17+P1 Pq P
firco+tao-bo, Im=co; fa:ci+ao-bi, Im=c1
fsica+ar-bo, Im=co; fa:cs+ar-by, Im=cs In other words,Spoly(x; + tal|(fl) xl) —>+ P — P
fs im0 +e1+e2, lm=ro;  fo:z0+co+cs, lm =z Over the Galois field,, P! — P; is a vamshlng polynom|al.
a0+ cs, Im = 2 Therefore,P! — P, € I(V(Jy)) = <q {—z1,... ,:v_gl—xd). By
In our formulation, we also have word-level variabled-€MMa 6-1.Fo = {Il —@1,..., %3 — 24} is Grobner basis.

Z,A'... A" € F,. They can also be accommodated in thighereforeP! — P; 8, 0 which gives thatP! — P, %, 0,

term order by imposind Z} > {A! > ... > A"} > {20 > asF, C G. In conclusionYf,g € G, Spoly(f, )E>+ 0 and

21} > {rog > co > ez} > {c1 > ca} > {ap > a1 > by >b}. henceG is a Grobner basis. [ ]
To perform the reverse topological traversal, the circsiit i This Grobner basigs = F U Fy can be further simplified

considered as a graph, where the gates are representedobyminimal form

nodes and the wires represented by edges. Topological somefinition 6.1: [From [8]] A Grobner basis G =

of the graph is then performed from the primary outputs tfy1,...¢:} is called minimal if: (i) Vi, lc(g;) = 1; and (ii)

the primary inputs to derive the variable order. Vi # j,lm(g;) does not dividdm(g;).
As a result of Proposition 6.1, the set of polynomials In other words, for a Grobner basis to be minimal, two
F ={f1,...,fs} is a Grobner basis fof. Note thatF, = conditions have to be satisfied: i) all polynomials in thei®as

{] —x1,...,2% — x4} is a Grobner basis fof,. However, are monic, i.e their leading coefficient is 1; and ii) the liegd



EXTENDED VERSION OF A PAPER ACCEPTED FOR PUBLICATION IN IEEERANS. ON CAD, ACCEPTED MARCH 2013 9

monomial of any polynomial does not divide the leadinthe circuit. The sef/! = {22 —x; : x; € Xp;} is generated
monomial of any other polynomial in the basis. as the set of all bit-level vanishing polynomials corregting
Lemma 6.2:[From [8]] LetG = {g1,...,g:} be a Grobner to the primary inputs. Then the sé& = F U F/! forms a
basis of ideal/. If im(g2) dividesim(g1), then{gz,...,g;} minimal Grobner basis of the idedh-Jo = (f1, .. .,fs,aﬁk—
is also a Grobner basis of. T1,... ,;vzk — x4). We reduce the specification polynomjal

SupposeG = {g1,...,9:} is a Grobner basis such thaty i . f S, If r = 0, thenf € J + J, and the circuit
Im(g2) dividesim(g1). If any polynomialf is such thatm(f) s correct. Otherwise, if # 0, there is a bug in the design.
is divisible bylm(g1), thenim(f) is also divisible byim(g2).  Mmoreover,if » # 0, then the monomial order ensures that
Thereforeg; is a redundant element of the Grobner basis and.ontains only the primary input variable§o show this,
can be eliminated frond. Moreover, each remaining € G assume that # 0 and r contains either an intermediate
can be made monic by dividing by lc(g;). When all such o 3 primary output variable:;. Since there always exists
_redundgnt elements are remo_w_eq, a minimal Grobner baéi?polynomialfj in G with im(f;) = =;, r can be further
is obtained [8]. Based on Definition 6.1, we can generate&juced byf;. Continuing in this fashion, all the terms with
mmw_nal Grobner basis: of J + Jy directly by construction, non-primary'-input (intermediate or primary output) véiis
as given below. . . ~ can be eliminated, andcontains only primary inputs. Finally,

