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EFFICIENT SYMBOLIC COMPUTATION FOR WORD-LEVEL ABSTRACTION FROM COMBINATIONAL

CIRCUITS FOR VERIFICATION OVER FINITE FIELDS

Tim Pruss, Priyank Kalla, Senior Member, IEEE, and Florian Enescu

Abstract—Abstraction plays an important role in digital design,
analysis and verification. This paper introduces a word-level
abstraction of the function implemented by a combinational logic
circuit. The abstraction provides a canonical representation of the
function as a polynomial Z =F (A) over the finite field F2k , where
Z,A represent the k-bit word-level output and input of the circuit,
respectively. This canonical abstraction can be utilized for formal
verification and equivalence checking of combinational circuits.

Our approach to abstraction is based upon concepts from
computational commutative algebra and algebraic geometry. We
show that the abstraction Z = F (A) can be derived by computing
a Gröbner basis of the polynomials corresponding to the circuit,
using a specific elimination term order derived from the circuit’s
topology. Computing Gröbner bases using elimination term
orders is infeasible for large circuits. To overcome this limitation,
we describe an efficient symbolic computation to derive the word-
level polynomial. Our algorithms exploit i) the structure of the
circuit, ii) the properties of Gröbner bases, iii) characteristics
of finite fields F2k , and iv) modern algorithms from symbolic
algebra, to derive the canonical polynomial representation.

A standalone customized tool is developed that implements
these concepts to derive the polynomial abstraction. This ap-
proach and our tool are used to verify (and detect bugs in)
combinational finite field arithmetic circuits – with up to 1024-
bit operands – whereas contemporary verification techniques are
infeasible.

Keywords-Word-Level Abstraction, Formal Verification, Equiv-
alence Checking, Gröbner Bases, Finite Fields.

I. INTRODUCTION

Formal verification techniques can benefit greatly from

abstractions of the functionality of the circuits that are being

verified. Abstractions may reduce the complexity of analysis of

the design and may provide a hierarchical view of the register

transfer level (RTL) which may aid in RTL and system-

level verification. Word-level abstraction specifically focuses

on extracting a word-level representation of the function

implemented by a gate-level design. For instance, a bit-level

representation of a multiplier is represented as a collection of

logic gates and nets, whereas a word-level abstraction hides

the underlying logic and represents the function with bit-

vector level inputs and output, e.g. Z = A×B. As the datapath

size of the multiplier grows, the bit-level representation may

increase (possibly exponentially) in size, while the word-level

abstraction does not change. It is desirable for the obtained

word-level abstraction to be a canonical representation of

the function, to facilitate formal verification and equivalence

checking between a specification (golden) model against an

optimized implementation.

Word-level abstractions of circuit blocks also have appli-

cations in other areas of electronic design automation (EDA),
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such as in high-level datapath synthesis [1], resource allocation

[2], component matching and reuse [3], word-level interpolants

[4], SMT-solving [5], etc. Due to their many fundamental

applications, it is important to investigate various forms of

word-level functional abstractions of hardware designs along

with efficient algorithmic techniques to derive them.

This paper describes a method to derive a canonical word-

level polynomial representation from a given gate-level com-

binational circuit. This abstraction polynomial is derived over

the finite field of 2k elements (F2k ) — where k corresponds

to the size of the input/output bit-vectors (words) — and it

represents the function implemented by the circuit. The circuit

is modeled as a set of polynomials over F2k , and concepts from

computer-algebra and algebraic geometry (notably, Gröbner

bases [6] [7]) over finite fields are applied to derive the

abstraction. An efficient algorithmic approach based on new

concepts and discoveries is described to make our approach

practical. The polynomial abstraction approach is based on the

following mathematical insights:

The mathematical framework: A combinational circuit C

with k-bit inputs and k-bit outputs implements Boolean

functions that are mappings between k-dimensional Boolean

spaces: f : Bk → Bk, where B= {0,1}. The function f , which

is a mapping among 2k elements, can also be construed as a

function f : F2k → F2k , i.e. as a function over the finite field of

2k elements. It is well-known that over the finite field (Fq) of q

elements, every function f : Fq → Fq is a polynomial function

[8]. Moreover, there exists a unique canonical polynomial

F that describes f . Motivated by this fundamental result,

we devise an approach to derive a word-level, canonical,

polynomial abstraction of the function as Z = F (A) over F2k ,

where Z = {z0, . . . ,zk−1}, A = {a0, . . . ,ak−1} are, respectively,

the output and input bit-vectors (words) of the circuit C,

and F denotes a polynomial representation of the circuit’s

functionality. The approach is generalized to circuits with

different input/output bit-vector sizes, i.e. functions of the type

f : Bn → Bm, modeled as a polynomial over f : F2n → F2m .

Note that the function f : Bk → Bk can also be viewed as

a mapping over finite integer rings Z (mod 2k), i.e. over

f : Z2k → Z2k . However, not every function is a polynomial

function over Z2k , so the finite integer ring model is beyond

the scope of this paper.

The polynomial F can be derived by means of the La-

grange interpolation formula [8] [9]. However, this requires

to analyze f over the entire field F2k , which is exhaustive

and infeasible. To make this approach practical, we propose

a symbolic method based on computer algebra and algebraic

geometry to derive the canonical polynomial abstraction from

the circuit. This abstraction is employed for formal verification

and equivalence checking of combinational circuits C1,C2. The

circuits can be analyzed separately to derive their correspond-

ing canonical polynomial representations F1,F2, respectively.



EXTENDED VERSION OF THE PAPER ACCEPTED TO APPEAR IN IEEE TRANS. ON CAD, PAPER ACCEPTANCE OCTOBER 2015. 2

Equivalence test is then performed by simply matching the

coefficients of F1,F2.

Motivating application: While this approach is theoretically

applicable to arbitrary combinational circuits, the main mo-

tivation to derive this approach stems from the problem of

hardware verification of cryptography primitives. Such designs

perform polynomial computations over the finite field F2k ,

where the datapath size k is very large. For example, the U.S.

National Institute for Standards and Technology (NIST) rec-

ommends fields F2k corresponding to k = 163,233,283,409,

and 571 bits for elliptic-curve cryptography (ECC). For other

non-ECC based crypto- and error-correcting circuits, k can be

1024-bits or larger! The large size and high complexity of such

architectures necessitates hierarchical and custom design [10]

[11] [12] [13]. Custom design raises the potential for bugs in

large systems. Arithmetic bugs are known to compromise the

security of crypto-systems [14]; therefore, formal verification

of such systems is an imperative. Our approach is particularly

powerful for formal verification of hierarchical and custom

finite field arithmetic architectures, where the specification

(golden) models are structurally very dissimilar than their

optimized implementations. Contemporary circuit verification

techniques (e.g. [15] [16]) are unable to prove equivalence

between such large, custom, modulo-arithmetic circuits.

A. Approach & Contributions

We analyze the given circuits and model the gate-level

operators as polynomials with coefficients in F2k , where k

corresponds to the operand-size in the circuit. Using the

concepts of Nullstellensatz over finite fields, projections of

varieties, elimination ideals and Gröbner bases [7], we formu-

late the polynomial abstraction problem as one of computing

a Gröbner basis of this set of polynomials, using a specific

elimination term order, called the abstraction term order >.

Computing Gröbner bases using elimination orders is in-

feasible for large circuits. To overcome this limitation, we

present a refinement of this abstraction term order based on

the topological analysis of the circuit. This refinement allows

us to overcome the complexity of Gröbner basis computations,

and derive the abstraction polynomial using efficient symbolic

computation algorithms. By exploiting the binomial expansion

over F2k , we further deduce that the symbolic computation

problems so derived exhibit a very special structure that further

simplify our computations.

This technique is implemented as a standalone custom

verification tool for canonical word-level abstraction from

gate-level combinational circuits, and employed for formal

verification and equivalence checking of finite field arithmetic

circuits. We demonstrate the application of our approach to

verify a variety of finite field arithmetic architectures. Our

approach can verify, and also find bugs in, large (up to

k = 1024 bit) arithmetic circuits, whereas contemporary verifi-

cation techniques are infeasible. Our approach is, however, not

efficient for verification of random-logic and integer arithmetic

circuits. The paper also discusses this particular limitation —

which is a limitation not so much of our algorithms, but rather

a (theoretical) limitation that is inherent in the complexity of

the representation.

Paper organization: Section II reviews related previous

work in functional abstraction, combinational equivalence

checking and verification of finite field arithmetic circuits.

Section III covers preliminary concepts related to finite fields,

polynomial functions, and algebraic geometry. Section IV

describes the main theoretical results of our approach on

polynomial abstraction from circuits. A new, improved, guided

approach to abstraction is described in Section V. Our custom

abstraction tool and experiments are described in Section VI.

The limitations of our approach are also analyzed. Finally,

Section VII concludes the paper.

II. RELATED PREVIOUS WORK

Canonical Representations: The Reduced Ordered Bi-

nary Decision Diagram (ROBBD) [17] — and its variants

OKFDDs, ADDs, BMDs, etc. — are canonical DAG represen-

tations of functions that are employed in design verification.

The various decomposition principles behind these diagrams

are based on point-wise, binary decomposition, w.r.t. each

(Boolean) variable. As such, these do not fully provide word-

level abstraction capabilities from bit-level representations.

The Taylor Expansion Diagram (TED) [18] is a word-level

canonical representation of a polynomial expression, but it

does not represent a polynomial function canonically. The

work of [19] and [20] represents polynomial functions canon-

ically, but over finite integer rings Z2k and not over F2k .

MODDs [21] are a DAG representation of the characteristic

function of a circuit over finite fields F2k . MODDs come

close to satisfying our requirements as a canonical word-

level representation that can be employed over finite fields.

However, MODDs do not scale well w.r.t. the circuit size.

MODDs are infeasible in representing functions over larger

than 32-bit words [21].

Equivalence Checking: Modern equivalence checkers em-

ploy techniques based on And-Invert-Graph (AIG) reductions

[15] and circuit-SAT solvers [22]. Such techniques are able

to identify internal structural equivalences between the spec-

ification models (Spec) and implementation (Impl) circuits

and reduce the instances for verification. However, when

the arithmetic circuits are structurally very dissimilar, these

techniques are infeasible in proving equivalence (Tables I and

II in [16] depict such experiments). In general, the applications

targeted in this paper are hard for SAT/SMT solvers.

