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EFFICIENT SYMBOLIC COMPUTATION FOR WORD-LEVEL ABSTRACTION FROM COMBINATIONAL
CIRCUITS FOR VERIFICATION OVER FINITE FIELDS

Tim Pruss, Priyank Kalla, Senior Member, IEEE, and Florian Enescu

Abstract—Abstraction plays an important role in digital design,
analysis and verification. This paper introduces a word-level
abstraction of the function implemented by a combinational logic
circuit. The abstraction provides a canonical representation of the
function as a polynomial Z = 7 (A) over the finite field F,:, where
Z,A represent the k-bit word-level output and input of the circuit,
respectively. This canonical abstraction can be utilized for formal
verification and equivalence checking of combinational circuits.

Our approach to abstraction is based upon concepts from
computational commutative algebra and algebraic geometry. We
show that the abstraction Z = 7 (A) can be derived by computing
a Grobner basis of the polynomials corresponding to the circuit,
using a specific elimination term order derived from the circuit’s
topology. Computing Grobner bases using elimination term
orders is infeasible for large circuits. To overcome this limitation,
we describe an efficient symbolic computation to derive the word-
level polynomial. Our algorithms exploit i) the structure of the
circuit, ii) the properties of Grobner bases, iii) characteristics
of finite fields F,, and iv) modern algorithms from symbolic
algebra, to derive the canonical polynomial representation.

A standalone customized tool is developed that implements
these concepts to derive the polynomial abstraction. This ap-
proach and our tool are used to verify (and detect bugs in)
combinational finite field arithmetic circuits — with up to 1024-
bit operands — whereas contemporary verification techniques are
infeasible.

Keywords-Word-Level Abstraction, Formal Verification, Equiv-
alence Checking, Grobner Bases, Finite Fields.

I. INTRODUCTION

Formal verification techniques can benefit greatly from
abstractions of the functionality of the circuits that are being
verified. Abstractions may reduce the complexity of analysis of
the design and may provide a hierarchical view of the register
transfer level (RTL) which may aid in RTL and system-
level verification. Word-level abstraction specifically focuses
on extracting a word-level representation of the function
implemented by a gate-level design. For instance, a bit-level
representation of a multiplier is represented as a collection of
logic gates and nets, whereas a word-level abstraction hides
the underlying logic and represents the function with bit-
vector level inputs and output, e.g. Z =A x B. As the datapath
size of the multiplier grows, the bit-level representation may
increase (possibly exponentially) in size, while the word-level
abstraction does not change. It is desirable for the obtained
word-level abstraction to be a canonical representation of
the function, to facilitate formal verification and equivalence
checking between a specification (golden) model against an
optimized implementation.

Word-level abstractions of circuit blocks also have appli-
cations in other areas of electronic design automation (EDA),
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such as in high-level datapath synthesis [[1]], resource allocation
(2], component matching and reuse [3]], word-level interpolants
[4], SMT-solving [3], etc. Due to their many fundamental
applications, it is important to investigate various forms of
word-level functional abstractions of hardware designs along
with efficient algorithmic techniques to derive them.

This paper describes a method to derive a canonical word-
level polynomial representation from a given gate-level com-
binational circuit. This abstraction polynomial is derived over
the finite field of 2% elements (Fy) — where k corresponds
to the size of the input/output bit-vectors (words) — and it
represents the function implemented by the circuit. The circuit
is modeled as a set of polynomials over [Fx, and concepts from
computer-algebra and algebraic geometry (notably, Grobner
bases [6] [Z]) over finite fields are applied to derive the
abstraction. An efficient algorithmic approach based on new
concepts and discoveries is described to make our approach
practical. The polynomial abstraction approach is based on the
following mathematical insights:

The mathematical framework: A combinational circuit C
with k-bit inputs and k-bit outputs implements Boolean
functions that are mappings between k-dimensional Boolean
spaces: f : B — B¥, where B = {0, 1}. The function f, which
is a mapping among 2* elements, can also be construed as a
function f: F,x — Fox, i.e. as a function over the finite field of
2k elements. It is well-known that over the finite field (Fy) of g
elements, every function f :F, — F, is a polynomial function
[8]. Moreover, there exists a unique canonical polynomial
F that describes f. Motivated by this fundamental result,
we devise an approach to derive a word-level, canonical,
polynomial abstraction of the function as Z = F (A) over Fyr,
where Z ={z9,...,2k-1}, A =1{ao,...,ar_1 } are, respectively,
the output and input bit-vectors (words) of the circuit C,
and F denotes a polynomial representation of the circuit’s
functionality. The approach is generalized to circuits with
different input/output bit-vector sizes, i.e. functions of the type
f:B" — B™, modeled as a polynomial over f : Fon — Fom.
Note that the function f : B — BF can also be viewed as
a mapping over finite integer rings Z (mod 2%), i.e. over
[ Zox — Zyr. However, not every function is a polynomial
function over Z,, so the finite integer ring model is beyond
the scope of this paper.

The polynomial # can be derived by means of the La-
grange interpolation formula [8] [9]. However, this requires
to analyze f over the entire field Fpx, which is exhaustive
and infeasible. To make this approach practical, we propose
a symbolic method based on computer algebra and algebraic
geometry to derive the canonical polynomial abstraction from
the circuit. This abstraction is employed for formal verification
and equivalence checking of combinational circuits C;,Cs. The
circuits can be analyzed separately to derive their correspond-
ing canonical polynomial representations ¥, %2, respectively.
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Equivalence test is then performed by simply matching the
coefficients of 71, %>.

Motivating application: While this approach is theoretically
applicable to arbitrary combinational circuits, the main mo-
tivation to derive this approach stems from the problem of
hardware verification of cryptography primitives. Such designs
perform polynomial computations over the finite field F,,
where the datapath size k is very large. For example, the U.S.
National Institute for Standards and Technology (NIST) rec-
ommends fields [Fyx corresponding to k = 163,233,283,409,
and 571 bits for elliptic-curve cryptography (ECC). For other
non-ECC based crypto- and error-correcting circuits, k can be
1024-bits or larger! The large size and high complexity of such
architectures necessitates hierarchical and custom design [10]
(11 [12] [13]. Custom design raises the potential for bugs in
large systems. Arithmetic bugs are known to compromise the
security of crypto-systems [14]]; therefore, formal verification
of such systems is an imperative. Our approach is particularly
powerful for formal verification of hierarchical and custom
finite field arithmetic architectures, where the specification
(golden) models are structurally very dissimilar than their
optimized implementations. Contemporary circuit verification
techniques (e.g. [13] [16]) are unable to prove equivalence
between such large, custom, modulo-arithmetic circuits.

A. Approach & Contributions

We analyze the given circuits and model the gate-level
operators as polynomials with coefficients in F,x, where k
corresponds to the operand-size in the circuit. Using the
concepts of Nullstellensatz over finite fields, projections of
varieties, elimination ideals and Grobner bases [[7]], we formu-
late the polynomial abstraction problem as one of computing
a Grobner basis of this set of polynomials, using a specific
elimination term order, called the abstraction term order >.

Computing Grobner bases using elimination orders is in-
feasible for large circuits. To overcome this limitation, we
present a refinement of this abstraction term order based on
the topological analysis of the circuit. This refinement allows
us to overcome the complexity of Grobner basis computations,
and derive the abstraction polynomial using efficient symbolic
computation algorithms. By exploiting the binomial expansion
over F,r, we further deduce that the symbolic computation
problems so derived exhibit a very special structure that further
simplify our computations.

This technique is implemented as a standalone custom
verification tool for canonical word-level abstraction from
gate-level combinational circuits, and employed for formal
verification and equivalence checking of finite field arithmetic
circuits. We demonstrate the application of our approach to
verify a variety of finite field arithmetic architectures. Our
approach can verify, and also find bugs in, large (up to
k = 1024 bit) arithmetic circuits, whereas contemporary verifi-
cation techniques are infeasible. Our approach is, however, not
efficient for verification of random-logic and integer arithmetic
circuits. The paper also discusses this particular limitation —
which is a limitation not so much of our algorithms, but rather
a (theoretical) limitation that is inherent in the complexity of
the representation.

Paper organization: Section [ reviews related previous
work in functional abstraction, combinational equivalence
checking and verification of finite field arithmetic circuits.
Section [l covers preliminary concepts related to finite fields,
polynomial functions, and algebraic geometry. Section [V]
describes the main theoretical results of our approach on
polynomial abstraction from circuits. A new, improved, guided
approach to abstraction is described in Section [Vl Our custom
abstraction tool and experiments are described in Section [VI
The limitations of our approach are also analyzed. Finally,
Section [VII] concludes the paper.