Corollary 6.1: Given the polynomial ring in the presence of a bug, any assignment to the (primarygnpu
Fylz1,...,24),q = 2*, on which we have the monomial orderyariaples that makes # 0, provides a counter-example for
> specified in Proposition 6.1. Given the set of p0|yn_0m?al§ebuggingA SAT-solver can find such an assignment in no
F=Afi.... fs} € Fylzr,...,2a), representing the circuit time asy is simplified by Grobner basis reduction. Our results
C.LetXpy C {x1,...,zq} denote the set of all primary inputtherefore obviate the need tmmputea Grobner basis using
variables of the circuit. Lety”" = {z7 — ; : 2; € Xpr}, Buchberger’s algorithm. The sét is already a Grobner basis,

be the _set of (bi'F-IeveI)_ vanishipg polynomialsand verification can be performed by the reductiyﬁn:gnr r.
corresponding to all primary input variables. Then the

setG:FUF{’I e {fl,...,fs}U{I%—Ii Lx; € Xp]} is
a minimal Grobner basis. VIIl. | MPROVING POLYNOMIAL DIVISION USING
Proof: We have already shown in Theorem 6.1 that F'4-STYLE REDUCTION
U Fp is a Grobner basis. Moreover, in our problem, all The most intensive computational step in our approach is
polynomials inG are monic. Furthermore, our ideal basis !

consists of two sets of polynomials: i) polynomials of thenfio t(f;aé ?,Lfo:ﬁ?oén'ﬁ:edwﬁ'?:;{n il s aﬂ ; P\{’thllqséhSeggfnuelts
fi = x; +tail(f:), f; € F; and ii) the vanishing polynomials y 1arge, _polyno &, Fy )

ok . : extremely large. This division procedure then becomes the
x; —ux; € Fy fori=1,...,d. Our monomial order ensures . e . o .

v bottleneck in verifying the equivalence. In principle, hi

that in f; = @; + tall(fy), =; corresponds to either a PMAY e duction can be performed using contemporary computer-
output variable or an intermediate variable of the circBit- .
algebra systems —e.g, the SNGULAR [10] tool, which

:Egzlinpng?r;yslgf?ytbse:;);:;i ;Ircrlijrlr:?reiri(i ?isnﬁ\(;f;g?ir 3,[50i widely used within the verification community [37] [39]
g ! P ynp P 46]. In our work, we have also performed experiments with

?hneyrgztl\e/v :y?i;lsrf;%v;melﬁ@r;ﬂ; i(jvill(’:h \./\;iﬁdd}iVig((;P tlrze SINGULAR. However, as in any “general-purpose” computer
leading monomial ;f the vani;hing Zpolynom'tac}k N algepra t_ool, t_h_e dgta—structures are not specificallynupéd
ok v for circuit verification problems. Moreover,I$GULAR also
such casesyi — i, z; ¢ Xpr can be removed from the i the number of variablesd) that it can accommodate
basis, d‘%e to Lemma 6.'2' By ellmlnathg all S,UCh Van_'Sh'r\H the system tod < 32767; this limits its application to
ponnpm|aIs.correspond|ng to the nogg-prlmary-lnputvlalea, large circuits. Therefore, to further improve our approagé
we will obtain G = {f1,..., fo} U{ay —ai - < Xpr} exploit the relatively recent concept éf4-style polynomial
Finally, since bit-level vanable;- €2 CFor, 27 —2 =0, raqyction [11] — which implements polynomial division ugin
we obtainG = {fi,..., fo} U{a] —xi : i € Xpr} as the (o requctions on a matrix — to develop a custom verification
minimal Grobner basis. tool to perform this Grobner basis reduction efficiently.
Faugere’s F4 approach [11] presents a new algorithm
to compute a Grobner basis. It uses the same mathemati-

B o : -~ cal principles as Buchberger’s algorithm. However, indtea
Grobner basis without actually performing the reductidhis computing and reducing oné-polynomial at a time

is because in a redycepl Grobner basis, fgil6 alsq reduced_it computes manyS-polynomials in one step and reduces
w.r.t. 1t(f;), for all i # j. However, a reduced Grobner basigem simultaneously using sparse linear algebra on a matrix
is not necessary for ideal membership testing. (triangulation). In our formulation, since we already have
Grobner basis, no S-polynomials are computed. We only need
A. Our Overall Approach to perform the subsequent Grobner basis reduction, fochwhi
the F'4 technique can be very efficient. We now show how our

[ |
While we can obtain a minimal Grobner bagisdirectly
by construction, unfortunately, weannot obtain areduced