Computer algebra based verification: In [23] [24] [25]

[13], the authors present the BLUEVERI tool from IBM for

verification of finite field error correcting circuits against an

algorithmic spec. The implementation consists of a set of (pre-

designed and verified) circuit blocks that are interconnected to

form the error correcting system. The spec is given as a set of

design constraints on a “check file”. Their objective is to prove

the equivalence of the implementation against this check file,

for which they employ a Nullstellensatz and Gröbner basis

formulation. In their setting, the polynomial representation

of the sub-circuit blocks is already available, whereas our

approach identifies such a representation. Moreover, improve-

ments to the core Gröbner basis computational engine are not

the subject of their work.
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In [26] [16], Lv et al. present computer algebra techniques

for formal verification of finite field arithmetic circuits. Given

a specification polynomial f , and a circuit C, they formulate

the verification problem as an ideal membership test using

Nullstellensatz and Gröbner bases. They show that for any

combinational circuit, there exists a term order (derived from

the circuit) that renders the set of polynomials itself a Gröbner

basis. By exploiting this term order, the need for Gröbner basis

computation is avoided and verification is performed only by

polynomial division. In contrast to [16], we are not given the

specification polynomial f . Given the circuit C, we have to

derive (extract) the word-level specification f .

Among other relevant works, [27] describes how to use

Gröbner basis techniques to count the zeros of an ideal over

Fq. The authors then follow-up with an approach for quantifier

elimination over Fq [28]. Our problem formulation employs

some of the concepts presented in [27] [28]. Computer algebra

techniques have also been employed for verification of integer

arithmetic circuits [29] [30].

Other function extraction techniques: In [31], the authors

present an approach to function extraction from bit-level

circuits using a network-flow based model – by interpret-

ing the computation as a flow of binary data through the

circuit-network, represented as a pseudo-Boolean expression.

Improvements to this approach are described in [32], where the

algebraic trasformations are guided by analyzing the structure

(levelization) of the circuit. The extracted signatures are in

terms of bit-level polynomials and do not provide a word-

level abstraction. In [3], the authors present an approach

that searches for a linear word-level abstraction, with integer

coefficients, using *BMDs. However, their approach is not

complete in the sense that a linear word-level abstraction does

not always exist for arbitrary circuits.

Polynomial Interpolation: Conceptually, our abstraction can

be derived using polynomial interpolation. It falls into the cat-

egory of dense interpolation (as opposed to the classical multi-

variate sparse interpolation problem, see [33]), as we require a

polynomial that describes the function at each of the q points

of the field Fq. However, Newton’s dense interpolation exhibits

very high complexity. In the logic synthesis and VLSI testing

area, the work of [9] investigates dense interpolation. Due to

its inherently high-complexity, their approach is feasible for

applications over smaller fields, e.g. computing Reed-Muller

forms for multi-valued logic.

III. PRELIMINARIES

A. Finite fields and polynomial functions

A finite field, also called a Galois field, is a field with a finite

number of elements. It is denoted as Fq, where q corresponds

to the number of elements, and it is always a power of a

prime integer – i.e. q = pk where p ≥ 2 is a prime integer and

k > 0 is a positive integer. In this work, we are concerned with

binary Galois extension fields F2k , where p = 2, so that the

field contains q = 2k elements. We use the notations Fq and

F2k interchangeably, with q always taken as 2k.

The field F2k is constructed as F2k ≡ F2[x] (mod P(x)),
where: i) F2 = {0,1} denotes the finite field of 2 elements; ii)

F2[x] is the univariate polynomial ring with coefficients in F2;

and iii) P(x) denotes an irreducible (or primitive) polynomial

in F2[x] of degree k. F2k is a k-dimensional extension of the

base field F2; all the field operations in F2k are performed

modulo the irreducible polynomial P(x) and the coefficients

are reduced modulo p= 2 (due to which −1=+1 over F2k ). In

this work, we always choose P(x) to be a primitive polynomial

and α as a primitive element.

Any element A ∈ F2k can be represented as A = a0 +a1α+
· · ·+ak−1αk−1, where ai ∈ F2, i = 0, . . . ,k−1, and α is a root

of the primitive polynomial, i.e. P(α) = 0. Since a k-bit vector

{a0, . . . ,ak−1} represents 2k distinct values, it can be viewed

as an element A of F2k .

Example 3.1: Let us construct F24 as F2[x] (mod P(x)),
where P(x) = x4 + x3 + 1 ∈ F2[x] is a primitive polynomial

of degree k = 4. Let α be a root of P(x), i.e. P(α) = 0. Any

element A ∈ F2[x] (mod x4 + x3 + 1) has a representation of

the type: A = a3x3 + a2x2 + a1x + a0 where the coefficients

a3, . . . ,a0 are in F2 = {0,1}. Since there are only 16 such

polynomials, we obtain the 16 elements of the field F16.

Each element can then be viewed as a 4-bit vector over F2:

F16 = {(0000),(0001), . . .(1110),(1111)}. Each element also

has an exponential representation; all three representations

are shown in Table I. For example, consider the element α12.

Computing α12 (mod α4 +α3 + 1) = α+ 1 = (0011); hence

we have the three equivalent representations.

TABLE I: Bit-vector, Exponential and Polynomial representation of elements in

F
24 = F2[x] (mod x4 + x3 +1)

a3a2a1a0 Exponential Polynomial a3a2a1a0 Exponential Polynomial

0000 0 0 1000 α3 α3

0001 1 1 1001 α4 α3 +1

0010 α α 1010 α10 α3 +α

0011 α12 α+1 1011 α5 α3 +α+1

0100 α2 α2 1100 α14 α3 +α2

0101 α9 α2 +1 1101 α11 α3 +α2 +1

0110 α13 α2 +α 1110 α8 α3 +α2 +α

0111 α7 α2 +α+1 1111 α6 α3 +α2 +α+1

There may be more than one primitive polynomials of

degree k in F2[x], and any of them could be used to construct

the field F2k . Finite fields are unique (up to isomorphism) irre-

spective of the chosen primitive polynomial. For verification,

if the primitive polynomial P(x) is already given, we use it

for abstraction. Otherwise, we choose a P(x) of degree k with

fewest terms, as the reduction (mod P(x)) may result in fewer

terms being generated.

Polynomial Functions f : F2k → F2k : Arbitrary mappings

among k-bit vectors can be constructed; each such mapping

generates a function f : Bk → Bk. Since every k-bit vector can

be construed as an element in F2k (as shown in the above

example), every such function can be viewed as a mapping

over f : F2k → F2k . Importantly, every such function is also a

polynomial function over F2k .

Theorem 3.1: (From [8]) Any function f : Fq → Fq is a

polynomial function over Fq, that is there exists a polynomial

F ∈ Fq[x] such that f (a) = F (a), for all a ∈ Fq.

By analyzing f over each of the q points, one can apply
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Lagrange’s interpolation formula and interpolate a polynomial

F (x) =
q

∑
n=1

∏i6=n(x− xi)

∏i6=n(xn − xi)
· f (xn), (1)

which is a polynomial of degree at most q − 1 in x. One

can easily see that F (a) = f (a) for all a ∈ Fq, and F (x) is

therefore the polynomial representation of the function f .

Example 3.2: Let A = {a2,a1,a0} and Z = {z2,z1,z0} be

3-bit vectors. Consider the function Z[2 : 0] = A[2 : 0] >> 1,

i.e. a 1-bit right shift operation on A. The function maps as

follows:
{a2a1a0} A → {z2z1z0} Z

000 0 → 000 0

001 1 → 000 0

010 α → 001 1

011 α+1 → 001 1

100 α2 → 010 α

101 α2 +1 → 010 α

110 α2 +α → 011 α+1

111 α2 +α+1 → 011 α+1

By applying Lagrange’s interpolation formula over F23 , we ob-

tain Z = (α2+1)A4+(α2+1)A2, as the canonical polynomial

representation of the function, where P(α) = α3 +α+ 1 = 0.

An important property of finite fields is that for all elements

A ∈ Fq,A
q = A, and hence Aq −A = 0. Therefore, the poly-

nomial xq − x vanishes on all points in Fq. The polynomial

xq − x is also referred to as a vanishing polynomial of Fq.

Any polynomial F (x) can be reduced (mod xq −x) to obtain

a canonical representation F (x) (mod xq − x) with degree at

most q− 1. The result can be generalized as:

Definition 3.1: Any function f : Fn
q → Fq has a unique

canonical representation (UCR) as a polynomial F ∈
Fq[x1, . . . ,xn] such that all its nonzero monomials are of the

form x
i1
1 · · ·xin

n where 0 ≤ i j ≤ q− 1, for all j = 1, . . . ,n.

B. Hardware designs over F2k verified in this paper

In ECC, the operations of encryption, decryption and au-

thentication are built upon point-addition and point-doubling

operations on elliptic curves over F2k . These operations are

implemented as polynomial computations (ADD, MULT) over

F2k [34], as shown below:

Example 3.3: Consider point addition in López-Dahab

(LD) projective coordinate. Given an elliptic curve: Y 2 +
XYZ = X3Z + aX2Z2 + bZ4 over F2k , where X ,Y,Z are k-

bit vectors that are elements in F2k and similarly, a,b are

constants from the field. Let (X3, Y3, Z3) = (X1, Y1, Z1) + (X2,

Y2, 1) represent point addition over the elliptic curve. Then

X3, Y3, Z3 can be computed as follows:

A =Y2 ·Z
2
1 +Y1; B = X2 ·Z1 +X1

C = Z1 ·B; D = B2 · (C+aZ2
1)

Z3 =C2; E = A ·C

X3 = A2 +D+E; F = X3 +X2 ·Z3

G = X3 +Y2 ·Z3; Y3 = E ·F +Z3 ·G

(2)

Efficient VLSI architectures for multiplication and squaring

have been devised [35] [11] [12] [10], which are employed

as modulo-arithmetic and logic units (mALUs) in such cryp-

tosystems [36]. We briefly review such arithmetic architectures

on which we have applied our abstraction based approach for

verification.

Over finite fields F2k , multiplication is performed as

Z = A × B (mod P(x)), where A,B ∈ F2k are k-bit in-

puts, Z is the k-bit output, and P(x) is the given

primitive polynomial. The multiplier circuit takes bit-level

inputs {a0, . . . ,ak−1, b0, . . . ,bk−1} and produces output

{z0, . . . ,zk−1}, such that A = ∑
i=k−1
i=0 aiα

i, B = ∑
i=k−1
i=0 biα

i and

Z =∑i=k−1
i=0 ziα

i, where P(α) = 0. In one approach, the bit-wise

multiplication S = A×B is computed using an array multiplier

architecture, and then the result S is reduced (mod P(x))
to obtain Z = S (mod P(x)). Such architectures are termed

Mastrovito multipliers [35].

Mastrovito multipliers are inefficient, especially for cryp-

tosystems where multiplication is often performed repeatedly.