II. RELATED PREVIOUS WORK

Canonical Representations: The Reduced Ordered Bi-
nary Decision Diagram (ROBBD) — and its variants
OKFDDs, ADDs, BMDs, etc. — are canonical DAG represen-
tations of functions that are employed in design verification.
The various decomposition principles behind these diagrams
are based on point-wise, binary decomposition, w.r.t. each
(Boolean) variable. As such, these do not fully provide word-
level abstraction capabilities from bit-level representations.
The Taylor Expansion Diagram (TED) is a word-level
canonical representation of a polynomial expression, but it
does not represent a polynomial function canonically. The
work of and [20]] represents polynomial functions canon-
ically, but over finite integer rings Z,« and not over .
MODDs [21]] are a DAG representation of the characteristic
function of a circuit over finite fields F,x. MODDs come
close to satisfying our requirements as a canonical word-
level representation that can be employed over finite fields.
However, MODDs do not scale well w.r.t. the circuit size.
MODDs are infeasible in representing functions over larger
than 32-bit words [21]].

Equivalence Checking: Modern equivalence checkers em-
ploy techniques based on And-Invert-Graph (AIG) reductions
and circuit-SAT solvers [22]. Such techniques are able
to identify internal structural equivalences between the spec-
ification models (Spec) and implementation (/mpl) circuits
and reduce the instances for verification. However, when
the arithmetic circuits are structurally very dissimilar, these
techniques are infeasible in proving equivalence (Tables I and
ITin depict such experiments). In general, the applications
targeted in this paper are hard for SAT/SMT solvers.

Computer algebra based verification: In (23]
[13]], the authors present the BLUEVERI tool from IBM for
verification of finite field error correcting circuits against an
algorithmic spec. The implementation consists of a set of (pre-
designed and verified) circuit blocks that are interconnected to
form the error correcting system. The spec is given as a set of
design constraints on a “check file”. Their objective is to prove
the equivalence of the implementation against this check file,
for which they employ a Nullstellensatz and Grobner basis
formulation. In their setting, the polynomial representation
of the sub-circuit blocks is already available, whereas our
approach identifies such a representation. Moreover, improve-
ments to the core Grobner basis computational engine are not
the subject of their work.
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In [26] [16], Lv et al. present computer algebra techniques
for formal verification of finite field arithmetic circuits. Given
a specification polynomial f, and a circuit C, they formulate
the verification problem as an ideal membership test using
Nullstellensatz and Grobner bases. They show that for any
combinational circuit, there exists a term order (derived from
the circuit) that renders the set of polynomials itself a Grobner
basis. By exploiting this term order, the need for Grobner basis
computation is avoided and verification is performed only by
polynomial division. In contrast to [16], we are not given the
specification polynomial f. Given the circuit C, we have to
derive (extract) the word-level specification f.

Among other relevant works, describes how to use
Grobner basis techniques to count the zeros of an ideal over
IF,. The authors then follow-up with an approach for quantifier
elimination over F, [28]]. Our problem formulation employs
some of the concepts presented in [28]]. Computer algebra
techniques have also been employed for verification of integer
arithmetic circuits [30].

Other function extraction techniques: In [31]], the authors
present an approach to function extraction from bit-level
circuits using a network-flow based model — by interpret-
ing the computation as a flow of binary data through the
circuit-network, represented as a pseudo-Boolean expression.
Improvements to this approach are described in [32], where the
algebraic trasformations are guided by analyzing the structure
(levelization) of the circuit. The extracted signatures are in
terms of bit-level polynomials and do not provide a word-
level abstraction. In [3]], the authors present an approach
that searches for a linear word-level abstraction, with integer
coefficients, using *BMDs. However, their approach is not
complete in the sense that a linear word-level abstraction does
not always exist for arbitrary circuits.

Polynomial Interpolation: Conceptually, our abstraction can
be derived using polynomial interpolation. It falls into the cat-
egory of dense interpolation (as opposed to the classical multi-
variate sparse interpolation problem, see [33])), as we require a
polynomial that describes the function at each of the g points
of the field IF,. However, Newton’s dense interpolation exhibits
very high complexity. In the logic synthesis and VLSI testing
area, the work of [9] investigates dense interpolation. Due to
its inherently high-complexity, their approach is feasible for
applications over smaller fields, e.g. computing Reed-Muller
forms for multi-valued logic.

ITI. PRELIMINARIES
A. Finite fields and polynomial functions

A finite field, also called a Galois field, is a field with a finite
number of elements. It is denoted as F,, where g corresponds
to the number of elements, and it is always a power of a
prime integer — i.e. ¢ = p* where p > 2 is a prime integer and
k>0 is a positive integer. In this work, we are concerned with
binary Galois extension fields F,, where p =2, so that the
field contains ¢ = 2% elements. We use the notations F,, and
Fo« interchangeably, with g always taken as 2k,

The field Fy is constructed as Fox = Fa[x] (mod P(x)),
where: i) F, = {0, 1} denotes the finite field of 2 elements; ii)
[F»[x] is the univariate polynomial ring with coefficients in Fy;

and iii) P(x) denotes an irreducible (or primitive) polynomial
in F>[x] of degree k. Fy is a k-dimensional extension of the
base field [F»; all the field operations in F,; are performed
modulo the irreducible polynomial P(x) and the coefficients
are reduced modulo p =2 (due to which —1 = +1 over F5). In
this work, we always choose P(x) to be a primitive polynomial
and o as a primitive element.