The verification problem is setup ifiyx[x1,...,xq], ON o
which we impose the monomial orderas derived above. The reduction problemy "—% , r can be represented and solved
set of polynomials” = {f1,..., fs} is derived/extracted from on a matrix. First, let us consider the following examplettha
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demonstrates the main concepts behind the reduction agproaLGORITHM 3: Generating the Matrix for Polynomial Reduction

of F4. Input: f, F = {fi,..., fs}, term order>

Example 7.1: Consider the lex term order with> y >z Output: A matrix M representingf 22275,
on the ring Q[z,y,z]. Given F = {f; = 22®> + y,fo = /+L= set of polynomials, rows of Mx/;
3zy? — zy, f3 = 4y — 1}, consider one step of Buchberger'd-={f} ;

; . f1.f2.f: i:=1;
algorithm: S(fi, fo) === r. We haveSpoly(fi, f2) = /*Myp = the set of nonomials, colums of M */;

322y + 3y® = fi. The reductionSpoly(f1, f2) fuleds vy ={ monomials of § ;

1,2, 1\ . f1 mon:= thei*” monomial of Mz ;
.(_Ey +5)is dc.me as follows: Sinck(f1) [ lt(f1), fa = I while mon¢ PrimaryInputs do
is computed as: Identify f. € F satisfying:lm(fx) can dividemon ;
1t(f2) 1 1, 1, /*gdd polynomial f, to L as a newrowin M
h=fs—Zsh=fi—cyh =5y — 2y% s
It(f1) 6 2 6 L= LU fus
Now [t(f,) does not divide any term ih, but it(fs) | lt(h), i;{a‘dd monom al s to M as new colums in M
soh L 1 Mp:=Mp, U {monomials of %2 - fi} ;
It(h) L, 1, 1 1, 1 =it 1
= h — = — —_ = —_ = = —— — i -th i .
lt(fg)f3 2y 6y 8f3 63/ + 3 endmon. thei*® monomial of M ;

This reduction procedure can also be simulated on a matrixaussian Elimination on/;
using Gaussian elimination. The reduction above requird&lum r = last row of M
the computation o%yfl and %fg. Ignoring the coefficients
%,%, we can generate all the monomials required in the
reduction process: i.e. monomials ¢,y f1, f3, and setup  Algorithm 3 describes our procedure to generate the matrix
the problem of cancellation of terms as Gaussian elimina{ of polynomials corresponding to our verification instance.
tion on a matrix. Monomials ofs,y f1, fs are, respectively, The main idea is to setup the rows and columns of the matrix in
{z?y,y*}, {=?y, y*}, {y?,1}. Let the rows of a matrid/ cor- a way that polynomial division can be subsequently perfarme
respond to polynomialgfs,y f1, f3], and columns correspond by applying Gaussian elimination av. In the algorithm, the
to all the monomials (in lex order)z?y, y*, 4%, 1]. Then the set of polynomials¥” = {f,..., f,} correspond to the circuit
matrix M shows the representation of these polynomials whetenstraints. The term ordering derived from the topoldgica

the entryM (i, j) is the coefficient of monomial of columin analysis of the circuit is imposed to represent the polyradsni

present in the polynomial of row The specification polynomiaf is to be reduced w.rtF =
) s o {f1,..., fs}. Initially, L = {f} is inserted as the first row of
y oyoyt 1 the matrix and\/;, constitutes the (ordered) list of monomials
fa : 3 0 0 of f. Then, in every iteration, a polynomial f, € F is
M=yfil 2 0 1 0 identified such thatm(f;) divides thei'” monomial (non)
I3 0 4 0 -1 of My; this is to enable cancellation of the corresponding
Now, reducing) to a row echelon form using Gaussian™onomial term. The computatioh := L U 77y - fi in the
elimination gives: while-loop, generates the polynomials required for reiduét
) 5 The list M, is updated to include monomials ?T% - S
y oy oy 1 Finally, the iteration in the loop terminates when monomial
Ja % % 0 0 mon consists solely of primary input variables. This is because
M=h=fi—gyf| 0 3 —% 0 primary inputs are never a leading term of any polynomial;
r=h—3fs 0 0 -5 3 therefore, no polynomiafy, € F' exists which can divideion.
The last row(0, 0, — £, L) accounts for polynomial L + Moreover, due to our term order, oneeon consists of only

primary inputs, all remaining monomials will also contaimy

%y which is equal to the reduction resultobtained before. rimary input variables. Clearly, no more polynomiglsneed
This approach generates all the monomial terms that are yinp ' Y. poly

. . LT .- . 10"be generated i, and the loop terminates.
required in the division process, and the coefficients megui Usir? the setl, as rows ande as columns. a matrit/
for cancellation of terms are accounted for by elementalr%/ g L ’