For such applications, Montgomery Reduction (MR) opera-

tions are proposed [11] [12] that compute: MR(A,B) = A ·B ·
R−1 (mod P(x)), where A,B are k-bit inputs, R is suitably

chosen as R = αk, R−1 is multiplicative inverse of R in F2k ,

and P(x) is the irreducible polynomial. Since MR(A,B) cannot

directly compute A ·B (mod P(x)), we need to pre-compute

A ·R and B ·R, as shown in Fig. 1.

MR

MR

MR

MR
A R

B R

R
2

R
2

A B R

A

B

G=A B (mod P)

"1"

Z

Fig. 1: Montgomery multiplication over F2k using four MRs.

In many non-ECC based crypto-systems, the datapath size

k can be extremely large, e.g. k = 1024 bits. To overcome the

complexity of such large designs, the concept of composite

field arithmetic is used [37]. Here, the field F2k is decom-

posed as F(2m)n for a non-prime k = m · n, and the circuits

are designed over the decomposed field. This decomposition

introduces a hierarchy (modularity) in the design by first lifting

the base field from F2 to F2m , and then constructing F(2m)n as a

n-dimensional extension of F2m . Such circuits comprise m-bit

F2m adders and multipliers, which are interconnected together

to form a k = m ·n bit circuit over F(2m)n [10].

Example 3.4: An example of a composite field multiplier is

shown in Fig. 2, where multiplication over F24 is decomposed

as polynomial computations over F
(22)

2 . As shown in the

figure, inputs A = (a3, . . . ,a0),B = (b3, . . . ,b0) over F24 are

first transformed into elements A0,A1,B0,B1 over the base field

F22; these are then interconnected (added and multiplied) to

produce the final output Z = {Z0,Z1}.

Associated with both Montgomery multipliers and compos-

ite field circuits is a level of hierarchy (modularity) in design.

With or without the availability of this hierarchy informa-

tion, our approach can be applied to identify the function

implemented the given circuit. However, when this hierarchy

information is available, our approach can perform abstraction

hierarchically and iteratively — significantly improving the

efficiency of verification. In this paper, we have experimented
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Fig. 2: 4-bit composite field multiplier designed over F(22)2 .

with both flattened (“bit-blasted”) and hierarchical implemen-

tations of the above multipliers, for both buggy and bug-free

implementations.

C. Algebraic Geometry and Symbolic Computation

1) Polynomial rings and term orderings: We model the

given combinational circuits with a set of multivariate poly-

nomials with coefficients from the finite field Fq. Let

Fq[x1, . . . ,xd ] be the polynomial ring in variables x1, . . . ,xd .

A monomial in variables x1, . . . ,xd is a power product of

the form X = x
e1
1 · x

e2
2 · · ·x

ed

d , where ei ∈ Z≥0, i ∈ {1, . . . ,d}.

A polynomial f ∈ Fq[x1, . . . ,xd ] is written as a finite sum

of terms f = c1X1 + c2X2 + · · · + ctXt . Here c1, . . . ,ct are

coefficients and X1, . . . ,Xt are monomials. To systematically

manipulate the polynomials, a monomial order > (also called

a term order) is imposed on the ring. The monomials of any

polynomial f = c1X1 + c2X2 + · · ·+ ctXt are ordered w.r.t. to

>, such that X1 > X2 > · · ·> Xt . Subject to such a term order,

lt( f ) = c1X1, lm( f ) = X1, lc( f ) = c1, are the leading term,

leading monomial and leading coefficient of f , respectively.

We also denote tail( f ) = f − lt( f ) = c2X2 + · · ·+ ctXt . In

this work, we will mostly be concerned with terms ordered

lexicographically (lex).

2) Polynomial reduction: Polynomial reduction (division)

plays a key role in our abstraction algorithms. Let f ,g be

polynomials. If a non-zero term cX of f is divisible by the

leading term of g, then we say that f is reducible to r modulo

g, denoted f
g

−→ r, where r = f − cX
lt(g)

·g. Similarly, f can be

reduced (divided) w.r.t. a set of polynomials F = { f1, . . . , fs} to

obtain a remainder r. This reduction is denoted f
F

−→+ r, and

the remainder r has the property that no term in r is divisible

by the leading term of any polynomial fi in F .

3) Ideals, Varieties & Nullstellensatz: To analyze the func-

tion implemented by a circuit, we will model the circuit

by way of a set of polynomials F = { f1, . . . , fs}, and then

analyze the set of all solutions to f1 = f2 = · · · = fs = 0.

The set of all solutions to a given system of polynomial

equations f1 = · · · = fs = 0 is called the variety, denoted

as V ( f1, . . . , fs). The variety depends not just on the given

system of polynomials, but rather on the ideal generated by

the polynomials.

Definition 3.2: An ideal J generated by polynomials

f1, . . . , fs ∈ Fq[x1, . . . ,xd ] is:

J = 〈 f1, . . . , fs〉= {
s

∑
i=1

hi · fi : hi ∈ Fq[x1, . . . ,xd ]}.

The polynomials f1, . . . , fs form the basis or generators of J.

Let a=(a1, . . . ,ad)∈Fd
q be a point, and f ∈Fq[x1, . . . ,xd ] be

a polynomial. We say that f vanishes on a if f (a) = 0. Then,

for any ideal J = 〈 f1, . . . , fs〉 ⊆ Fq[x1, . . . ,xd ], the variety of J

over Fq is formally defined as:

VFq(J) =V ( f1, . . . , fs) = {a ∈ F
d
q : ∀ f ∈ J, f (a) = 0}.

In the context of this work, the set of polynomials F =
{ f1, . . . , fs} describing the given circuit generates an ideal J =
〈 f1, . . . , fs〉 ⊆ Fq[x1, . . . ,xd ]. The variety VFq(J) corresponds to

the set of all evaluations of the circuit. Then, to formulate

our abstraction problem, we need to consider the ideals of

polynomials that vanish on a variety V .

Definition 3.3: For any V ⊆ Fd
q , the ideal of polynomials

that vanish on V , called the vanishing ideal of V , is defined

as: I(V ) = { f ∈ Fq[x1, . . . ,xd ] : ∀a ∈ V, f (a) = 0}. Therefore,

if a polynomial f vanishes on a variety V , then f ∈ I(V ).
Our abstraction problem is formulated using the Strong

Nullstellensatz applied over Fq, which is stated below. The

proof of this fundamental result can be found in Theorem

3.2 in [27]. The notation of sum of ideals is used be-

low: if I1 = 〈 f1, . . . , fs〉 and I2 = 〈h1, . . . ,hr〉, then I1 + I2 =
〈 f1, . . . , fs, h1, . . . ,hr〉. Moreover, J0 = 〈xq

1 − x1, . . . ,x
q
d − xd〉 is

used to denote the ideal of all vanishing polynomials over Fq.

Theorem 3.2: Strong Nullstellensatz over Fq: Let J ⊆
Fq[x1, . . . ,xd ] be an ideal, and let J0 = 〈x

q
1 − x1, . . . ,x

q

d − xd〉
be the ideal of all vanishing polynomials. Let VFq(J) denote

the variety of J over Fq. Then, I(VFq(J)) = J+ J0.

4) Gröbner Bases: An ideal J may have many different

generators: it is possible to have sets of polynomials F =
{ f1, . . . , fs} and G = {g1, . . . ,gt} such that J = 〈 f1, . . . , fs〉 =
〈g1, . . . ,gt〉 and V (J) = V ( f1, . . . , fs) = V (g1, . . . ,gt). Some

generating sets are “better” than others, i.e. they are a better

representation of the ideal. A Gröbner basis is one such

representation that possesses many important properties that

allow to solve many polynomial decision questions. In the
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context of this work, Gröbner bases are utilized as a canonical

representation of an ideal.

Definition 3.4: [Gröbner Basis] [6]: For a monomial order-

ing >, a set of non-zero polynomials G = {g1,g2, · · · ,gt} con-

tained in an ideal J, is called a Gröbner basis of J iff ∀ f ∈ J,

f 6= 0, there exists i∈ {1, · · · , t} such that lm(gi) divides lm( f );
i.e., G = GB(J)⇔ ∀ f ∈ J : f 6= 0,∃gi ∈ G : lm(gi) | lm( f ).

Buchberger’s algorithm [38], shown in Algorithm 1, com-

putes a Gröbner basis over a field. Given polynomials F =
{ f1, . . . , fs}, the algorithm computes the Gröbner basis G =
{g1, . . . ,gt}. The algorithm takes pairs of polynomials ( f ,g),
and computes their S-polynomial (Spoly( f ,g)):

Spoly( f ,g) =
L

lt( f )
· f −

L

lt(g)
·g

where L = LCM(lm( f ), lm(g)). Spoly( f ,g) cancels the

leading terms of f and g. Therefore, the computation

Spoly( f ,g)
G′

−→+ r results in a remainder r, which if non-zero,

provides an element with new leading term in the generating

set. The Gröbner basis algorithm terminates when for all pairs

( f ,g), Spoly( f ,g)
G′

−→+ 0.

Algorithm 1: Buchberger’s Algorithm

Input: F = { f1, . . . , fs}
Output: G = {g1, . . . ,gt}
G := F ;
repeat

G′ := G;
for each pair { f ,g}, f 6= g in G′ do

Spoly( f ,g)
G′

−→+ r ;
if r 6= 0 then

G := G∪{r} ;
end

end
until G = G′;

A Gröbner basis G may contain redundant elements. To

remove these redundant elements, G is first made minimal and

subsequently reduced.

Definition 3.5: A Gröbner basis G = {g1, . . . ,gt} for a

polynomial ideal J is minimal when: i) ∀gi ∈ G, lc(gi) = 1;

ii) ∀ i 6= j, lm(gi) does not divide lm(g j).

To obtain a minimal GB, all polynomials g j are removed

from G if there exists a gi such that lm(gi) | lm(g j). Then the

remaining elements (gi’s) are made monic by dividing each gi

by lc(gi). This minimal basis is further reduced by ensuring

that no term in g j is divisible by the leading term lt(gi) for all

i 6= j. Subject to >, the reduced Gröbner basis G= {g1, . . . ,gt}
is a unique canonical representation of the ideal – a property

we utilize for canonical polynomial abstraction.

IV. WORD-LEVEL ABSTRACTION USING GRÖBNER BASIS

We are given a combinational circuit C with k-bit inputs

and outputs, as shown in Fig. 3. Our objective is to derive

a canonical word-level abstraction polynomial Z = F (A) for

the circuit C. As discussed before, one such abstraction exists

as a polynomial function over the Galois field F2k . We now

describe a Gröbner basis approach to derive the abstraction

polynomial.