Any element A € F,« can be represented as A = ag+ a0+
~~~+ak,1ock’1, where a; € F2,i=0,...,k—1, and o is a root
of the primitive polynomial, i.e. P(a) = 0. Since a k-bit vector
{ay,...,ar_1} represents 2¥ distinct values, it can be viewed
as an element A of Fy.

Example 3.1: Let us construct Fy as Fa[x] (mod P(x)),
where P(x) = x* +x* +1 € Fa[x] is a primitive polynomial
of degree k = 4. Let o be a root of P(x), i.e. P(a) = 0. Any
element A € Fa[x] (mod x* 4+ x>+ 1) has a representation of
the type: A = a3x® + arx® + ayx + ag where the coefficients
as,...,aq are in Fp = {0,1}. Since there are only 16 such
polynomials, we obtain the 16 elements of the field Fi.
Each element can then be viewed as a 4-bit vector over F;:
Fi6 = {(0000), (0001),...(1110),(1111)}. Each element also
has an exponential representation; all three representations
are shown in Table [l For example, consider the element o.'2.
Computing a'? (mod o* + 0o’ + 1) = o+ 1 = (0011); hence
we have the three equivalent representations.

TABLE 1I: Bit-vector, Exponential and Polynomial representation of elements in
Fpy =Fx] (mod x* +x° +1)

azaayay | Exponential | Polynomial || aza,a;ao | Exponential Polynomial
0000 0 0 1000 o? o3
0001 1 1 1001 o o’ +1
0010 o o 1010 o0 o +o
0011 al? o+1 1011 o’ o ot
0100 o? o? 1100 ol o’ + o
0101 o o2 +1 1101 ol o o2+ 1
0110 ol o +o 1110 of o+ +a
0111 o o’ ot 1111 ol o+ o a1

There may be more than one primitive polynomials of
degree k in F,[x], and any of them could be used to construct
the field [F,. Finite fields are unique (up to isomorphism) irre-
spective of the chosen primitive polynomial. For verification,
if the primitive polynomial P(x) is already given, we use it
for abstraction. Otherwise, we choose a P(x) of degree k with
fewest terms, as the reduction (mod P(x)) may result in fewer
terms being generated.

Polynomial Functions f :Fox — Fy: Arbitrary mappings
among k-bit vectors can be constructed; each such mapping
generates a function f : BX — B, Since every k-bit vector can
be construed as an element in F, (as shown in the above
example), every such function can be viewed as a mapping
over f:F,« — . Importantly, every such function is also a
polynomial function over .

Theorem 3.1: (From [8]) Any function f : F, =+ F, is a
polynomial function over I, that is there exists a polynomial
F € Fylx] such that f(a) = F(a), for all a € F,,.

By analyzing f over each of the g points, one can apply
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Lagrange’s interpolation formula and interpolate a polynomial

_ a Hi#n(x_xi)
=1 Hi;én (xn _xi)
which is a polynomial of degree at most ¢ — 1 in x. One
can easily see that ¥ (a) = f(a) for all a € F,, and ¥ (x) is
therefore the polynomial representation of the function f.
Example 3.2: Let A = {az,a1,a0} and Z = {z,z1,20} be
3-bit vectors. Consider the function Z[2 : 0] = A[2:0] >> 1,

i.e. a I-bit right shift operation on A. The function maps as
follows:

F (x) S (), M

{araap} A — {nuz2}| Z
000 0 — 000 0
001 1 — 000 0
010 o — 001 1
011 a+1 = 00l 1
100 o? — 010 o
101 o>+1 = 010 o
110 o?+a  — 01 |a+l
111 o> +o+l — 011 |a+l

By applying Lagrange’s interpolation formula over Fy3, we ob-
tain Z = (0 + 1)A* 4 (0> 4+ 1)A2, as the canonical polynomial
representation of the function, where P(0) = o + o+ 1= 0.

An important property of finite fields is that for all elements
AcF,A?=A, and hence A? —A = 0. Therefore, the poly-
nomial x? —x vanishes on all points in F,. The polynomial
x? —x is also referred to as a vanishing polynomial of F,.
Any polynomial ¥ (x) can be reduced (mod x? —x) to obtain
a canonical representation F (x) (mod x? —x) with degree at
most g — 1. The result can be generalized as:

Definition 3.1: Any function f :Fj — F; has a unique
canonical representation (UCR) as a polynomial ¥ €
Fy[x1,...,%,] such that all its nonzero monomials are of the
form x!! -+ -xin where 0 <i;<g—1,forall j=1,...,n.

B. Hardware designs over Iy verified in this paper

In ECC, the operations of encryption, decryption and au-
thentication are built upon point-addition and point-doubling
operations on elliptic curves over F,«. These operations are
implemented as polynomial computations (ADD, MULT) over
F,« [34], as shown below:

Example 3.3: Consider point addition in Loépez-Dahab
(LD) projective coordinate. Given an elliptic curve: Y +
XYZ = X3Z + aX*Z* + bZ* over For, where X,Y,Z are k-
bit vectors that are elements in W, and similarly, a,b are
constants from the field. Let (X3, Y3, Z3) = (X1, Y1, Z1) + (X2,
Y2, 1) represent point addition over the elliptic curve. Then
X3, Y3, Z3 can be computed as follows:

A=Yy-Z} 4V, B=Xy Z1 +X

C=2,-B; D=B*.(C+aZ})

Zy=C% E=A-C ©)
X;=A’+D+E;, F=X3+X,-Z3
G=X3+Y,-Z3; 3=E-F+73-G

Efficient VLSI architectures for multiplication and squaring
have been devised [33] [10], which are employed
as modulo-arithmetic and logic units (mALUs) in such cryp-
tosystems [36]]. We briefly review such arithmetic architectures

on which we have applied our abstraction based approach for
verification.

Over finite fields [F,r, multiplication is performed as
Z = A x B (mod P(x)), where A,B € Fy are k-bit in-
puts, Z is the k-bit output, and P(x) is the given
primitive polynomial. The multiplier circuit takes bit-level
inputs {ao,...,ak-1, bo,...,br—1} and produces output
{20, 21}, such that A = Y'=6 ' a;0, B=Y!=6 "' b’ and
Z= Z‘,ig*l z0, where P(a) =0. In one approach, the bit-wise
multiplication S = A x B is computed using an array multiplier
architecture, and then the result S is reduced (mod P(x))
to obtain Z =S (mod P(x)). Such architectures are termed
Mastrovito multipliers [33].

Mastrovito multipliers are inefficient, especially for cryp-
tosystems where multiplication is often performed repeatedly.
For such applications, Montgomery Reduction (MR) opera-
tions are proposed [I1] [12] that compute: MR(A,B) =A-B-
R~ (mod P(x)), where A,B are k-bit inputs, R is suitably
chosen as R = oX, R is multiplicative inverse of R in Fy,
and P(x) is the irreducible polynomial. Since MR(A,B) cannot
directly compute A -B (mod P(x)), we need to pre-compute
A-R and B-R, as shown in Fig. [l

AR
MR ABRI R
B‘R '

"

——Z=A-B (mod P)

R_ MR

Fig. 1: Montgomery multiplication over [, using four MRs.

In many non-ECC based crypto-systems, the datapath size
k can be extremely large, e.g. k = 1024 bits. To overcome the
complexity of such large designs, the concept of composite
field arithmetic is used [37]. Here, the field F, is decom-
posed as Fmyn for a non-prime k = m-n, and the circuits
are designed over the decomposed field. This decomposition
introduces a hierarchy (modularity) in the design by first lifting
the base field from [F; to Fo», and then constructing F(zm)n as a
n-dimensional extension of Fp». Such circuits comprise m-bit
[Fom adders and multipliers, which are interconnected together
to form a k =m-n bit circuit over F,myn [10].

Example 3.4: An example of a composite field multiplier is
shown in Fig. 2] where multiplication over Fy4 is decomposed
as polynomial computations over F s2y2- AS shown in the
figure, inputs A = (as,...,a0),B = (b3,...,by) over Fy are
first transformed into elements Ay,A1,Bo, B over the base field
Fy2; these are then interconnected (added and multiplied) to
produce the final output Z = {Zy,Z; }.

Associated with both Montgomery multipliers and compos-
ite field circuits is a level of hierarchy (modularity) in design.
With or without the availability of this hierarchy informa-
tion, our approach can be applied to identify the function
implemented the given circuit. However, when this hierarchy
information is available, our approach can perform abstraction
hierarchically and iteratively — significantly improving the
efficiency of verification. In this paper, we have experimented
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3 — Qoo
a, | L—a, jAO
A 1 transfor- 01
a,—| mation | ay, j A,
—a,—| —ay
— b, b g
L 0
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b.— mation | b
2 10 j B,
— by by

Fig. 2: 4-bit composite field multiplier designed over F(22>z.

with both flattened (“bit-blasted”) and hierarchical implemen-
tations of the above multipliers, for both buggy and bug-free
implementations.

C. Algebraic Geometry and Symbolic Computation

1) Polynomial rings and term orderings: We model the
given combinational circuits with a set of multivariate poly-