. . . s constructed and Gaussian elimination is applied to reduc
row reductions in the subsequent Gaussian eliminatioredas . :
. it to row-echelon form. The last row in the reduced matrix
on the above concepts, a matrix can be constructed for our : :
corresponds to the reduction result Let us describe the

FEPT
proble_m:.f = _ approach using an example.
Definition 7.1: Let L = [f1,..., f] be a list of m poly- Example 7.2: Consider the reduction related to verification

nomials. LetM, be an ordered list of monomials of elementsf the F,. multiplier circuit of Fig. 2. Given specificatioff -
of L and letn be the number of elements ;. Define M

as them x n matrix which associates the polynomials bf  sgecall that the divisionfs = f; — LU . g — f, — lelfi) [ Im(fi) ¢
t d B | A/[ t | E t H - fi g 1t(fx) k v le(fr) Im(fr) k-
0 rows ,a.n monom_la_s oMy, O. 20 umns. Entry ”.] row, In the algorithm, the computation—h’:(‘}”) - fx corresponds toill:é]{”) - fr
columnj is the coefficient of thg*" element ofM, in f;. used in the division. k k




EXTENDED VERSION OF A PAPER ACCEPTED FOR PUBLICATION IN IEEERANS. ON CAD, ACCEPTED MARCH 2013 11

A AB Bao Ba1 20 %1 To aobo aobl albo a1b1
f 1 1 0 0 0 0 O 0 0 0 0
f3 1 0 0 0 1 a 0 0 0 0 0
Bfi | O 1 1 « 0 0 O 0 0 0 0
M= aofa | O 0 1 0 0 0 O 1 « 0 0
arfa| O 0 0 1 0 0 O 0 0 1 «
f5 0 0 0 0 1 0 0 1 0 0 1
f6 0 0 0 0 0 1 1 0 0 0 1
fa 0 0 0 0 0 0 1 0 1 1 0
(a) Matrix M generated by Algorithm 3
A AB Bao Ba1 zZ0 Z1 To aobo aobl albo a1b1
row, = f 1 1 0 0 0 0 O 0 0 0 0
rows = f3 — row 0 1 0 0 1 a 0 0 0 0 0
rows = Bf] — rows 0 0 1 « 1 a 0 0 0 0 0
M= Towa= ag fo — rows 0 O 0 « 1 a 0 1 « 0 0
T rows=oaaifo—rows | 0 0 0 0 1 a 0 1 o o a?
rowg = f5 — rows 0 O 0 0 0 o O 0 « « a?+1
rowy = afg — rowg 0 0 0 0 0 0 « 0 « o a?+a+1
r=afy — rows 0 0 0 0 0 0 O 0 0 0 a?+a+1

(b) M reduced to row echelon form via Gaussian Elimination

Fig. 3: F;-style Polynomial reduction on a matrix for Example 7.2.

Z + AB, and the circuit polynomialg; : A +ag + a1, fo: elimination is shown in Fig. 3b. The last row of the reduced
B+bo+bia, f3:Z+z0+ 210, fi:r0+abi+aibo, f5: matrix corresponds to the reductioh’ ¥, r, wherer =
zo+aobo+aibi, fe:z1+ro+aibi. Here P(z) = 2® +x+1, (@ + o + 1) - (a;by). Note that sincen is the root of the
and P(a) = 0. We have to computg u@ r. Note irreducible polynomialP(z) = 2? + = + 1, we have that
that, for simplicity, variablescy, c1,c2,c3 from Fig. 2 have oﬂ'—i— a+1 = 0 in Fy2, and hencer = 0. In conclusion,
been substituted by functions on primary inputs. The inghosg flﬁfﬁr 0, and the circuit correctly implements

ordering corrqsponds to the one obtained due to PrOF)OSiticmOther implementation issues:Recall that in our problem,
6.1:i.e. lexwithZ > A > B > 2y > z1 > 19 > ap > a1 >

) C we also have to account for bit-level vanishing polynomédls
bo > by. The algorithm constructs the matrix as follows:

- e primary input variablesfy! = {z? —; : 2; € Xp;}. In our

1) Iniialization: L = {f} = {Z + AB}. My = ggorithm, if we encounter a bit-level variable with degree
{2,AB},i = 1,mon = Z (i** monomial ofMy). n > 2, we replacer? = z;. Consequently, no specific entries