Fig. 3: Polynomial abstraction from a circuit.

A. The Problem Formulation over F2k

Based on the datapath size k, q = 2k is chosen to model the

circuit as a system of polynomials over Fq[x1, · · · ,xd ,Z,A],
where {x1, · · · ,xd} correspond to all the bit-level variables

(nets) in the circuit, Z and A are the word-level output and

input, respectively. To construct the field, we choose a prim-

itive polynomial P(x) with the fewest terms, as it simplifies

our computations.

Every Boolean logic gate in the circuit C is mapped to a

polynomial function over F2 (⊂ F2k):

NOT : ¬a → a+1 (mod 2)

AND : a∧b → a ·b (mod 2)

OR : a∨b → a+b+a ·b (mod 2)

XOR : a⊕b → a+b (mod 2)

(3)

For example, let c = a∧b represent an AND gate. Over F2,

this corresponds to the equation c = a ·b; its polynomial form

is c− a ·b, or equivalently c+ a ·b since −1 = 1 over F2.

Let { f1, . . . , fs} denote the set of polynomials derived from

every Boolean gate in the circuit. Next, the word-level and bit-

level correspondences over F2k are considered as A =∑
k−1
i=0 ai ·

αi and Z =∑
k−1
i=0 zi ·α

i, where P(α) = 0. These are represented

as polynomials:

fA : a0 + a1α+ · · ·+ ak−1αk−1 +A

fZ : z0 + z1α+ · · ·+ zk−1αk−1 +Z
(4)

Denote the ideal generated by all these polynomials as

J = 〈 f1, · · · , fs, fA, fZ〉. The (unknown) word-level abstraction

of the circuit Z = F (A) can be represented as the “spec-

ification” (spec) polynomial f : Z + F (A). The generators

of J encapsulate the functionality of the circuit. Clearly,

the spec polynomial f : Z +F (A) agrees with the solutions

to the circuit’s equations f1 = · · · = fs = fA = fZ = 0. In

other words, f (a) = 0 for all points a that are solutions to

f1 = · · ·= fs = fA = fZ = 0. In computer algebra terminology,

we say that f vanishes on the variety VFq(J). This implies that

f ∈ I(VFq(J)), due to Definition 3.3. Strong Nullstellensatz

over Galois fields (Theorem 3.2) tells us that I(VFq(J)) =

J + J0, where J0 = 〈x2
1 − x1, . . . ,x

2
d − xd ,Z

q −Z,Aq −A〉 is the

ideal of all vanishing polynomials in Fq[x1, · · · ,xd ,Z,A]. Note

that since the bit-level variables x1, . . . ,xd take values in F2,

the vanishing polynomial x2
i − xi is used; whereas Aq −A and

Zq −Z are used for the vanishing polynomials in word-level

variables. From these results, we deduce that:

Proposition 4.1: The (unknown) abstraction polynomial f :

Z +F (A) is a member of the ideal J + J0.
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B. Abstraction Using Gröbner Basis

The variety V (J+J0) is the set of all consistent assignments

to the nets (signals) in the circuit C. If we project this

variety on the word-level input and output variables, we

essentially generate the function f implemented by the circuit.

Projection of varieties from d-dimensional space Fd
q onto a

lower dimensional subspace Fd−l
q corresponds to eliminating

l variables from the corresponding ideal.

Definition 4.1: (Elimination Ideal) From [7]: Given J =
〈 f1, . . . , fs〉 ⊂ Fq[x1, . . . ,xd ], the lth elimination ideal Jl is the

ideal of Fq[xl+1, . . . ,xd ] defined by: Jl = J ∩Fq[xl+1, . . . ,xd ].

In other words, the lth elimination ideal does not contain

variables x1, . . . ,xl , nor do the generators of it. Moreover,

Gröbner bases may be used to generate an elimination ideal by

using an elimination term order. One such ordering is a pure

lexicographic (lex) ordering, which features into the theorem:

Theorem 4.1: (Elimination Theorem) From [7]: Let J ⊂
Fq[x1, . . . ,xd ] be an ideal and let G be a Gröbner basis of

J with respect to a lex ordering where x1 > x2 > · · · > xd .

Then for every 0 ≤ l ≤ d, the set Gl = G∩Fq[xl+1, . . . ,xd ] is

a Gröbner basis of the lth elimination ideal Jl .

Example 4.1: Consider polynomials f1 : x2 −y− z−1, f2 :

x− y2 − z− 1, f3 : x− y− z2 − 1 and ideal J = 〈 f1, f2, f3〉 ⊂
C[x,y,z]. Let us compute a Gröbner basis G of J w.r.t. lex term

order with x > y > z. Then G = {g1, . . . ,g4} is obtained as:

g1 : x−y−z2−1; g2 : y2−y−z2−z; g3 : 2yz2−z4−z2; g4 :

z6 − 4z4 − 4z3 − z2. Notice that the polynomial g4 contains

only the variable z, and it eliminates variables x,y. Similarly,

polynomials g2,g3,g4, contain variables y,z and eliminate x.

According to Theorem 4.1, G1 = G∩C[y,z] = {g2,g3,g4} and

G2 = G∩C[z] = {g4} are the Gröbner bases of the 1st and

2nd elimination ideals of J, respectively.

The above example motivates our approach: since we want

to derive a polynomial representation from a circuit in vari-

ables Z,A, we can compute a Gröbner basis of J+J0 w.r.t. an

elimination order that eliminates all the (d) bit-level variables

of the circuit. Then the Gröbner basis Gd = G∩Fq[Z,A] of

the dth elimination ideal of J+J0 will contain polynomials in

only Z,A. We will show that the desired canonical polynomial

representation f : Z +F (A) will be found in Gd .

Problem Setup 4.1: Given a circuit C with k-bit inputs and

outputs which computes a polynomial function f : F2k → F2k .

Let A= {a0, . . . ,ak−1} and Z = {z0, . . . ,zk−1} be the inputs and

outputs of the circuit, respectively, such that A = a0 + a1α+
· · ·+ ak−1αk−1 and Z = z0 + · · ·+ zk−1αk−1, where P(α) = 0.

Let Z = F (A) be the unknown polynomial function (spec)

implemented by the circuit. Denote by xi, i = 1, . . . ,d, all the

Boolean (bit-level) variables of the circuit. Let R=F2k [xi,Z,A :

i = 1, . . .d] denote the corresponding polynomial ring and

let ideal J = 〈 f1, . . . , fs, fA, fZ〉 ⊂ F2k [xi,Z,A : i = 1 . . .d] be

generated by the bit-level polynomials of the circuit ( f1, . . . , fs)

and the word-level designation polynomials ( fA, fZ). Let J0 =

〈x2
i − xi,Z

2k
− Z,A2k

− A : i = 1, . . . ,d〉 denote the ideal of

vanishing polynomials in R. �

We define the following term order for this purpose of

abstraction:

Definition 4.2: Abstraction Term Order >: Using the vari-

able order {x1, · · · ,xd} > Z > A, impose a lex term order

> on Fq[x1, . . . ,xd ,Z,A]. This term order is defined as the

Abstraction Term Order (ATO) >. The relative ordering

among the bit-level circuit variables x1, . . . ,xd is not important

and can be chosen arbitrarily.

Theorem 4.2: Abstraction Theorem: Using the setup and

notations given in Problem Setup 4.1, compute a Gröbner basis

G of ideal J + J0 using ATO >. Then:

1) G must contain the vanishing polynomial Aq −A as the

only polynomial with only A as the support variable;

2) G must contain a polynomial of the form Z +G(A);
3) Z +G(A) is such that F (A) = G(A),∀A ∈ Fq. In other

words, G(A) and F (A) are equal as polynomial functions

over Fq, and that Z =G(A) is a polynomial representation

of the circuit C.

Proof:

1) The vanishing polynomial Aq −A is a given element of

the generating set J + J0. Variable A is also the last

variable in the abstraction term order. Moreover, A is

an input to the circuit, so A is an independent variable

which can take any and all values in Fq. Since only a

vanishing polynomial contains as solutions all points in

Fq, it follows that Gd+1 = G∩Fq[A] = {Aq −A}.

2) Since f : Z + F (A) is a polynomial representation of

the circuit, Z +F (A) ∈ J + J0, due to Proposition 4.1.

Therefore, according to the definition of a Gröbner basis

(Definition 3.4), the leading term of Z +F (A) (which

is Z) should be divisible by the leading term of some

polynomial gi ∈ G. The only way lt(gi) can divide Z is

when lt(gi) = Z itself. Moreover, due to our abstraction

(lex) term order, Z > A, so this polynomial must be of

the form Z +G(A).
3) As Z = F (A) represents the function of the circuit,

Z +F (A) ∈ J + J0. Moreover, V (J+ J0)⊆V (Z +F (A)).
Project this variety V (J + J0) onto the co-ordinates cor-

responding to (A,Z). What we obtain is the graph of

the function A 7→ F (A) over F2k . Since Z +G(A) is an

element of the Gröbner basis of J + J0, V (J + J0) ⊆
V (Z + G(A)) too. Due to this inclusion of varieties,

the points that satisfy J + J0 also satisfy Z +G(A) = 0

and Z +F (A) = 0. Therefore, Z = G(A) gives the same

function as Z = F (A), for all A ∈ F2k .

Corollary 4.1: Let Gred = {g1, . . . ,gt} denote the reduced

Gröbner basis of J + J0 w.r.t. ATO >. Then Gred contains

the one and only polynomial of the form gi : Z +F (A), such

that Z = F (A) is the unique, canonical representation of the

function f implemented by the circuit.

Proof: Assume that there are more than one polynomials

in Gred containing only variables Z and A. According to The-

orem 4.2, one of these polynomials is gi : Z +G(A). Clearly,

lt(gi) = Z divides the leading term of all other polynomials

g j in variables (Z,A), as Z > A in ATO. All such polynomials

g j’s are redundant and eliminated from the basis when it is

reduced to Gred . Therefore, only one polynomial of the type

gi : Z +F (A) appears in the reduced basis.
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Moreover, due to the presence of vanishing polynomials

Aq−A∈ J+J0, Z+F (A) will be reduced (mod Aq−A). Con-

sequently, Z+F (A) results as the unique, reduced, canonical

word-level polynomial representation of the circuit.

As a consequence of Theorem 4.2 and Corollary 4.1, if

we compute a reduced Gröbner basis Gred of J + J0 using

the abstraction term order, we will always find the one and

only polynomial of the form Z +F (A) in the basis, such that

Z = F (A) is the unique canonical polynomial representation

of the circuit. If the circuit contains multiple word-level

inputs A1, . . . ,An, each k-bit wide, then ATO can be extended

to include these variables by imposing a lex term order

> with {x1, . . . ,xd} > Z > A1 > · · · > An. Subsequently, the

reduced Gröbner basis of J+J0 computed with ATO contains

f : Z + F (A1, . . . ,An) as the only polynomial in variables

Z,A1, . . . ,An, corresponding to the desired abstraction. The

application of this approach is demonstrated using the example

shown below.