nomials with coefficients from the finite field F,. Let
F4[x1,...,x4] be the polynomial ring in variables xi,...,x4.
A monomial in variables xi,...,x; is a power product of
the form X = x{'-x52---x%, where e; € Z>¢,i € {1,...,d}.
A polynomial f € Fy[xi,...,xq] is written as a finite sum
of terms f = 1 X1 + X2 + -+ + ¢ X;. Here cy,...,c; are
coefficients and Xj,...,X; are monomials. To systematically
manipulate the polynomials, a monomial order > (also called
a term order) is imposed on the ring. The monomials of any
polynomial f = c1X;+c2Xo+ -+ ¢ X; are ordered w.r.t. to
>, such that X; > X, > --- > X,. Subject to such a term order,
It(f) = a1 Xy, Im(f) =Xy, le(f) = c1, are the leading term,
leading monomial and leading coefficient of f, respectively.
We also denote tail(f) = f—Iit(f) = 2Xo+ -+ ¢X,. In
this work, we will mostly be concerned with terms ordered
lexicographically (lex).

2) Polynomial reduction: Polynomial reduction (division)
plays a key role in our abstraction algorithms. Let f,g be
polynomials. If a non-zero term cX of f is divisible by the
leading term of g, then we say that f is reducible to r modulo
g, denoted f 25 r, where r = f— ]fé) -g. Similarly, f can be
reduced (divided) w.r.t. a set of polynomials F ={f1,...,fs} to
obtain a remainder r. This reduction is denoted f Lbr r, and
the remainder r has the property that no term in r is divisible
by the leading term of any polynomial f; in F.

3) Ideals, Varieties & Nullstellensatz: To analyze the func-
tion implemented by a circuit, we will model the circuit
by way of a set of polynomials F = {fi,...,fs}, and then
analyze the set of all solutions to fi = f, =---= f; =0.
The set of all solutions to a given system of polynomial
equations f; = --- = fy = 0 is called the variety, denoted
as V(fi1,...,fs). The variety depends not just on the given
system of polynomials, but rather on the ideal generated by
the polynomials.

Definition 3.2: An ideal J generated by polynomials
fl,...,f; S Fq[xl,...,xd] is:

J=fi,f) =AY b fir hi €Fylxr,... xa]}
i=1

The polynomials fi,..., f; form the basis or generators of J.

Leta=(ay,...,aq) EFZ be a point, and f € F[xi,...,x4] be
a polynomial. We say that f vanishes on a if f(a) =0. Then,
for any ideal J = (fi,..., fs) C Fylx1,...,x4], the variety of J
over [F, is formally defined as:

Vi, () =V(fi,....fs) = {a €F4:Vf € J,f(a) =0}.

In the context of this work, the set of polynomials F =
{f1,...,fs} describing the given circuit generates an ideal J =
(fi,- o fs) CFylx1,...,x4]. The variety Vir, (J) corresponds to
the set of all evaluations of the circuit. Then, to formulate
our abstraction problem, we need to consider the ideals of
polynomials that vanish on a variety V.

Definition 3.3: For any V C ¢, the ideal of polynomials
that vanish on V, called the vanishing ideal of V, is defined
as: [(V) ={f € Fylxi1,...,x4] : Va€V, f(a) = 0}. Therefore,
if a polynomial f vanishes on a variety V, then f € I(V).

Our abstraction problem is formulated using the Strong
Nullstellensatz applied over F,, which is stated below. The
proof of this fundamental result can be found in Theorem
3.2 in [27]. The notation of sum of ideals is used be-
low: if I} = <f1,...,fs> and I, = <h1,...,hr>, then 1 + I, =
(fi,---s fss h1,... hy). Moreover, Jo = (x{ —xy,..., x5 —xg) is
used to denote the ideal of all vanishing polynomials over IF.

Theorem 3.2: Strong Nullstellensatz over Fy: Let J C
Fylxi,...,x4] be an ideal, and let Jo = (x{ —xi,...,x% — x)
be the ideal of all vanishing polynomials. Let Vf, (J) denote
the variety of J over F;. Then, I(Vg,(J)) = J +Jo.

4) Grobner Bases: An ideal J may have many different
generators: it is possible to have sets of polynomials F =
{fi,-..,fs} and G={gi,...,g} such that J = (fi,..., f;) =

(g1,...,8) and V(J) = V(f1,....fs) = V(gi,...,&). Some
generating sets are “better” than others, i.e. they are a better

representation of the ideal. A Grobner basis is one such
representation that possesses many important properties that
allow to solve many polynomial decision questions. In the
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context of this work, Grobner bases are utilized as a canonical
representation of an ideal.

Definition 3.4: [Grobner Basis| [6]: For a monomial order-
ing >, a set of non-zero polynomials G = {g1,g2,--- ,& } con-
tained in an ideal J, is called a Grobner basis of J iff Vf € J,
f#0, there exists i € {1,---,7} such that lm(g;) divides Im(f);
ie, G=GB(J)& VfeJ: f#0,3g € G:Im(g) | Im(f).

Buchberger’s algorithm [38]], shown in Algorithm [Tl com-
putes a Grobner basis over a field. Given polynomials F' =
{fi,....fs}. the algorithm computes the Grobner basis G =
{g1,-..,8}. The algorithm takes pairs of polynomials (f,g),
and computes their S-polynomial (Spoly(f,g)):

L L
Spoly(f,g) = m'f—@'g

where L = LCM(Im(f),lm(g)). Spoly(f,g) cancels the

leading terms of f and g. Therefore, the computation

Spoly(f,g) i>+ r results in a remainder r, which if non-zero,

provides an element with new leading term in the generating
set. The Grobner basis algorithm terminates when for all pairs

(.8), Spoly(f,8) Lr. 0.

Algorithm 1: Buchberger’s Algorithm

InPUt: F= {fly"'yfs}
OutPUt: G= {g17"'7gf}
G:=F;
repeat
G =G,
for each pair {f, g}, f #gin G' do
Spoly(f.8) <+ 1 :
if r # 0 then
G:=GU{r};
end
end
until G =G';

A Grobner basis G may contain redundant elements. To
remove these redundant elements, G is first made minimal and
subsequently reduced.

Definition 3.5: A Grébner basis G = {gi,...,4} for a
polynomial ideal J is minimal when: i) Vg; € G, lc(g) = 1;
ii) V i # j, Im(g;) does not divide Im(g;).

To obtain a minimal GB, all polynomials g; are removed
from G if there exists a g; such that Im(g;) | Im(g;). Then the
remaining elements (g;’s) are made monic by dividing each g;
by lc(g;). This minimal basis is further reduced by ensuring
that no term in g; is divisible by the leading term /(g;) for all
i # j. Subject to >, the reduced Grobner basis G = {g1,..., 8}
is a unique canonical representation of the ideal — a property
we utilize for canonical polynomial abstraction.

IV. WORD-LEVEL ABSTRACTION USING GROBNER BASIS

We are given a combinational circuit C with k-bit inputs
and outputs, as shown in Fig. 3l Our objective is to derive
a canonical word-level abstraction polynomial Z = ¥ (A) for
the circuit C. As discussed before, one such abstraction exists
as a polynomial function over the Galois field F,c. We now
describe a Grobner basis approach to derive the abstraction
polynomial.

ag | 20
Al a1 7 — ]:(A) 2 |4
Ak—1] Zk—1

Fig. 3: Polynomial abstraction from a circuit.

A. The Problem Formulation over [,

Based on the datapath size k, g = 2k is chosen to model the
circuit as a system of polynomials over Fyxi,---,xq4,Z,A],
where {xi,---,xg} correspond to all the bit-level variables
(nets) in the circuit, Z and A are the word-level output and
input, respectively. To construct the field, we choose a prim-
itive polynomial P(x) with the fewest terms, as it simplifies
our computations.

Every Boolean logic gate in the circuit C is mapped to a
polynomial function over Fy (C Fax):

NOT
AND :

OR:
XOR :

—a—a+1
aNb—a-b (mod 2)
aVb—a+b+a-b (mod 2)
a®b—a+b (mod?2)

(mod 2)

3)

For example, let ¢ = a A Db represent an AND gate. Over [y,
this corresponds to the equation ¢ = a - b; its polynomial form
is ¢ —a- b, or equivalently c+a-b since —1 =1 over F,.

Let {fi,...,fs} denote the set of polynomials derived from
every Boolean gate in the circuit. Next, the word-level and bit-
level correspondences over F are considered as A =Y\ a;-
o and Z =Y "1 z-of, where P(at) = 0. These are represented
as polynomials:

faiaotarottaof T FA

“4)
fziz0+ 100+ +zk,10ck*1 +Z

Denote the ideal generated by all these polynomials as
J={f1,--,fs, fa,fz). The (unknown) word-level abstraction
of the circuit Z = F(A) can be represented as the “spec-
ification” (spec) polynomial f :Z+ F(A). The generators
of J encapsulate the functionality of the circuit. Clearly,
the spec polynomial f :Z+ F(A) agrees with the solutions
to the circuit’s equations fi = - = fs = fa = fz=0. In
other words, f(a) =0 for all points a that are solutions to
fi=---=fs=fa=fz=0. In computer algebra terminology,
we say that f vanishes on the variety Vi, (). This implies that
f€1(Vg,(J)), due to Definition 3.3l Strong Nullstellensatz