2) lteration 1: Identify a polynomialf, < F St for vanishing polynomials in the matrix need to be created.
Im(fx) | mon. Clearly, fy = f3 = Z + z0 + z10.. Then, Moreover, it is also possible to encounter coefficients

L=LUgy fr=LUfs Therefore,l. = {f, fs} and  \yheren > k in F,.. We precomputer”, . .., a2*=2 modulo
My, ={Z, AB, z0, 21}, i = 2 and mon = AB. the primitive polynomialP(z), store them in a table, and use
3) lteration 2: f, = fi = A+ a9 + a;a because these reduced values as coefficients in the matrix for rémtuct

Im(f1) | mon. ThereforeL = LU4E . f, = LUBf, =
{f7 f37 Bfl} and M, = {Z, AB, Bag, Bay, 29, 21}, 1=
3, mon = Bay.

4) lteration 3: fr = fo = B+ bo + by @aslit(fa) | mon.
Therefore L = LU it - fy = LU g - fo = LUag fa.
So,L ={f, f3, Bf1,a0f2} and the monomial se¥/;, =

{Z, AB, Bay, Bax, 20, 21, aobo, agb1 }, i = 4,mon =

As discussed by Faugére in [11], the sparse linear algebra
approach off'4 simulatesmultivariate polynomial division on
a matrix, as it requires the generation of all monomials and
polynomials utilized in the division process. Thereforee t
complexity of generating the matrix using Algorithm 3, in
the worst case, is the same as that of multivariate polynomia
division. Moreover, the arithmetic complexity of Gaussian

5) gz;{tinuing in this fashion elimination over am x n matrix is known to beD(n?) [48].

6) Iteration 7:L = {f, fs, Bf1. ;éof% a1 fo, fs, fi, fa}, My — The above approach is implemented as a standalone, custom
{Z, AB, Bao, Bay, 20, 21,70, aobo, aoby, aibg, arby }, i = verification tool, which inputs a Boolean gate-level citcui
8, mon = agby. netlist C and a specification polynomidl. The tool performs

7) lteration 8: Sincenon = agby contains only the primary & reverse topological traversal of the circuit and derives t

inputs, no polynomial inF has a leading term that can term order to represent polynomials. Then, Algorithm 3 is
cancelmon, so the loop terminates. The matdd can INvoked to construct the matrid/; Gaussian elimination is

be constructed using as rows and\M;, as columns finally performed onM to obtain the verification result via
. . . s . FFP! . . .
Fig. 3a shows the matrid/, and its subsequent Gaussiarreduction:f — , r. Our tool is written in C++.



EXTENDED VERSION OF A PAPER ACCEPTED FOR PUBLICATION IN IEEERANS. ON CAD, ACCEPTED MARCH 2013 12

VIIl. EXPERIMENTAL RESULTS shown that using such an approach, verification between a

Using our setup, we perform formal verification of severdlivén design and its synthesized counterpart can be effigien
large, custom-designed, Galois field arithmetic circuitsj.. Performed for large circuits, even for industrial desighbe
These circuits include Mastrovito [15], Montgomery [2] an§UCCess of these_technlques is attr!buted to being gblectcafln
Barrett multipliers [3], along with ECC point addition and@rgeé number of internal node equivalences — which reduces
doubling circuits [5]. Verification experiments are conthgt: the overall verification complexity. However, when not many
with both bug-free and with buggy circuits. To compare oupternal nodg equalences can be identified, such tecksiqu
approach against contemporary verification techniques, REVe to be infeasible.
also experiment with SAT, SMT, ABC [23] solvers, and the The multiplier architectures that we experiment with, are
SINGULAR tool [v. 3-1-3] [10]. The circuit designs(() are Structurally very dissimilar. Indeed, the approach of [E2l]
given as gate-level netlists: these are translated tordiffe iS unable to identify and merge internal node equivalenicies
formats: CNF, SMTLIB, BLIF/EQN, and polynomials, that ardhe miter — mostly because they do not exist. We describe
used by SAT, SMT, BDD/ABC and ISGULAR, respectively. the following experiments to demonstrate this effect. The
Our experiments are conducted on a desktop Ritt0GHz specification (golden model) and the implementation ciscui
Intel Core™2 Quad CPU with8GB memory runnings4-bit are given as input to the ABC tool, and the total number