Example 4.2: Consider the circuit of Fig. 4. Variables

a0,a1,b0,b1 are primary inputs, z0,z1 are primary outputs, and

c0,c1,c2,c3,r0 are intermediate variables. As the circuit con-

tains 2-bit inputs and outputs, we will abstract a polynomial

Z = F (A,B) over F22 by computing a reduced Gröbner basis

of polynomial derived from the circuit. To construct F22 , we

use the primitive polynomial P(x) = x2 +x+1, with P(α) = 0.

b0

c1

c2 z1

a1

a0 c0

z0

b1

c3

r0

A

B

Z

Fig. 4: An arbitrary circuit modeled over F(22).

With the mapping rules given in Eqn. (3), the Boolean

equations are transformed into polynomials over F2:

c0 = a0 ∧b0 → f1 : c0 + a0 ·b0

c1 = a0 ∧b1 → f2 : c1 + a0 ·b1

c2 = a1 ∧b0 → f3 : c2 + a1 ·b0

c3 = a1 ∧b1 → f4 : c3 + a1 ·b1

r0 = c1 ⊕ c2 → f5 : r0 + c1 + c2

z0 = c0 ⊕ c3 → f6 : z0 + c0 + c3

z1 = r0 ⊕ c0 → f7 : z1 + r0 + c0

The word-level designation polynomials are: fA : a0 + a1 ·
α+A; fB : b0+b1 ·α+B; fZ : z0+z1 ·α+Z. Thus the ideal J =
〈 f1, · · · , f7, fA, fB, fZ〉 is generated by the polynomials derived

from the circuit. The vanishing polynomials in our system are:

f8 : a2
0 + a0 f9 : a2

1 + a1 f10 : b2
0 + b0

f11 : b2
1 + b1 f12 : c2

0 + c0 f13 : c2
1 + c1

f14 : c2
2 + c2 f15 : c2

3 + c3 f16 : r2
0 + r0

f17 : z2
0 + z0 f18 : z2

1 + z1 f19 : A4 +A

f20 : B4 +B f21 : Z4 +Z

Then J0 = 〈 f8, · · · , f21〉, and J + J0 is simply

〈 f1, · · · , f21, fA, fB, fZ〉.
Impose the following abstraction term order, i.e. a lex order

with {z0 > z1 > r0 > c0 > c1 > c2 > c3 > a0 > a1 > b0 > b1}>
“Output Z” > “Inputs, A > B” and compute a reduced

Gröbner basis Gred of J + J0. The resulting basis contains

14 polynomials:

g1 : B4 +BB4 +BB4 +B

g2 : A4 +AA4 +AA4 +A

g3 : Z +(α+ 1) ·A2 ·B2Z +(α+ 1) ·A2 ·B2Z +(α+ 1) ·A2 ·B2

g4 : b1 +B2 +B

...

g14 : z0 +α ·A2 ·B2 +(α+ 1) ·A ·B

As expected, the first two polynomials are the vanishing

polynomials in word-level inputs and the polynomial g3 is

the only polynomial in variables Z,A,B which represents the

polynomial function of the circuit C as Z = (α+ 1) ·A2 ·B2.

C. Generalizing the approach for functions f : F2m → F2n

When the word sizes of the inputs and output of the circuits

vary, the functionality of the circuit must be analyzed over

an encompassing field. Let m be the size of the input bit-

vector A and n be with size of the output Z such that m 6= n.

Then the circuit implements a function over f : F2m → F2n . In

such cases, the abstraction can be performed over F2k where

k = LCM(m,n), by virtue of the following result [39].

Lemma 4.1: The field F2k ⊃ F2n when n | k.

By selecting k = LCM(m,n), the field F2k becomes the

smallest single field containing both F2m and F2n . Let α,β and

γ be the primitive elements of F2k ,F2m and F2n , respectively.

The word-level designation polynomials now become:

fA : a0 + a1β+ · · ·+ am−1βm−1 +A

fZ : z0 + z1γ+ · · ·+ zn−1γn−1 +Z
(5)

Since the analysis is performed over F2k , β and γ must be

mapped to α. This is accomplished by means of the following

result [39], which can be easily derived by analyzing the

multiplicative group structure of the fields:

β =α(2k−1)/(2m−1)

γ =α(2k−1)/(2n−1)
(6)

By replacing β and γ in terms of α in Eqn. (5), the

abstraction can be performed as before by computing the

reduced Gröbner basis of the ideal J + J0. However, care

should be taken to compose the vanishing polynomials: x2
i −xi

for the bit-level variables, A2m
− A for the m-bit input, and

Z2n
−Z for the n-bit output.

Example 4.3: Consider the circuit shown in Fig. 5. The

input A is 3 bits wide while the output Z is 2 bits. Thus,

A ∈ F23 and Z ∈ F22 . Let β be the primitive element of F23

and γ be the primitive element of F22 , i.e. A = a0+a1β+a2β2

and Z = z0 + z1γ. The function F23 → F22 must be analyzed
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z0

s0

a0

a1

z1

s1

s2a2

Fig. 5: Abstraction over a circuit with varying word sizes.

over F26 since LCM(2,3) = 6, i.e. F23 and F22 are subsets of

F26 . Choose P(X) = X6+X +1 as the primitive polynomial to

construct this field, where P(α) = 0, and find β and γ in terms

of α: β = α(26−1)/(23−1) = α9 and γ = α(26−1)/(22−1) = α21.

So the word-level polynomials represented in F26 are:

fA : a0 + a1α9 + a2α18 +A; fZ : z0 + z1α21 + Z, and the bit-

level polynomials are derived from the circuit as before. Col-

lectively, these generate ideal J. On the other hand, in J0, the

vanishing polynomials corresponding to the bit-level variables

are included as {x2
i + xi}, whereas the vanishing polynomials

of the word-level variables are composed according to their

respective operand sizes: A23
+ A and Z22

+ Z. Then, by

computing the reduced Gröbner basis of J+J0, the word-level

abstraction of the circuit Z +F (A) is found to be:

Z +A6(α2 +α)+A5(α4 +α3 +α)+A4(α2 +α)

+A3(α4 +α3 +α2)+A2(α4 +α3 +α2)+A(α4 +α3 +α)

where α6 +α + 1 = 0. Simulating this polynomial for all

A ∈ F23 results in values of Z ∈ F22 corresponding exactly to

the function implemented by the circuit.

We have utilized this generalization of our model for

verification of composite field arithmetic circuits.

Preliminary experiments: Using the results of Theorem 4.2

and Corollary 4.1, we performed some proof-of-concept exper-

iments to evaluate the efficacy of our approach to abstraction.

We experimented particularly with Galois field Mastrovito

multipliers, and employed the SINGULAR computer algebra

tool [40] to derive the abstraction polynomial Z+A ·B, using

the slimgb command to compute the reduced Gröbner basis of

J+ J0 using ATO. We found that beyond k = 32 bit operands,

the reduced Gröbner basis computation explodes in both time

and space, and the abstraction becomes infeasible.

Computing Gröbner bases using elimination term orders is

infeasible for large circuits. The worst-case time and space

complexity of computing the Gröbner basis of J + J0 in

Fq[x1, . . . ,xd ] is known to be bounded by qO(d) [27], which is

prohibitive over large fields. To make our approach practical,

we need to overcome this complexity. This is described next.

V. EFFICIENT SEARCH FOR THE ABSTRACTION

The aforementioned complexity makes the computation of

a reduced Gröbner basis infeasible. However, our abstraction

approach “searches” for only one polynomial (Z + F (A))
in the basis. This motivates an investigation into whether

it is possible to guide a sequence of Spoly( f ,g)
J+J0−−−→+ r

computations to arrive at the desired word-level polynomial,

without considering other polynomials in the generating set.

For this purpose, we exploit the well-known Buchberger’s

product criteria:

Lemma 5.1: [Product Criterion [41]] Let F be any field,

and f ,g ∈ F[x1, · · · ,xd ] be polynomials. If the equality lm( f ) ·

lm(g) = LCM(lm( f ), lm(g)) holds, then Spoly( f ,g)
G

−→+ 0.
The above result states that when the leading monomials of

f ,g are relatively prime, then Spoly( f ,g) always reduces to

0 modulo the basis G. Thus Spoly( f ,g) corresponding to the

critical pair ( f ,g) need not be considered in Buchberger’s al-

gorithm. Recall that in the Abstraction Term Order (Definition

4.2), the relative ordering among the bit-level circuit variables

x1, . . . ,xd is unimportant. This ordering is now further refined

to exploit the product criteria. For this purpose, we draw

inspirations from Proposition 2 in [29] that shows how to

derive a term order from the circuit that makes leading terms

of all pairs of gate-level polynomials relatively prime.

Definition 5.1: Refined Abstraction Term Order >r: Start-

ing from the primary outputs of the circuit C, perform a reverse

topological traversal toward the primary inputs. Order each

variable of the circuit according to its reverse topological

level: i.e. xi > x j if xi appears earlier in the reverse topological

order. Impose a lex term order >r on Fq[x1, . . . ,xd ,Z,A] with

the “bit-level variables x1, . . . ,xd ordered reverse topologi-

cally” > Z > A. This term order >r is called the refined

abstraction term order (RATO).

Denote F = { f1, . . . , fs, fA, fZ} to be the set of polynomials

which generates the ideal J = 〈F〉 and denote F0 to be the set of

vanishing polynomials which generates the ideal J0 = 〈F0〉. Let

us impose RATO on the ring, and analyze the characteristics

of the generating set F ∪ F0. First, we consider only the

bit-level polynomials f1, . . . , fs derived from the logic gates

in the circuit. Due to RATO, each bit-level polynomial will

be of the form fi = xi + tail( fi), where xi is the output of

the corresponding logic gate. Since the same signal cannot

be the output of two or more gates, each polynomial pair

( fi, f j), i 6= j will have relatively-prime leading terms. Con-

sequently, Spoly( fi, f j)
F∪F0−−−→+ 0 for all bit-level polynomials

due to the product criteria, and need not be considered in the

Gröbner basis computation.

Also, corresponding to each bit-level polynomial fi = xi +
tail( fi), there exists a bit-level vanishing polynomial x2

i + xi.

While their leading terms are not relatively prime, it was

shown in Theorem 6.1 in [16] that Spoly( fi,x
2
i +xi)

F∪F0−−−→+ 0.