over Galois fields (Theorem tells us that I(Vp,(J)) =
J +Jo, where Jo = (x? —xl,...,xfl —x4,29—Z,A7—A) is the
ideal of all vanishing polynomials in Fy[xi,--- ,x4,Z,A]. Note
that since the bit-level variables xi,...,x; take values in [Fy,
the vanishing polynomial x? —x; is used; whereas A? —A and
Z1—Z are used for the vanishing polynomials in word-level
variables. From these results, we deduce that:

Proposition 4.1: The (unknown) abstraction polynomial f :
Z+ F(A) is a member of the ideal J + J.
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B. Abstraction Using Grobner Basis

The variety V (J+Jo) is the set of all consistent assignments
to the nets (signals) in the circuit C. If we project this
variety on the word-level input and output variables, we
essentially generate the function f implemented by the circuit.
Projection of varieties from d-dimensional space IFZ onto a
lower dimensional subspace FZ’I corresponds to eliminating
[ variables from the corresponding ideal.

Definition 4.1: (Elimination Ideal) From [7]]: Given J =
(fis.- o fs) CFylxi,...,xq4], the Ith elimination ideal J; is the
ideal of Fy[x;41,...,x4] defined by: J; =JNFy[x41,...,x4].

In other words, the /th elimination ideal does not contain
variables xp,...,x;, nor do the generators of it. Moreover,
Grobner bases may be used to generate an elimination ideal by
using an elimination term order. One such ordering is a pure
lexicographic (lex) ordering, which features into the theorem:

Theorem 4.1: (Elimination Theorem) From [7|]: Let J C
Fy[xi,...,x4] be an ideal and let G be a Grobner basis of
J with respect to a lex ordering where x; > x3 > -+ > x4.
Then for every 0 <! <d, the set G; = GNFy[x;11,...,x4] is
a Grobner basis of the /th elimination ideal J;.

Example 4.1: Consider polynomials fi : x> —y—z—1, f>:
x—y—z—1, f:x—y—2>—1and ideal J = (fi, f>,f3) C
Clx,y,z). Let us compute a Gribner basis G of J w.r.t. lex term
order with x >y > z. Then G ={gi,...,g4} is obtained as:
g1 :x—y—zz— 1; g :yz—y—zz—z; g3: 2yzz—z4—zz; g4
2 —4z* — 473 — 2. Notice that the polynomial g4 contains
only the variable z, and it eliminates variables x,y. Similarly,
polynomials g>,g3,84, contain variables y,z and eliminate x.
According to Theorem @1l Gy = GNCly,z] = {g2,83,84} and
G, = GNClz| = {ga} are the Gribner bases of the 1*' and
2" elimination ideals of J, respectively.

The above example motivates our approach: since we want
to derive a polynomial representation from a circuit in vari-
ables Z,A, we can compute a Grobner basis of J+Jy w.r.t. an
elimination order that eliminates all the (d) bit-level variables
of the circuit. Then the Grobner basis Gy = GNF,[Z,A] of
the d'" elimination ideal of J +Jy will contain polynomials in
only Z,A. We will show that the desired canonical polynomial
representation f: Z+ F(A) will be found in G,.

Problem Setup 4.1: Given a circuit C with k-bit inputs and
outputs which computes a polynomial function f: For — Fyr.
LetA={ao,...,ar—1} and Z={z,...,2;—1} be the inputs and
outputs of the circuit, respectively, such that A = ap+ajo+
codap 10 and Z =70+ - + 710571, where P(a) = 0.
Let Z= F(A) be the unknown polynomial function (spec)
implemented by the circuit. Denote by x;,i = 1,...,d, all the
Boolean (bit-level) variables of the circuit. Let R = Fo[x;, Z,A :
i = 1,...d] denote the corresponding polynomial ring and
let ideal J = (fi,....fs, fa,fz) C Fuxi,Z,A:i=1...d] be
generated by the bit-level polynomials of the circuit (fi, ..., fs)
and the word-level designation polynomials (f4, fz). Let Jo =
(2 —x;, 2% —Z,A* —A:i=1,....d) denote the ideal of
vanishing polynomials in R. O

We define the following term order for this purpose of
abstraction:

Definition 4.2: Abstraction Term Order >: Using the vari-
able order {xi,---,xs} >Z > A, impose a lex term order
> on F,lxi,...,x4,Z,A]. This term order is defined as the
Abstraction Term Order (ATO) >. The relative ordering
among the bit-level circuit variables x1,...,x4 is not important
and can be chosen arbitrarily.

Theorem 4.2: Abstraction Theorem: Using the setup and
notations given in Problem Setup .1l compute a Grobner basis
G of ideal J 4 Jy using ATO >. Then:

1) G must contain the vanishing polynomial A? — A as the
only polynomial with only A as the support variable;

2) G must contain a polynomial of the form Z+ G(A);

3) Z+ G(A) is such that F(A) = G(A),VA € F,. In other
words, G(A) and F (A) are equal as polynomial functions
over Fy, and that Z = G(A) is a polynomial representation
of the circuit C.

Proof:

1) The vanishing polynomial A7 — A is a given element of
the generating set J 4 Jy. Variable A is also the last
variable in the abstraction term order. Moreover, A is
an input to the circuit, so A is an independent variable
which can take any and all values in . Since only a
vanishing polynomial contains as solutions all points in
[y, it follows that G4 = GNIF,[A] = {A1—A}.

2) Since f:Z+ F(A) is a polynomial representation of
the circuit, Z+ F(A) € J+Jy, due to Proposition .11
Therefore, according to the definition of a Grobner basis
(Definition 3.4), the leading term of Z + F(A) (which
is Z) should be divisible by the leading term of some
polynomial g; € G. The only way /#(g;) can divide Z is
when It(g;) = Z itself. Moreover, due to our abstraction
(Iex) term order, Z > A, so this polynomial must be of
the form Z+ G(A).

3) As Z = F(A) represents the function of the circuit,
Z+ F(A) € J+Jy. Moreover, V(J+Jo) CV(Z+ F(A)).
Project this variety V(J+Jp) onto the co-ordinates cor-
responding to (A,Z). What we obtain is the graph of
the function A — F(A) over Fy. Since Z+ G(A) is an
element of the Grobner basis of J +Jy, V(J +Jy) C
V(Z + G(A)) too. Due to this inclusion of varieties,
the points that satisfy J + Jy also satisfy Z+ G(A) =0
and Z+ ¥ (A) = 0. Therefore, Z = G(A) gives the same
function as Z = F(A), for all A € Fy.

|

Corollary 4.1: Let Greq = {g1,-..,8 } denote the reduced

Grobner basis of J+Jy wa.t. ATO >. Then G,y contains

the one and only polynomial of the form g;: Z+ ¥ (A), such

that Z = F(A) is the unique, canonical representation of the
function f implemented by the circuit.

Proof: Assume that there are more than one polynomials
in G4 containing only variables Z and A. According to The-
orem one of these polynomials is g; : Z+ G(A). Clearly,
It(g;) = Z divides the leading term of all other polynomials
gj in variables (Z,A), as Z > A in ATO. All such polynomials
gj’s are redundant and eliminated from the basis when it is
reduced to G.q. Therefore, only one polynomial of the type
gi:Z+ F(A) appears in the reduced basis.
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Moreover, due to the presence of vanishing polynomials
AT—AeJ+Jy, Z+ F (A) will be reduced (mod A?—A). Con-
sequently, Z+ 7 (A) results as the unique, reduced, canonical
word-level polynomial representation of the circuit. [ ]

As a consequence of Theorem and Corollary 1] if
we compute a reduced Grobner basis Gy of J+Jy using
the abstraction term order, we will always find the one and
only polynomial of the form Z+ F (A) in the basis, such that
Z = F(A) is the unique canonical polynomial representation
of the circuit. If the circuit contains multiple word-level
inputs Ay,...,A,, each k-bit wide, then ATO can be extended
to include these variables by imposing a lex term order
> with {x1,...,x4} >Z > A| > --- > A,. Subsequently, the
reduced Grobner basis of J 4 Jy computed with ATO contains
f:Z+ F(Ai,...,A,) as the only polynomial in variables
Z,Aq,...,A,, corresponding to the desired abstraction. The
application of this approach is demonstrated using the example
shown below.

Example 4.2: Consider the circuit of Fig. Variables
ap,ai,bo, by are primary inputs, z0,z1 are primary outputs, and
cp,C1,C2,C3,10 are intermediate variables. As the circuit con-
tains 2-bit inputs and outputs, we will abstract a polynomial
Z = F(A,B) over Fy by computing a reduced Grobner basis
of polynomial derived from the circuit. To construct F2, we
use the primitive polynomial P(x) = x> +x+ 1, with P(a) = 0.

A R -
T D

Fig. 4: An arbitrary circuit modeled over F(2?).

With the mapping rules given in Egn. [B)), the Boolean
equations are transformed into polynomials over [F:

co =aop by — fiico+ao-bo
c1 =apg/A\by — frici+ap-by
¢y =aj Nby — fzica+ar-by
c3=aj\b; — faicz+ar-b
ro=c1@®c - fsiro+ci+e
20 =coPc3 — Jo:z0+co+c3