Linux. A few of these circuit benchmarks are made availab®f nodesN, are counted in the miter. Then, we invoke the
to the community through the websj9)]. equivalence checking engine of ABC. Just before the “fraig-

swept and reduced” miter is given to the SAT solver for
. equivalence proof, we count the total number of nodés
A. Evaluation of SAT/SMT/BDD/ABC based methods in the reduced miter. The#V—ljgN2 reflects the internal node

In our problems, while the implementation is given agquivalencies identified and merged to create the reduced
a circuit, the specification is given as waord-level poly- miter.
nomial Bit-level solvers cannot readily verify a circu®' In Table II, the internal node equivalencies identified be-
against apolynomial Therefore, we convert the polynomiakyeen Mastrovito and Montgomery multipliers are reported
specification into a gate-levefolden circuit. Then, using for various bit-widths. For verification between Montgomer
conventional equivalence checking approaches, we creatgrg Barrett architectures, the data is reported in Tableltlll
miter with the specification and the implementation, and usn be seen from the results that ABC is unable to find many
SAT/SMT/BDD/ABC methods to check if it is unsatisfiable. jnternal node equivalences. For this reason, such tecasiqu

For SAT, BDDs and ABC, we use a, pre-designegre inefficient for verification of our applications.
Mastrovito-style bit-level circuit as the golden model,dan
verify it against the given circuit. For SMT experimentse thTABLE |I: Node equivalences: Mastrovito versus Montgomery
designs are modeled at bit-vector level using QF-BV theprignultipliers. N1, N> are the number of nodes counted before and after
maintaining a BV-level abstraction whenever possible (thstructural hashing, respectively.

circuits are described at partial-proq.uct_level usingvleid:{ors)._ Sz R 8 6 T 32 T 64 T 95 | 128 | 163
Table | shows the results of verification of the Mastrovito [ N 218 | 832 | 2226 | 7412 | 15576 | 26422 | 42273
multiplier (golden model) against a Montgomery multiplier N2 198 | 756 | 2160 | 7232 | 15384 | 26098 | 41947

Similarity [[9.17% [ 9.13% [ 2.96% [ 2.42% [ 1.23% | 1.23% | 0.77%

implementation. None of BDDs, SAT, SMT and ABC solvers
can verify the correctness of circuits beyond 16-bits.

TABLE [: Runtime for verification of correct multiplier circuits ave

F,x for BDDs, SAT, ABC, SMT-solver based methods. TO =timeoufABLE Ill: Node equivalences: Barrett versus Montgomery mul-
of 10hrs. tipliers. N1, N2 are the number of nodes counted before and after
structural hashing, respectively.

Word size of the operands-bits
Solver 8 [ 12 | 16 Sizek | 8 6 | 32 | 64 | 96 | 128 | 163
MINISAT 2255 | 10 TO N1 208 | 774 | 2108 | 7221 | 15293 | 26108 | 41835
CryptloMiniSAT || 7.17 | 16082.40 TO No 196 | 713 | 2074 | 7105 | 15197 | 25907 | 41672
PrecoSAT 7.04 TO TO Similarity [ 4.20% | 7.89% | 1.62% | 1.61% | 0.63% | 0.77% | 0.39%
PicOSAT 1485 | 10 TO
Yices 10.48 TO TO
Beaver 6.31 TO TO
CVC TO TO TO
Bojzctor 855'0%6 ;8 ?8 B. Computing a Gibner basis using Singular
Simsl‘i’f;i‘:grsw ‘lligg ;8 gg Conceptually, our approach requires the computation of a
ABC 2178 TO TO Grobner basis, and then to conduct a polynomial reduction
| BDD [ 010 | 1414 | 1899.69 | (ideal membership testing). Without deducing the result of

heorem 6.1 and Corollary 6.1, if we useN8ULAR to
omputea Grobner basis using the term order of Proposition
.1, we can only verify the correctness upl&bit multipliers.
eyond that, the Grobner basis engine encounters a memory
explosion. This result is shown in Table IV.

The approach employed by ABC [23] for combination
equivalence checking uses an integration of AIG rewritin
via structural hashing, simulation, mitering and SAT, ahd B
is considered to be state-of-the-art. In [21], the auth@eesh
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TABLE 1V: \Verification of Mastrovito multipliers by computing

capacit < 32767). For this reason, we have to clus-
Grobner bases usingINGULAR. M O=out of 8G memory. pacity ¢ < )

ter/partition the circuit according to a signal’s fanin egand

0perandb|8izéf 16 | 32 48 64 96 construct a polynomials for each cluster. Moreover, we ensu
#variables || 323 | 1155 | 2499 | 4355 | 9603 ; . ; ;
Fpolynomials || 201 [ 1091 | 2103 | 4237 | o411 that our term ordering coqstramt is not V|olateq. _Wlth such
#erms 179317169 | 16129 128673 | 64513 efforts, we are able to verify Montgomery multipliers up to
Time (sec) || 0.94 [93.80 [1174.27 | MO | MO 128-bits, beyond which we still exceefiINGULAR’ S capacity.