To show this, let us denote tail( fi) = Pi so that fi = xi +Pi.

Also, every variable x j that appears in Pi satisfies xi > x j.

Then Spoly( fi,x
2
i + xi) = xiPi + xi, which can be reduced by

the polynomial fi ∈ F:

(xiPi + xi)
xi+Pi−−−→ xi +P2

i

xi+Pi−−−→ P2
i +Pi

Note that since Pi = tail(xi) contains only bit-level variables,

P2
i +Pi is a vanishing polynomial, or P2

i +Pi
F0−→+ 0. Therefore,

the S-polynomials Spoly( fi = xi + tail( fi), x2
i + xi)

F∪F0−−−→+ 0

for all i = 1, . . . ,d; so these also need not be considered in the

Gröbner basis computation.

However, there is one (and only one) pair of polynomials

( fZ , fzi
) ∈ F which do not have relatively prime leading
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terms, and for which Spoly( fZ, fzi
)

F∪F0−−−→+ r results in a new

polynomial in the Gröbner basis computation. Here: i) fZ is the

word-level designation polynomial corresponding the output

fZ = z0 + z1α+ · · ·+ zk−1αk−1 +Z, with some gate output zi

as the leading term; and ii) the polynomial fzi
= zi + tail( fzi

)
models the function implemented at the gate, and lt( fzi

) = zi.

So let us analyze the remainder r obtained as

Spoly( fZ, fzi
)

F∪F0−−−→+ r. Due to RATO, r does not contain any

bit-level non-primary input variables of the circuit C, and it

may only depend upon: i) the word-level variables (Z,A), and

ii) the primary input bits (a0, . . . ,ak−1). To show this, assume

that r contains a bit-level non-primary input variable x j in a

term m j. Since there exists a polynomial f j = x j+tail( f j)∈F ,

lt( f j) | m j, and all such terms m j will be canceled during the

reduction Spoly( fZ, fzi
)

F∪F0−−−→+ r. Variables Z,A never appear

as leading terms of any polynomial in F as they appear last

in RATO. Similarly, the bit-level primary inputs a0, . . . ,ak−1

also never appear as leading terms of any polynomial in F ,

as primary inputs are not outputs of any gate. Based on the

above discussion, we conclude that:

Proposition 5.1: Due to RATO, ( fZ , fzi
) is the only can-

didate critical pair to be evaluated as Spoly( fZ, fzi
)

F,F0−−→+ r

at the start of Buchberger’s algorithm when applied to our

setup. Moreover, the obtained remainder r is a function only

in variables a0, . . . ,ak−1,Z and A.

Example 5.1: Let us revisit Example 4.2 and the corre-

sponding circuit shown in Fig. 4. Impose RATO: lex term

order with {z0 > z1} > {r0 > c0 > c3} > {c1 > c2} > {a0 >
a1 > b0 > b1} > Z > A. Then, the set of polynomials F =
{ f1 . . . , f21, fZ , fA, fB} shown in Example 4.2 are already rep-

resented in RATO.

Notice that the pair ( fZ , f6)∈F is the only critical pair with

leading terms that are not relatively prime. Due to Proposition

5.1, computing Spoly( fZ, f6)
F∪F0−−−→+ r, we find that r = (α+

1)a1b1 +(α+ 1)a1B+(α+ 1)b1A+Z+(α+ 1)AB. Note that

the remainder r contains word-level variables Z,A,B, and the

bit-level primary inputs a1,b1. Intermediate bit-level variables

(non primary inputs) do not appear in r.

A. Eliminating Bit-Level Variables

The remainder r obtained in Prop. 5.1 is a function of

the primary input variables, in addition to the word-level

variables. In order to derive a purely word-level expression,

the bit-level variables need to be eliminated from r. We now

derive a functional (polynomial) mapping from each bit-level

primary input variable a0, . . . ,ak−1 to the word-level input

variable A in the form of ai = Fai
(A). Then substituting each

ai = Fai
(A) in r will result in a purely word-level expression.

These mappings are derived as a set of polynomial functions

Fa = { fa0
, . . . , fak−1

} in the following form:

a0 = Fa0
(A) → fa0

: a0 +Fa0
(A)

... →
...

ak−1 = Fak−1
(A) → fak−1

: ak−1 +Fak−1
(A)

where each Fai
(A) represents some polynomial function of A.

Due to RATO, terms in {a0, . . . ,ak−1}> A, thus the leading

terms of fa0
, . . . , fak−1

are a0, . . . ,ak−1, respectively. Then

r
Fa∪F0−−−→+ rw ensures that the new remainder rw must contain

only word-level variables. In other words, rw must be in the

form Z +F (A) and is the canonical word-level polynomial

representation of the circuit.

Lemma 5.2: (From [39]) Let α1, . . . ,αt be any elements in

F2k . Then (α1 +α2 + · · ·+αt)
2i
= α2i

1 +α2i

2 + · · ·+α2i

t for all

integers i ≥ 1.

Lemma 5.2 can be applied to derive the desired mapping.

We take the word-level designation polynomial fA : A = a0 +
a1α+ · · ·+ ak−1αk−1, and compute A2 j

for all 0 ≤ j < k:

A = a0 + a1α+ · · ·+ ak−1αk−1

A2 = a2
0 + a2

1α2 + · · ·+ a2
k−1α2(k−1)

= a0 + a1α2 + · · ·+ ak−1α2(k−1) (a2
i = ai)

A22

= a0 + a1α4 + · · ·+ ak−1α4(k−1)

...

A2k−1

= a0 + a1α2k−1

+ · · ·+ ak−1α2k−1·(k−1)

(7)

These equations can be represented in matrix form,

A = Ma, where A = [A,A2, . . . ,A2k−1
]T , M is a k×k matrix of

coefficients, and a = [a0, . . . ,ak−1]
T :















A

A2

A22

...

A2k−1















=















1 α α2 . . . αk−1

1 α2 α4 . . . α(k−1)·2

1 α4 α8 . . . α(k−1)·4

...
...

... ·
...

1 α2k−1

α2·2k−1

. . . α(k−1)·2k−1



























a0

a1

a2

..

.
ak−1













(8)

Treat a as a vector of k unknowns, M and A as matrices of

constants. This represents a system of k linear equations in k

unknowns {a0, . . . ,ak−1}. Then Fa can be derived by solving

Eqn. (8) using Cramer’s rule:

ai =
|Mi|

|M|
, 0 ≤ i ≤ k− 1 (9)

provided that |M| 6= 0. Here Mi corresponds to the matrix

M where the ith column [αi,αi·2, . . . ,αi·2k−1
]T in M is replaced

by the vector A = [A,A2, . . . ,A2k−1
]T .

Notice that M in Eqn. (8) exhibits a special structure.

Elements in every row of M form a geometric progression;

this makes M a Vandermonde matrix, whose determinant is

computed with a simple formula.

Definition 5.2: Let V(x1, . . . ,xn) denote a square n × n

matrix of the form










1 x1 x2
1 . . . xn−1

1

1 x2 x2
2 . . . xn−1

2
...

...
... ·

...

1 xn x2
n . . . xn−1

n











(10)

Then V(x1, . . . ,xn) is a square Vandermonde Matrix, the

determinant of which can be computed as:

|V(x1, . . . ,xn)|= ∏
1≤i< j≤n

(x j − xi) (11)
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This determinant is non-zero if each xi ∈ {x1, . . . ,xn} is a

distinct element.

Matrix M in Eqn. (8) is a k × k square Vandermonde

matrix of the form V(α,α2, . . . ,α2k−1
). In our investigations,

we discovered that |M|= 1, which we prove below.

Lemma 5.3: For matrix M in Eqn. (8), |M|= 1 over F2k .

Proof: M is a Vandermonde matrix of the form

V(α,α2,α4, . . . ,α2k−1
) = V(α20

,α21
,α22

, . . . ,α2i
, . . . ,α2k−1

).

The Vandermonde determinant |V(α,α2,α4, . . . ,α2k−1
)| is

non-singular if the elements α,α2,α4, . . . ,α2k−1
are distinct

(Definition 5.2). Since F2k is constructed from a primitive

polynomial, α is a primitive element, and every α2i
for

0 ≤ i < 2k is a distinct non-zero element. Then by Definition

5.2, |M| 6= 0.

Moreover, from Eqn. (11) it follows that:

|M|= ∏
0≤i< j<k

(α2 j

−α2i

) = ∏
0≤i< j<k

(α2 j

+α2i

) (12)

Computing |M|2, and applying Lemma 5.2 gives:

|M|2 = [ ∏
0≤i< j<k

(α2 j

+α2i

)]2 = ∏
0≤i< j<k

(α2 j+1

+α2i+1

) (13)

When j = k− 1, the expression (α2 j+1
+α2i+1

) equals (α2k
+

α2i+1
). Since α2k

= α over F2k , this reduces to (α2i+1
+α).

This results in the property that |M|2 = |M|. Since |M| ∈ F2k ,

the only two elements of F2k that satisfy |M|2 = |M| are 0 and

1. As already shown |M| 6= 0, it follows that |M|= 1.

This result is demonstrated through the help of an example.

Example 5.2: Over F23 , let A = a0 + a1α+ a2α2, and so

A2 = a0+a1α2 +a2α4 and A4 = a0+a1α4+a2α8. From these

equations, the coefficient matrix is derived to be:

M =





1 α α2

1 α2 α4

1 α4 α8



 (14)

Since M is a Vandermonde matrix of the form V (α,α2,α4),
its determinant is found by applying Eqn. (11):

|M|= (α4 −α2) · (α4 −α) · (α2 −α)

= (α4 +α2) · (α4 +α) · (α2 +α)
(15)

Note that |M| is non-zero since it is a product of non-zero

terms. Now compute |M|2 while applying Lemma 5.2:

|M|2 = [(α4 +α2) · (α4 +α) · (α2 +α)]2

= (α8 +α4) · (α8 +α2) · (α4 +α2)

= (α+α4) · (α+α2) · (α4 +α2)

(16)

as α8 = α over F23 . So |M|2 = |M|. Since |M| 6= 0, |M|= 1,

as no other element of F23 can satisfy this condition. Indeed,

evaluating Eqns. (15) and (16) (mod P(α)) based on the

chosen primitive polynomial P(x) results in |M|2 = |M|= 1.

Applying Lemma 5.3 to Eqn. (9) gives the expression for

ai in terms of A: i.e. ai = |Mi|, where the determinant |Mi|
can be computed symbolically.