21 =r0®co — frra+ro+co

The word-level designation polynomials are: fa : ap+ay -
a+A; fp:bo+b1-0+B; fz:20+2z1-0+Z. Thus the ideal J =

(fi, -+, f1,/4, /B, f2) is generated by the polynomials derived

from the circuit. The vanishing polynomials in our system are:
fsag+ag forai+a fi0: b5 +bo
fir:bi+by fiz:cg+co fizici+a
fiaics+e fis:c3+cs fie:15+70
fir:25+20 fis:zi+zi fio:A*+A
f20:B*+B fo1:24+2

Then Jo = {(fs, - ,/fa)
(froo s o, fas fBy fz)-

Impose the following abstraction term order, i.e. a lex order
with {z0 >z1 >r0>co>c¢1 >cp>c3>ap>a; >by>b} >
“Output Z” > “Inputs, A > B” and compute a reduced
Grobner basis Greq of J+Jo. The resulting basis contains
14 polynomials:

and J + Jo is simply

g1 B*+B

g A*+A

g3: Z+(a+1)-A%-B?
g4: b1 +B*+B

gua: 20+ o-A*- B>+ (a+1)-A-B

As expected, the first two polynomials are the vanishing
polynomials in word-level inputs and the polynomial g3 is
the only polynomial in variables Z,A,B which represents the
polynomial function of the circuit C as Z = (a.+ 1) -A%. B~

C. Generalizing the approach for functions f : Fom — Fon

When the word sizes of the inputs and output of the circuits
vary, the functionality of the circuit must be analyzed over
an encompassing field. Let m be the size of the input bit-
vector A and n be with size of the output Z such that m # n.
Then the circuit implements a function over f : Fom — Fon. In
such cases, the abstraction can be performed over [F,x where
k= LCM(m,n), by virtue of the following result [39].

Lemma 4.1: The field Fye D Fy» when n | k.

By selecting k = LCM(m,n), the field F,x becomes the
smallest single field containing both Fom and Fye. Let o, B and
Y be the primitive elements of F,.,Fon and Fpn, respectively.
The word-level designation polynomials now become:

fa:ao+aip+- --—l—am,le*l +A
frizo+ay+ oty +2Z

Since the analysis is performed over F,, f and v must be

mapped to a. This is accomplished by means of the following

result [39], which can be easily derived by analyzing the
multiplicative group structure of the fields:

5)

B =2 -/@"-1)

'Y :(x(zk*l)/(zn*l)

(6)

By replacing B and Yy in terms of o in Eqn. (@), the
abstraction can be performed as before by computing the
reduced Grobner basis of the ideal J + Jy. However, care
should be taken to compose the vanishing polynomials: xiz —X;
for the bit-level variables, A" — A for the m-bit input, and
7% — Z for the n-bit output.

Example 4.3: Consider the circuit shown in Fig. The
input A is 3 bits wide while the output Z is 2 bits. Thus,
A €Ty and Z € Fya. Let B be the primitive element of Fy3
and 'y be the primitive element of Fp, i.e. A = ag+a1B+a:p?
and Z = zo + z1Y. The function Fy; — Fyo must be analyzed
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Zo

y

S1

7

Z;

S2

%
Y

Fig. 5: Abstraction over a circuit with varying word sizes.

over Fys since LCM(2,3) =6, i.e. Fy3 and Fy are subsets of
Fy. Choose P(X) = X+ X +1 as the primitive polynomial to
construct this field, where P(a) =0, and find B and ¥ in terms
of o P = a1/ — o9 and v= a28-1)/(2* 1) _ 21
So the word-level polynomials represented in Fy are:
faag+a1of + a0 +A; fz:z0+ 2102 +Z, and the bit-
level polynomials are derived from the circuit as before. Col-
lectively, these generate ideal J. On the other hand, in Jy, the
vanishing polynomials corresponding to the bit-level variables
are included as {)cl2 +x;}, whereas the vanishing polynomials
of the word-level variables are composed according to their
respective operand sizes: A” 4 A and 7% + Z. Then, by
computing the reduced Grobner basis of J +Jo, the word-level
abstraction of the circuit Z+ F (A) is found to be:

Z4+A%(0% + o) + A3 (o 4 o + o) + A% (02 + )
+A3 (0 0 +0?) +A% (ot + o + o) + Aot + o + o)

where 0 + o+ 1 = 0. Simulating this polynomial for all
A €TFys results in values of Z € Fy corresponding exactly to
the function implemented by the circuit.

We have utilized this generalization of our model for
verification of composite field arithmetic circuits.

Preliminary experiments: Using the results of Theorem [£.2]
and Corollary[Z.1] we performed some proof-of-concept exper-
iments to evaluate the efficacy of our approach to abstraction.
We experimented particularly with Galois field Mastrovito
multipliers, and employed the SINGULAR computer algebra
tool [4Q] to derive the abstraction polynomial Z+ A - B, using
the slimgb command to compute the reduced Grobner basis of
J+Jo using ATO. We found that beyond k = 32 bit operands,
the reduced Grobner basis computation explodes in both time
and space, and the abstraction becomes infeasible.

Computing Grobner bases using elimination term orders is
infeasible for large circuits. The worst-case time and space
complexity of computing the Grobner basis of J 4 Jy in
Fy[x1, .. .,x4] is known to be bounded by ¢°@) , which is
prohibitive over large fields. To make our approach practical,
we need to overcome this complexity. This is described next.

V. EFFICIENT SEARCH FOR THE ABSTRACTION

The aforementioned complexity makes the computation of
a reduced Grobner basis infeasible. However, our abstraction
approach “searches” for only one polynomial (Z 4 ¥ (A))
in the basis. This motivates an investigation into whether
it is possible to guide a sequence of Spoly(f,g) ﬂnr r
computations to arrive at the desired word-level polynomial,

without considering other polynomials in the generating set.
For this purpose, we exploit the well-known Buchberger’s
product criteria:

Lemma 5.1: [Product Criterion [41l]] Let F be any field,
and f,g € Flxy,- - ,x4] be polynomials. If the equality Im(f) -
Im(g) = LCM(Im(f),Im(g)) holds, then Spoly(f,g) inr 0.

The above result states that when the leading monomials of
f,g are relatively prime, then Spoly(f,g) always reduces to
0 modulo the basis G. Thus Spoly(f,g) corresponding to the
critical pair (f,g) need not be considered in Buchberger’s al-
gorithm. Recall that in the Abstraction Term Order (Definition
[4.2)), the relative ordering among the bit-level circuit variables
X1,...,Xg i1s unimportant. This ordering is now further refined
to exploit the product criteria. For this purpose, we draw
inspirations from Proposition 2 in [29] that shows how to
derive a term order from the circuit that makes leading terms
of all pairs of gate-level polynomials relatively prime.

Definition 5.1: Refined Abstraction Term Order >,: Start-
ing from the primary outputs of the circuit C, perform a reverse
topological traversal toward the primary inputs. Order each
variable of the circuit according to its reverse topological
level: i.e. x; > x; if x; appears earlier in the reverse topological
order. Impose a lex term order >, on Fylxi,...,x4,Z,A] with
the “bit-level variables xi,...,xq ordered reverse topologi-
cally” > Z > A. This term order >, is called the refined
abstraction term order (RATO).

Denote F = {fi,...,fs, fa,fz} to be the set of polynomials
which generates the ideal J/ = (F') and denote Fj to be the set of
vanishing polynomials which generates the ideal Jy = (Fp). Let
us impose RATO on the ring, and analyze the characteristics
of the generating set F U Fy. First, we consider only the
bit-level polynomials fi,...,f; derived from the logic gates
in the circuit. Due to RATO, each bit-level polynomial will
be of the form f; = x; + tail(f;), where x; is the output of
the corresponding logic gate. Since the same signal cannot
be the output of two or more gates, each polynomial pair
(fi,fj),i # j will have relatively-prime leading terms. Con-

sequently, Spoly(fi, f;) M+ 0 for all bit-level polynomials
due to the product criteria, and need not be considered in the
Grobner basis computation.

Also, corresponding to each bit-level polynomial f; = x; +
tail(f;), there exists a bit-level vanishing polynomial x? + x;.

While their leading terms are not relatively prime, it was

shown in Theorem 6.1 in that Spoly(fi,x? +x;) ok, o,

To show this, let us denote rail(f;) = P; so that f; = x;+ P,.
Also, every variable x; that appears in P; satisfies x; > x;.
Then Spoly(f,',xi2 +x;) = x;P; + x;, which can be reduced by
the polynomial f; € F:

(xiPs+x1) “5 x4 P2 20 P2 Py

Note that since P; =tail(x;) contains only bit-level variables,
P?+P; is a vanishing polynomial, or P? + P; o, 0. Therefore,
the S-polynomials Spoly(f; = x; +tail(f;), x? +x;) Mhr 0
foralli=1,...,d; so these also need not be considered in the