However, ourF'4-style approach has no such limitation, and it
is also> 2.X faster than th&@EDUCE operation of NGULAR.
Similarly, the results for verification of Barrett multiplis are
shown in Table VII.

Our approach only requires a polynomial reduction (divi- ) o
. for th ification test F,FEPT d 1o check if TABLE VII: Runtime for verifying bug-free and buggy Barrett
sion) for the verification testf —=— r and to check i multipliers. TO = timeout of 10hrs. Time is given in seconds.
r = 0? Results for verification of Mastrovito multipliers using

C. Evaluation of Our Approach

only this polynomial reduction are shown in Table V. We Opfaf_‘dbfiw“ 1?53 2;‘:29 45’:6 92?6 1;532 261;3437
. A s . . varianles
experiment with : i) SNGULAR to pe_rform th(_e reduction USING —grcnomials || T04T] 2263 | 4004 | 8986 | 15008 | 25716
the REDUCE command, denoted (Singular) in the table; and ii #erms 6757 | 15228 | 26452 | 60824 | 107454 | 174571
our own F'4-style reduction approach. We also experimentefBug-free (Singular)] 1.31 | 22.12 | 103.30 ] 724.14 | 2865 | 14048
with bug-catching in incorrect designs; the bugs are intoed Bug-free ¢4) [[0.76 [ 7.95 | 37.45 [239.64] 1098 | 6428
by arbitrarily inter-changing the wires (variables) with z;, Bugs (Singular) || 1.32 | 23.06 | 106.02| 734.63 | 2947 | 14836
. . . Bugs (F1) 0.76 | 7.97 | 37.91 |241.39| 1135 | 6501
for somei # j. In such cases, we obtained a non-zero

We used a SAT-solver to find a SAT assignmentrtes 0,

and the counter-example was generated in negligible amounfapies viil and 1X depict the results for verification of
of time. As shown in Table V, bothIBGULAR and ourf™d  gcc point addition and point doubling circuits. As descdbe
approach can verify the correctness of up@8-bit Mastrovito i, gection |1, these circuit designs are based on thpeiz-
mulUphgrs — corresponding to the practical NIST—sped|f|eDahab coordinate system [5]. In the circuits, polynomial
Galois fieldFy1es. However, our4-style approach is aImOStmultiplication is implemented using Barrett reduction. rOu

2.5X faster. approach can verifyl63-bit ECC operations — previously

TABLE V: Runtime for verifying bug-free and buggy Mastro-unaChIevable by other verification techniques.

vito multipliers using our approach. TO = timeout of 10hrSTABLE VIII:

T : Verification of correct ECC point addition cir-
Time is given in seconds.

cuits. Run-time given in seconds.

Operand sizék: 32 64 96 128 160 163

#ariables 1155 4355 | 9603 | 16899 | 26243 | 27224 Op:vr:rri\gblsézsdg 3g§3 62?4 13%?36 2;5(?8 385??7 3%??;4
Fpolynomials || 1091 | 4227 | 9411 | 16643 | 25923 | 26989

FHerms 7160 | 28673 | 64513 | 114689 | 179201 | 185984 #polynomials || 3489 | 6612 | 12548 | 26835 | 28319 | 30024

— Herms 86482 | 123544 | 288720 | 509660 | 604740 | 646129
ugljr?ﬁe(e'gwg;’ R —— Runtme(Singular]] 118 | 557 | 3598 | 15346 | 47290 | 81016
9 4 ' ' ' Runtme®d) || 42 | 268 | 1427 | 6471 | 19832 | 35240

Bugs (Singular) || 1.43 | 114.86 | 788.65 | 3061 9384 | 16368
Bugs (F4) 0.84 | 40.01 |249.84| 1152 3530 6592

TABLE IX: Verification of correct ECC point doubling cir-

TABLE VI: Runtime for verifying bug-free and buggy Mont- cuits. Run-time given is seconds.