The polynomials ai = Fai
(A) = |Mi| are independent of the

circuit that is given for abstraction, and their form/size depends

upon the operand width of the circuit k (or the corresponding

field F2k ). Since Mi is of the form

Mi =











1 α . . . αi−1 A αi+1 . . . αk−1

1 α2 . . . α(i−1)·2 A2 α(i+1)·2 . . . α(k−1)·2

.

..
.
.. ·

.

..
.
..

.

.. ·
.
..

1 α2k−1

. . . α(i−1)·2k−1

A2k−1

α(i+1)·2k−1

. . . α(k−1)·2k−1











and |Mi| is computed by Laplace expansion along the ith

column, it follows that computing the determinant |Mi| results

in polynomials of the form ai = ci0A+ ci1A2 + ci2A4 + · · ·+

cik−1
A2k−1

, where {ci0 , . . . ,cik−1
} ∈ F2k .

B. The Overall Abstraction Approach

Based on the above concepts, the word-level abstraction

approach for a circuit with k-bit input A and k-bit output Z is

described as follows:

1) Given a combinational circuit C, with word-level k-bit

input A and output Z.

2) Choose a primitive polynomial P(x) of degree k and

construct F2k , and let P(α) = 0.

3) Perform a reverse-topological traversal of C to derive

RATO: lex with {x1 > x2 > · · · > xd > Z > A}, where

{x1, . . . ,xd} are bit-level variables of C.

4) Derive the set of bit-level polynomials { f1, . . . , fs} from

each gate in C, and represent them using RATO. These

will be in the form fi : xi+ tail( fi) where xi is the output

of the corresponding logic gate.

5) Compose the bit-level to word-level polynomial corre-

spondences: fA : a0 +a1α+ · · ·+ak−1αk−1 +A; fZ : z0 +
z1α+ · · ·+ zk−1αk−1 +Z. Denote F = { f1, . . . , fs, fA, fZ}.

Compose the set of vanishing polynomials F0 = {x2
i +

xi,A
2k
+A,Z2k

+A}.

6) Select the only critical pair ( fZ , fzi
) in F that does

not have relatively prime leading terms. Compute

Spoly( fZ, fzi
)

F∪F0−−−→+ r.

7) Construct matrices M0, . . . ,Mk−1, where Mi is M

with the column [αi,αi·2, . . . ,αi·2k−1
]T replaced by

[A,A2, . . . ,A2k−1
]T , and M = V(α,α2, . . . ,α2k−1

).
8) Symbolically compute the determinants |Mi| to find Fa =

{ fa0
, . . . , fak−1

}, where fai
: ai + |Mi|, for 0 ≤ i ≤ k− 1.

Since this computation is independent of the reduction

Spoly( fZ, fzi
)

F∪F0−−−→+ r, it can be performed in parallel

with Step 6.

9) Compute r
Fa∪F0−−−→+ rw. Then rw is of the form Z+F (A)

and it is the unique, canonical word-level abstraction

of C over F2k .

Example 5.3: We demonstrate the application of our ap-

proach on the circuit of Fig. 4. In Example 5.1, we have

already shown that by imposing RATO and performing the

reduction Spoly( fZ, f6)
F,F0−−→+ r gives:

r = (α+ 1)a1b1 +(α+ 1)a1B+(α+ 1)b1A+Z+(α+ 1)AB

Since r contains the bit-level variable a1,b1, find fa1
: a1 +

|M1|. In this example, fA : a0 + a1α+A, so

M =

[

1 α
1 α2

]

M1 =

[

1 A

1 A2

]

(17)
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Computing |M1| finds fa1
: a1 + A2 + A. Similarly, fb1

:

b1 + B2 + B. Now, computing r
{ fa1

, fb1
}∪F0

−−−−−−−→+ rw finds

rw = Z +(α+ 1)A2B2rw = Z +(α+ 1)A2B2rw = Z +(α+ 1)A2B2, which is the unique canonical polyno-

mial representation of the circuit, the same as the one derived

by computing a full reduced Gröbner basis in Example 4.2.

Complexity of our approach: In our approach, Steps 6),

8) and 9) are the main computationally intensive procedures.

Given d variables in the polynomial ring with coefficients in

F2k , we have shown that: i) the worst-case complexity of Step

6) is O(22d); ii) the complexity of Step 8) is polynomial in k;

and iii) the complexity of Step 9) is O(23k). Steps 6) and 8)

are independent and these are computed in parallel. Moreover,

since d >> k, the complexity of Step 6) subsumes that of Step

8). So the worst-case complexity of the abstraction algorithm

is O(22d)+O(23k). Interested readers may refer to Theorem

6.3 in [42] for a detailed proof.

VI. EXPERIMENTAL RESULTS

Using the approach described in Section V, we have per-

formed experiments to abstract canonical word-level represen-

tations of galois field multiplier circuits of various designs.

The abstraction procedure described above can be scripted

using the computer algebra tool SINGULAR [40]. However,

SINGULAR has serious limitations that make abstractions of

large circuits impossible. This is due to the following reasons:

i) SINGULAR limits the number of variables to 32,767 in the

ring; ii) the size of the exponent (l) of a variable (xl) is limited

to l < 232, whereas our approach requires large exponents (e.g.

Aq+A); and iii) the (dense-distributive) data structures used by

SINGULAR are not specifically designed for circuit verification

problems, resulting in large memory usage and slow computa-

tion time. In practice, SINGULAR is infeasible for word-level

abstraction beyond 32-bit circuits. For this reason, we have

developed our own custom abstraction tool in C++, available

at http://www.ece.utah.edu/∼pruss/abstract.html.

A. Custom Tool Implementation

Our word-level abstraction tool is based on fast, efficient

polynomial operations over the rings of the type F2k [x1, . . . ,xd ].
We developed a Galois field library that forms the backbone

of the tool. Given any primitive polynomial of some degree

k, the library facilitates the construction and manipulation of

elements of the corresponding Galois field F2k . Any element

C ∈ F2k can be represented in the form C = ck−1 ·α
k−1 + · · ·+

c2 · α2 + c1 · α + c0 where {c0, . . . ,ck−1} ∈ F2 and α is the

primitive element. This structure is stored as an unsigned byte

array containing {c0, . . . ,ck−1}, as shown in Fig. 6.

c0c1c2c3c4c5c6c7

Byte 0

bit 0bit 7

Byte k-1
8

ck-2ck-100

Fig. 6: Object structure of a Galois field element

This compact structure allows addition of any two elements

to be computed as a byte-wise XOR operation. The library also

supports multiplication and division. The extended Euclidean

algorithm is implemented to compute inverses over F2k .

A monomial M over the ring F2k [x1, . . . ,xd ] is a power-

product in variables x1, . . . ,xd with a coefficient C ∈ F2k ,

M =C · x1
e1 · x2

e2 · · ·xd
ed ;ei ≥ 0. Ring variables are either bit-

level or word-level. If xi is bit-level, then x2
i = xi, so its

exponent ei ∈ {0,1}. For word-level variables, ei < 2k, due to

x2k

i = xi. These degree-reductions are performed after every

monomial operation. Since RATO is a lex based ordering,

lex is currently the only ordering implemented in the tool.

Each variable is given a unique unsigned integer ID, which is

used to order the terms. Each monomial object contains: i) a

Galois field library object; ii) a set of IDs of all variables

in the monomial; and iii) a map of variable IDs to their

exponents. The exponent mapping is only used for word-

level variables as bit-level variables can have an exponent of

at most 1. Since exponents can be much larger than what

can be stored in a primitive data structure, each exponent is

stored as a BigUnsigned object of the open source library

BigInt [43], which provides basic functionality for integers of

unbounded size. A polynomial object is simply an ordered

vector of monomial objects. Additions and multiplications of

polynomials are performed over their respective monomials.

Example 6.1: Consider the ring F24 [a,b,c,Z] with the lex

ordering a > b > c > Z, where {a,b,c} are bit-level variables

and Z is a word-level variable, and P(x) = x4 + x3 + 1

with P(α) = 0. Let M1 = (α3 + α2 + 1)abZ10 and M2 =
(α2 +α)bcZ7 be monomials. Variables a,b,c,Z are given IDs

0,1,2,3, respectively. These monomials are stored as:

M1

coef idSet idToExp

0 0 0 0 1 1 0 1 {0,1,3} 3 → 10
(18)

M2

coef idSet idToExp

0 0 0 0 0 1 1 0 {1,2,3} 3 → 7
(19)

where idToExp 3 → 7 implies that the exponent of Z is

7. Since the first element of the idSet is 0 in M1 and 1 in

M2, it implies M1 > M2 in our ordering. M1 ·M2 is computed

by multiplying the coefficients, merging (union) their idSet,

and adding the exponents of Z (idToExp). The exponents

are reduced accordingly as b2 = b and Z16 = Z, resulting in

M1 ·M2 = (α2 + 1)abcZ2.

M1 ·M2

coef idSet idToExp

0 0 0 0 0 1 0 1 {0,1,2,3} 3 → 2

(20)

Finally, polynomial division f
F∪F0−−−→+ r is implemented as

Faugére’s F4-style reduction [16]. The current implementation

of this F4-style reduction is a significant improvement over

our previous one (Section VII in [16]), which did not provide

support for coefficients or exponents beyond {0,1}.

B. Results

All experiments are conducted on a 64-bit Linux desktop

with a 3.5GHz Intel CoreTM i7 Quad-core CPU and 16 GB

http://www.ece.utah.edu/~pruss/abstract.html
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of RAM. Table II depicts the time and memory required to

derive the polynomial abstraction from bug-free and buggy

Mastrovito multiplier circuits using our custom tool. These

circuits are provided as bit-blasted/flattened gate-level netlists.

They compute Z = A ·B over F2k for a given k = 163, . . . ,571

corresponding to the NIST ECC specification. Bugs are intro-

duced by interchanging some gates and wires at the output

nodes, ensuring that their effect propagates down during the

polynomial reduction process.

TABLE II: Abstraction of Mastrovito multipliers. Time given in
seconds, memory given in MB. TO = timeout 3 days (259,200 sec).

Field Size (k) 163 233 283 409 571
# of Gates 153K 167K 399K 508K 1.6M

Time (s)
Bug Free 1,443 1,913 11,116 17,848 192,032

Buggy 1,487 2,106 11,606 20,263 204,194

Max Memory (MB) 213 269 561 845 2,855

Table III depicts the results for abstraction of flattened

Montgomery multipliers. Unlike as shown in Fig. 1, in this

experiment the design hierarchy is not made available to

the abstraction tool. Abstraction is feasible for the 233-bit

field, beyond which the reduction times-out. However, if the

hierarchy is known, it can be exploited by computing the

abstraction of each MR block in parallel, as shown in Table

IV. In this table, ’BLK A’ and ’B’ denote the input MR

blocks, ’BLK Mid’ denotes the middle block and ’BLK Out’

is the output block. While each block is an MR block, some

have been simplified by constant-propagation, hence they have

different gate-counts. First, a polynomial is extracted for each

MR block (gate-level to word-level abstraction), and then the

approach is re-applied at word-level to derive the input-output

relation (solved trivially in < 1 sec). Our approach can extract

the polynomial for up to 571-bit (all NIST-specified ECC

fields) circuits for both buggy and bug-free implementations.