Grobner basis computation.

However, there is one (and only one) pair of polynomials
(fz,f,;) € F which do not have relatively prime leading
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terms, and for which Spoly(fz, fz,) %+ r results in a new
polynomial in the Grobner basis computation. Here: i) f7 is the
word-level designation polynomial corresponding the output
fz=20+z0+--- +zk,1(xk’1 + Z, with some gate output z;
as the leading term; and ii) the polynomial f;, = z; +tail(f;;)
models the function implemented at the gate, and /7(f;,) = z;.

So let wus analyze the remainder r obtained as

Spoly(fz. f=) M+ r. Due to RATO, r does not contain any
bit-level non-primary input variables of the circuit C, and it
may only depend upon: i) the word-level variables (Z,A), and
ii) the primary input bits (ag,...,ax—1). To show this, assume
that » contains a bit-level non-primary input variable x; in a
term m;. Since there exists a polynomial f; =x;+tail(f;) € F,
It(f;) | mj, and all such terms m; will be canceled during the

reduction Spoly(fz, fz;) M+ r. Variables Z,A never appear
as leading terms of any polynomial in F as they appear last
in RATO. Similarly, the bit-level primary inputs ao,...,ax—|
also never appear as leading terms of any polynomial in F,
as primary inputs are not outputs of any gate. Based on the
above discussion, we conclude that:

Proposition 5.1: Due to RATO, (fz,f;;) is the only can-

didate critical pair to be evaluated as Spoly(fz,fz;) ﬂ+ r
at the start of Buchberger’s algorithm when applied to our
setup. Moreover, the obtained remainder r is a function only
in variables ag,...,a;_1,Z and A.

Example 5.1: Let us revisit Example and the corre-
sponding circuit shown in Fig. Impose RATO: lex term
order with {z0 > z1} > {ro > co > 3} > {c1 > 2} > {ap >
ay > by > b1} >Z > A. Then, the set of polynomials F =
{fi-s /1, Sz, fa, f8} shown in Example 2 are already rep-
resented in RATO.

Notice that the pair (f7,fs) € F is the only critical pair with
leading terms that are not relatively prime. Due to Proposition
B computing Spoly(fz, fs) M+ r, we find that r = (0.4
Daiby + (o+1)a1B+ (ot+ 1)b1A +Z + (o.+ 1)AB. Note that
the remainder r contains word-level variables Z,A,B, and the
bit-level primary inputs ay,b;. Intermediate bit-level variables
(non primary inputs) do not appear in r.

A. Eliminating Bit-Level Variables

The remainder r obtained in Prop. Bl is a function of
the primary input variables, in addition to the word-level
variables. In order to derive a purely word-level expression,
the bit-level variables need to be eliminated from r. We now
derive a functional (polynomial) mapping from each bit-level
primary input variable ag,...,a;—1 to the word-level input
variable A in the form of a; = %,,(A). Then substituting each
a; = F4,(A) in r will result in a purely word-level expression.
These mappings are derived as a set of polynomial functions
F,={fags---+fa_,} in the following form:

aop = Tao (A) — fao Lap+ Tao (A)
o=
ar—1=Fap (A) —  fo, a1+ Fo (A)

where each 7, (A) represents some polynomial function of A.

Due to RATO, terms in {ao,...,ax_1} > A, thus the leading
terms of fu,...,fq_, are ao,...,ar—1, respectively. Then

F,UFy . .
r —— 4, ensures that the new remainder r,, must contain
only word-level variables. In other words, r, must be in the
form Z+ F(A) and is the canonical word-level polynomial
representation of the circuit.

Lemma 5.2: (From [39]) Let o, ...,0, be any elements in
Fow. Then (0 + 00+ -+ o) = Oc%l +0€%l 4 +0C,21 for all
integers i > 1.

Lemma can be applied to derive the desired mapping.
We take the word-level designation polynomial fs : A = ag +
aio+---+ag_jof!, and compute A? for all 0 < j<k:

A=ap+ao+--- +£lk_1()(k71
A? = a(z)—i—a%ocz +- --—i—a,%,locz(k*l)

=ag+a 102+ +ap_ 02D (a? = a;)

A —ap+ a0t + -+ a0t 0

21 (k1)

k-1 k-1
A? :a()—i—al()t2 + a0

These equations can be represented in matrix form,
k—1 . .
A =Ma, where A =[A,A%,...,A> ']T, M is a k x k matrix of

coefficients, and a = [ag, ..., a;_1]7:
A 1 « o? okt a
A? 1 o? at alk=1)2 a
2
A2 4 8 k-4 u
_ |11 o o (0] 2 )
42+ 1 o2 22! ok-121 | Ly

Treat a as a vector of k unknowns, M and A as matrices of
constants. This represents a system of k linear equations in k
unknowns {ao,...,ax—1}. Then F, can be derived by solving
Eqn. (8) using Cramer’s rule:

_ M|
- Mp

provided that [M| # 0. Here M; corresponds to the matrix
M where the i’ column [o, o2, . .. ,oc"'zkfl]T in M is replaced
by the vector A = [A,AZ,...,AZIH]T.

Notice that M in Eqn. (8) exhibits a special structure.
Elements in every row of M form a geometric progression;
this makes M a Vandermonde matrix, whose determinant is
computed with a simple formula.

Definition 5.2: Let V(xi,...,x,) denote a square n X n
matrix of the form

0<i<k—-1 )

ai

1 x x% x’f*i
1 x x% xg a0)
1 X xﬁ xﬁ.’l
Then V(xi,...,x,) is a square Vandermonde Matrix, the
determinant of which can be computed as:
V(xi,....x)l= J] (x—x) (11

1<i<j<n
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This determinant is non-zero if each x; € {x1,...,x,} is a
distinct element.

Matrix M in Eqn. @) is a k x k square Vandermonde
matrix of the form V(a,a2,...,02" ). In our investigations,
we discovered that [M| = 1, which we prove below.

Lemma 5.3: For matrix M in Egn. (8), M| =1 over Fy.

Proof: M is a Vandermonde matrix of the form
Vio,a2,04,...,027") = V(@@ o, 0¥, .02, 02
The Vandermonde determinant |V(Oc Oc2 Oc4 ,(x2k71)| is
non-singular if the elements o, 02,0, ,0(2 o are distinct
(Definition [5.2). Since Fy is constmcted from a primitive
polynomial, o is a primitive element, and every o for
0 <i< 2% is a distinct non-zero element. Then by Definition

M| 0.
Moreover; from Eqn. (1) it follows that:
M= T @@ —ot)= ] @+e)
0<i< j<k 0<i< j<k

2, and applying Lemma gives:
I—I ((x21+1 +(x2i+l) (13)

0<i<j<k

Computing |M

)P =

[ T (o

0<i<j<k

IM[? =

When j=k—1, the expression (o Ty OLZIH) equals (Oczk +
o2 ). Since o2 = o over Fo, this reduces to (o2 2 +a).
This results in the property that [M|> = |M|. Since [M| € Fy,
the only two elements of Fy that satisfy [M|* = [M| are 0 and
1. As already shown |M| # 0, it follows that M| = 1. [ |

This result is demonstrated through the help of an example.

Example 5.2: Over Fys, let A =ag+ a0+ azocz, and so
A =ap+a;02 + a0 and A* = ag+a10* + arad. From these
equations, the coefficient matrix is derived to be:

2

1 o o
M=|1 o ot (14)
1 ot o

Since M is a Vandermonde matrix of the form V(o,o?, o),
its determinant is found by applying Eqn. (L1):

M| = (o* — o) - (ot

= (0" +a?)- (ot

—a)- (o — )

15
+a)- (02 + o) (1>

Note that |M| is non-zero since it is a product of non-zero
terms. Now compute |M|?* while applying Lemma [5.2}

M|? = [(a* 4+ a?) - (a* + o) - (0 4 a)]?
= (¥ +a*) - (a®+a?) (a*+ao?)
= (a+0o*)- (o +02)- (ot +o?)

as o8 = oL over Fps. So |M|? = [M|. Since M| # 0, [M| =1,

as no other element of Fy3 can satisfy this condition. Indeed,
evaluating Eqns. ([3) and (I6) (mod P(o)) based on the
chosen primitive polynomial P(x) results in |M|> = [M| = 1.

Applying Lemma 5.3 to Eqn. (O) gives the expression for
a; in terms of A: i.e. a; = |Mj|, where the determinant |M;]
can be computed symbolically.

The polynomials a; = %,,(A) = |M;| are independent of the
circuit that is given for abstraction, and their form/size depends

(16)

upon the operand width of the circuit k (or the corresponding
field F,¢). Since M; is of the form

o oi1 A oit! o1
o2 . gli-D2 g2 liHDn2 olk=1)2
M; =
1 o2 L D2 A2 glrn2st ke 2t

and |M;| is computed by Laplace expansion along the i
column, it follows that computing the determinant |Mj| results
in polynomials of the form a; = ¢;,A + c,'lA2 + ci2A4 + 4

k—1
ci, A%, where {cy,...,ci,_, } € Far.

B. The Overall Abstraction Approach

Based on the above concepts, the word-level abstraction
approach for a circuit with k-bit input A and k-bit output Z is
described as follows:

1) Given a combinational circuit C, with word-level k-bit

input A and output Z.

2) Choose a primitive polynomial P(x) of degree k and
construct Fy, and let P(a) = 0.

3) Perform a reverse-topological traversal of C to derive
RATO: lex with {x; > xp > --- > x4 > Z > A}, where
{x1,...,x4} are bit-level variables of C.

4) Derive the set of bit-level polynomials {fi,..., f;} from
each gate in C, and represent them using RATO. These
will be in the form f; : x; +tail(f;) where x; is the output