gomery multipliers. TO = timeout of 10hrs. Time is given in_Operand sizé: 48 64 96 128 160 163
; - #variables 3321 | 6409 | 12230 | 26493 | 29015 | 30442
secondsx denotesSINGULAR'S capacity exceeded #polynomials || 3204 | 6257 | 10981 | 24867 | 26918 | 28359
Operand sizé: 32 48 64 96 128 163 #terms 42324 | 61274 | 142733 | 243452 | 297465 | 313145
#variables 1194 | 2280 | 4395 | 6562 | 14122 | 91246 Runtime(Singular]] 54 | 263 | 1532 | 8012 | 21493 | 36439
#polynomials || 1130 | 2184 | 4267 | 6370 | 13866 | 89917 Runtime'4) 26 98 683 | 3128 | 7648 | 15235
#Herms 10741 | 18199 | 40021 | 55512 | 134887 | 484738

Bug-free (Singular)| 1.50 | 11.03 | 27.70 | 1802.75 | 10919 *
Bug-free ) 0.86 | 4.47 | 10.11 | 700.59 | 4539 | 18374
Bugs (Singular) || 1.52 | 11.10 | 28.18 [ 1812.15] 11047 *

Bugs (1) 0.88 | 4.49 | 10.12 | 709.03 | 4564 | 17803

IX. CONCLUSIONS

A formal approach to model and verify arithmetic circuits
over Galois fieldsFF,. using a computer-algebra based ap-

The results for the verification of Montgomery multipliergproach is presented in this paper. Given a specification-poly
are shown in Table VI. Montgomery multipliers are signifhomial f overF,., and a gate-level combinational circui,
icantly larger than Mastrovito multipliers. If we represen we formally prove thatU correctly implementg; or disprove
polynomial for every gate in the design, then we create tdbe equivalence. The verification problem is formulated as
many variables ) in the system, exceedingINBsULAR’S membership testing of the specification polynomjalin a
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(radical) ideal + Jo = (f1, - . .,fs,a:%k —T1,... ,xﬁk —xz4); 9]
whereJ = (f1,..., fs) corresponds to the ideal generated by
polynomials extracted from the circuit, anlj = <x§k — x;) 0

14

B. Buchberger, “Ein Algorithmus zum Auffinden der Bas&aente des
Restklassenringes nach einem nulldimensionalen Polydeatji Ph.D.
dissertation, University of Innsbruck, 1965.

10] W. Decker, G.-M. Greuel, G. Pfister, and H. SchonemdBmNGULAR

corresponds to the ideal of vanishing polynomials of thelfiel
The formulation is derived from the application of Stron?
Nullstellensatz oveF,:. Subsequently, a Grobner basisof =
the ideal (/ + Jo) can be computed and the ideal membership
test can be decided via Grobner basis reduction. [12]
The Grobner basis (Buchberger’s) algorithm, however, eﬁé]
hibits high computational complexity, which is very susttep
ble to the term orderings used to represent and manipulate [t
polynomials. We show that a specific term ordering can be
derived by performing a topological analysis of the circuit
This term ordering renders the set of polynomials itself @s;
(minimal) Grobner basis — thus obviating the need to apply
Buchberger’s algorithm. As a consequence of our theodeti?ﬂs]
deductions, the verification test reduces to a much simplse ¢

of polynomial reduction:f §>+ r, which is performed using
multivariate polynomial division. To perform this reduamti
efficiently, we engineer ar’4-style approach — where thefi7]
reduction is performed via Gaussian elimination on a matrix
representation of the problem. 8]

Our approach is implemented as a custom verification togl,
which is used to conduct experiments for verification of a
variety of custom-designed Galois field arithmetic cirsuit [19]
Using our approach, we can verify up to 163-bit Galoi&0
field circuits, whereas contemporary verification appresch
are impractical. As compared to the use of a general-purpose
computer algebra toolS(NGULAR), our F'4-style reduction
approach gives approximately 2.5X speed-up.

As future work, we would like to develop computer al-
gebra techniques for verification of sequential circuitatth[22]
perform Galois field arithmetic computations. For verifioat
of such circuits, it is required to analyze the state-spéce [3]
the sequential circuit. This will require the study of qufiat
elimination techniques using Grobner bases over Galddsfie (24
such as those presented in [40]. We will investigate whether
and how the formulations of [40] can be made scalable using
the techniques presented in this paper.

[21]
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