In these experiments, bugs are introduced in the middle MR

block, as its abstraction is the most compute intensive.

TABLE III: Abstraction of flat Montgomery multipliers. Time given
in seconds, memory given in MB. TO = 3 days (259,200 sec).

Field Size (k) 163 233 283 409 571
# of Gates 184K 329K 488K 1.0M 1.97M

Time
Bug Free 6,897 63,805 TO TO TO

Buggy 6,961 64,009 TO TO TO

Max Memory 153 325 505 971 2,240

TABLE IV: Abstraction of Montgomery blocks. Time given in
seconds, memory is given in MB. TO = 3 days (259,200 sec).

Field Size (k) 163 233 283 409 571

# of Gates

Blk A 33K 55K 82K 168K 330K
Blk B 33K 55K 82K 168K 330K

Blk Mid 85K 163K 241K 502K 980K
Blk Out 32K 54K 81K 168K 328K

Time

Bug Free

Blk A 25 142 330 1,322 5,371
Blk B 25 141 329 1,335 5,241

Blk Mid 73 408 883 4,471 19,942
Blk Out 24 140 321 1,338 5,532

Buggy

Blk A 26 142 331 1,323 5,372
Blk B 26 141 330 1,336 5,421

Blk Mid 111 580 1,411 6,829 37,804
Blk Out 25 141 322 1,339 5,539

Max Mem Per Blk 80 168 254 538 1,129

We have also performed experiments with abstraction and

verification of composite field multipliers for up to k = 1024

bits, where the field F2k is decomposed as F(2m)n . For these

experiments, the decomposition hierarchy is made available

to the tool. Similar to the design shown in Fig. 2, the input

A = a0 + a1α + · · ·+ ak−1αk−1 is transformed into multiple

word-level inputs over F2m , A0,A1, . . . ,An−1, where each Ai =
ai0 + ai1β+ · · ·+ ai(m−1)β

m−1 and β is the primitive element

of F2m . The circuit is then composed of m-bit ADD, MULT

blocks. Addition over F2m is a bit-wise XOR operation, so

this abstraction is trivial. The m-bit multipliers are designed

using the Mastrovito-style and their word-level abstractions

are derived in similar fashion as the experiments of Table

II. Each abstraction can be performed independently. Once

these m-bit word-level polynomials are known for the blocks,

the final abstraction Z = F (A,B) is performed. For this, a

functional mapping from each Ai to A is derived in the form

Ai = Fi(A). This is also computed similar to the concepts

shown in Eqns. (7)-(8) in Section V; the property A2m

i = Ai is

utilized instead of a2
i = ai as the base field is F2m in this case.

The results of this final word-level abstraction of buggy and

bug-free multipliers over composite fields are shown in Table

V. In these experiments, bugs are introduced in the high-level

interconnections of the F2m blocks, and the F2m Mastrovito

blocks themselves are kept bug-free.

The above experiments are conducted for abstraction of

building-blocks (ADD, MULT) for finite field arithmetic com-

putations. The following experiment is conducted to evaluate

the efficacy of our abstraction procedure when these building-

blocks are instantiated in a larger system. To this end, we

perform abstraction for ECC point-addition circuits. Using F2k

Mastrovito multipliers and adders, circuits were designed for

ECC point-addition (see Eqn. (2)); these polynomials were

synthesized/optimized and then abstraction for each word-level

output X3,Y3,Z3 was performed in terms of word-level inputs

X1,Y1,Z1,X2 and Y2. The results for this abstraction are shown

in Table VI, where abstraction is successful for up to 409-bit

fields, but infeasible for the 571-bit circuit.

TABLE VI: Time and memory per abstraction of point addition
circuits. Time given in seconds, memory given in MB. TO = 3 days
(259,200 seconds.)

Size (k) 233 283 409 571

Max Time (s) 2,831 10,325 109,777 TO

Max Memory per run (MB) 297 535 942 -

The above experiments also demonstrate that we can

perform equivalence checking between different circuit im-

plementations by deriving canonical word-level polynomials

(Z1,Z2) from each circuit independently and then checking if

Z1 = Z2. In the case of Mastrovito (golden model) and Mont-

gomery (implementation) multipliers, our approach can verify

their equivalence for up to k = 571 bit circuits. In contrast,

contemporary equivalence checking approaches (SAT, SMT,

and AIG/ABC) cannot verify their equivalence even for k = 16

bits within the timeout limit of 3 days (results omitted for this

reason).

However, simulation, SAT and SMT-based approaches show

success with bug-catching in equivalence check between a

golden model and a buggy implementation. These experiments
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k = 128

m n
Time Max

Bug Free Buggy Mem

2 64 1 1 4

4 32 1 1 2

8 16 1 1 2

16 8 1 1 2

32 4 1 1 2

64 2 1 1 3

- - - - -

- - - - -

- - - - -

k = 256

m n
Time Max

Bug Free Buggy Mem

2 128 15 15 23

4 64 2 2 4

8 32 1 1 3

16 16 1 1 2

32 8 1 1 2

64 4 1 1 2

128 2 1 1 2

- - - - -

- - - - -

k = 512

m n
Time Max

Bug Free Buggy Mem

2 256 406 408 90

4 128 53 53 25

8 64 8 8 4

16 32 2 2 4

32 16 1 1 3

64 8 1 1 3

128 4 1 1 2

256 2 1 1 2

- - - - -

k = 1024

m n
Time Max

Bug Free Buggy Mem

2 512 11,883 12,050 414

4 256 1,520 1,536 106

8 128 209 211 29

16 64 38 37 10

32 32 10 10 5

64 16 4 4 3

128 8 2 2 3

256 4 1 1 3

512 2 1 1 3

TABLE V: Abstraction of composite field multipliers over F(2m)n . Time given in seconds, memory in MB.

are shown in Table VII, where a Montgomery multiplier

implementation is mitered and verified against a Mastrovito

golden model. The execution time for bug-catching is reported

in the columns. The AIG-based ABC tool outperforms all

other solvers. The simulation engine of ABC (employed for

FRAIGing) is able to detect bugs in the miter relatively

quickly.

TABLE VII: Bug-catching between a golden-model Mastrovito and
buggy Montgomery circuit using simulation, SAT and SMT-solvers.
Time given in seconds, TO = 3 days (259,200 seconds).

Circuit Size (k) 163 233 283 409 571

ABC 32 6 96 217 401

Lingeling 8 362 12,728 3,323 23,298

Picosat TO TO TO TO TO

Boolector 30 41 105 152 19,113

CVC4 11 64 8,660 280 TO

Z3 12 55 10,169 335 TO

Yices 6 7 618 578 11,568

C. Limitations of the Approach

Our approach performs very well for F2k Galois field

circuits. The design of these circuits is based on AND-XOR

logic, where “chains of XOR gates” are often encountered.

Our experience shows that the polynomials derived during the

reduction procedures are sparse and do not explode. However,

for random logic circuits, especially logic containing chains

of OR gates, the computations explode and exhibit the worst-

case behavior, due to which this technique is not very efficient

for abstraction of random logic circuits.

(a) (b)

Fig. 7: Polynomial division comparison

Example 6.2: Consider the circuit of Figure 7 (a), apply

RATO: lex with z > f > d > e > c > b > a. Reduce z modulo

the polynomials corresponding to the circuit:
f1 : z+ f + d f2 : f + e+ c f3 : e+ b+ a

The reduction procedure z
f1, f2, f3−−−−→+ r will be computed as:

z
z+ f+d
−−−−→ f + d

f+e+c
−−−−→ e+ d + c

e+b+a
−−−−→ d + c+ b+ a. In each

reduction, a variable corresponding to a gate output is re-

moved and one copy of each input variable is added, leaving

a sparse polynomial. Now consider the same circuit with the

XOR gates replaced by OR gates, as shown in Figure 7 (b).

The monomial ordering stays the same, but the polynomials

derived from each gate have changed:

f1 : z+ f d+ f + d f2 : f + ec+ e+ c f3 : e+ ba+ b+ a

The reduction procedure, z
f1, f2, f3−−−−→+ r is now computed as:

z
z+ f d+ f+d
−−−−−−→ f d + f + d

f+ec+e+c
−−−−−−→+ edc+ ed + ec+ e+ dc+

d+c
e+ba+b+a
−−−−−−→+ dcba+dcb+dca+dba+dc+db+da+d+

cba+ cb+ ca+ c+ ba+ b+ a = r. Each one-step reduction

removes the output variable of the gate, but replaces it with

two instances of each input variable. This increases the density

of the resulting polynomial exponentially.

VII. CONCLUSION

This paper has described an approach to derive a word-level

canonical polynomial representation from a combinational

circuit using algebraic geometry and symbolic computation.

Given a circuit C with k-bit inputs and outputs, we interpret the

function f : Bk → B
k as a polynomial function f : F2k → F2k .

We prove that by computing a reduced Gröbner basis of

the ideal generated by the polynomials of the circuit, an

input-output relationship can be derived for the circuit as

Z = F (A), where Z = {z0, . . . ,zk−1}, A = {a0, . . . ,ak−1} are

the k-bit inputs and outputs, respectively. The approach is then

generalized to circuits with an arbitrary number of inputs (m)

and outputs (n), by modeling the function over f : F2k → F2k ,

where k = LCM(m,n). Subsequently, by analyzing the circuit’s

topology, an efficient symbolic computation is engineered that

obviates the need to compute a reduced Gröbner basis. This

enables the abstraction and verification of large (up to 1024-

bit) Galois field arithmetic circuits, whereas prior approaches

are practically infeasible. The complexity of our approach is

also analyzed.

The function f : Bk → Bk can also be construed as a

mapping over f : Z2k → Z2k . However, over finite integer

rings Z2k , not every function is a polynomial function. As

the concepts of elimination ideals and Gröbner bases are

applicable over rings too, it is conjectured that the abstractions

so derived may provide an over-approximation of the function

implemented by the circuit. These issues are currently under

investigation for the purpose of abstraction and verification of

integer arithmetic circuits and RTL designs.
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Master’s thesis, Carnegie Mellon University, 2009.

[28] S. Gao, A. Platzer, and E. Clarke, “Quantifier Elimination over Finite
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