of the corresponding logic gate.

5) Compose the bit-level to word-level polynomial corre-
spondences: fj :ap+ajo+--- +ap_ 1ok A; fz:z20+
20+ -+ 70+ Z. Denote F = {fi,..., fs, fa,fz}.
Compose the set of vanishing polynomials Fp = {)cl2 +
xi, A% +A, 2% + A}

6) Select the only critical pair (fz,f;) in F that does

not have relatively prime leading terms. Compute
FUK
Spoly(fz, fo) —+ -
7) Construct matrices My,...,Mk_ 1, where M; is M
with the column [of,0f2,...,ai2""'|7 replaced by
[A,Az,...,Azkfl]T, and M = V(a, ocz,...,oczkfl).

8) Symbolically compute the determinants |M;| to find F, =
{fag>--->far_}> where fu. 1 a;+ M|, for 0 <i<k—1.
Since this computation is independent of the reduction
Spoly(fz, f=;) M)Jr r, it can be performed in parallel
with Step

9) Compute 7 - . 1,,. Then r, is of the form Z+ ¥ (A)
and it is the unique, canonical word-level abstraction
of C over Fy.

Example 5.3: We demonstrate the application of our ap-

proach on the circuit of Fig. @ In Example 0.1l we have
already shown that by imposing RATO and performing the

reduction Spoly(fz, fe) ﬂhr r gives:
r=(o+1aibi+ (a+1)aiB+ (a+1)b1A+Z+ (a+1)AB

Since r contains the bit-level variable ay,b, find fy, : a1+
[My|. In this example, f4 :ao+aj0t+A, so

wlg el a
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Computing |My| finds fq,

by + B> + B. Now, computing r 4+ hy finds
re=Z+(0+ 1)A2Bz, which is the unique canonical polyno-
mial representation of the circuit, the same as the one derived
by computing a full reduced Grobner basis in Example

Complexity of our approach: In our approach, Steps [6),
[8) and O) are the main computationally intensive procedures.
Given d variables in the polynomial ring with coefficients in
F,k, we have shown that: i) the worst-case complexity of Step
@) is 0(22?); ii) the complexity of Step [§) is polynomial in k;
and iii) the complexity of Step Q) is O(2%). Steps [6) and )
are independent and these are computed in parallel. Moreover,
since d >> k, the complexity of Step[8) subsumes that of Step
[8D. So the worst-case complexity of the abstraction algorithm
is 0(2%) 4 0(2%). Interested readers may refer to Theorem
6.3 in for a detailed proof.

cay + A% + A, Similarly, Jo,
{fay fo Ry
et Nt LN

VI. EXPERIMENTAL RESULTS

Using the approach described in Section [Vl we have per-
formed experiments to abstract canonical word-level represen-
tations of galois field multiplier circuits of various designs.
The abstraction procedure described above can be scripted
using the computer algebra tool SINGULAR [40]. However,
SINGULAR has serious limitations that make abstractions of
large circuits impossible. This is due to the following reasons:
i) SINGULAR limits the number of variables to 32,767 in the
ring; ii) the size of the exponent (/) of a variable (x') is limited
to [ < 2%2, whereas our approach requires large exponents (e.g.
A%+ A); and iii) the (dense-distributive) data structures used by
SINGULAR are not specifically designed for circuit verification
problems, resulting in large memory usage and slow computa-
tion time. In practice, SINGULAR is infeasible for word-level
abstraction beyond 32-bit circuits. For this reason, we have
developed our own custom abstraction tool in C++, available
at http://www.ece.utah.edu/~pruss/abstract.html.

A. Custom Tool Implementation

Our word-level abstraction tool is based on fast, efficient
polynomial operations over the rings of the type Foc [x1,. .., x4].
We developed a Galois field library that forms the backbone
of the tool. Given any primitive polynomial of some degree
k, the library facilitates the construction and manipulation of
elements of the corresponding Galois field Fyr. Any element
C € [Fx can be represented in the form C = ¢, o
c2 0% +cp-o+co where {co,...,cr_1} € Fo and o is the
primitive element. This structure is stored as an unsigned byte
array containing {co,...,cx—1}, as shown in Fig.

k-1
Byt|e I_TJ Bytle 0
[ TolofcalGaf ] - -« - - - -
bit 7 bit 0

Fig. 6: Object structure of a Galois field element

This compact structure allows addition of any two elements
to be computed as a byte-wise XOR operation. The library also

supports multiplication and division. The extended Euclidean
algorithm is implemented to compute inverses over .

A monomial M over the ring Fy[xi,...,x4] is a power-
product in variables xi,...,x; with a coefficient C € Fy,
M =C-x1°1-x2°?---x4%;e; > 0. Ring variables are either bit-
level or word-level. If x; is bit-level, then )ci2 = X;, SO its
exponent ¢; € {0, 1}. For word-level variables, ¢; < 2%, due to
x? = x;. These degree-reductions are performed after every
monomial operation. Since RATO is a lex based ordering,
lex is currently the only ordering implemented in the tool.
Each variable is given a unique unsigned integer ID, which is
used to order the terms. Each monomial object contains: i) a
Galois field library object; ii) a set of IDs of all variables
in the monomial; and iii) a map of variable IDs to their
exponents. The exponent mapping is only used for word-
level variables as bit-level variables can have an exponent of
at most 1. Since exponents can be much larger than what
can be stored in a primitive data structure, each exponent is
stored as a BigUnsigned object of the open source library
Biglnt [43]], which provides basic functionality for integers of
unbounded size. A polynomial object is simply an ordered
vector of monomial objects. Additions and multiplications of
polynomials are performed over their respective monomials.

Example 6.1: Consider the ring Fyila,b,c,Z] with the lex
ordering a > b > ¢ > Z, where {a,b,c} are bit-level variables
and Z is a word-level variable, and P(x) = x* +x* + 1
with P(a) = 0. Let My = (& + o + 1)abZ'® and M, =
(02 +a)bcZ! be monomials. Variables a,b,c,Z are given IDs
0,1,2,3, respectively. These monomials are stored as:

M,
coef idSet idToExp 18
[OJOJOTOI[I[0]T] {0.1,3} 310 (18)
M,
coef idSet  idToExp 19)
[0T0TOTOOI[I0] {1.2.3} 37

where idToExp 3 — 7 implies that the exponent of Z is
7. Since the first element of the idSet is 0 in M| and 1 in
M>, it implies M| > My in our ordering. My - M, is computed
by multiplying the coefficients, merging (union) their idSet,
and adding the exponents of Z (idToExp). The exponents
are reduced accordingly as b> = b and Z'® = Z, resulting in
My -M, = (02 + 1)abcZ>.

M; -M,
coef idSet
|0|O|0|0|0|1|0|1| {0,1,2,3}

idToExp
322

(20)

Finally, polynomial division f Mq r is implemented as
Faugére’s F4-style reduction [16]]. The current implementation
of this F4-style reduction is a significant improvement over
our previous one (Section VII in [16]]), which did not provide
support for coefficients or exponents beyond {0,1}.

B. Results

All experiments are conducted on a 64-bit Linux desktop
with a 3.5GHz Intel Core™ i7 Quad-core CPU and 16 GB
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of RAM. Table [ depicts the time and memory required to
derive the polynomial abstraction from bug-free and buggy
Mastrovito multiplier circuits using our custom tool. These
circuits are provided as bit-blasted/flattened gate-level netlists.
They compute Z =A-B over [F« for a given k=163,...,571
corresponding to the NIST ECC specification. Bugs are intro-
duced by interchanging some gates and wires at the output
nodes, ensuring that their effect propagates down during the
polynomial reduction process.

TABLE II: Abstraction of Mastrovito multipliers. Time given in
seconds, memory given in MB. TO = timeout 3 days (259,200 sec).

Field Size (k) 163 | 233 283 409 571
# of Gates 153K | 167K | 399K | 508K | 1.6M
Time (s) Bug Free | 1,443 1,913 | 11,116 | 17,848 | 192,032
’ Buggy | 1,487 | 2,106 | 11,606 | 20,263 | 204,194
Max Memory (MB) | 213 | 269 561 845 2,855

Table [ depicts the results for abstraction of flattened
Montgomery multipliers. Unlike as shown in Fig. [ in this
experiment the design hierarchy is not made available to
the abstraction tool. Abstraction is feasible for the 233-bit
field, beyond which the reduction times-out. However, if the
hierarchy is known, it can be exploited by computing the
abstraction of each MR block in parallel, as shown in Table
[Vl In this table, 'BLK A’ and ’B’ denote the input MR
blocks, 'BLK Mid’ denotes the middle block and ’'BLK Out’
is the output block. While each block is an MR block, some
have been simplified by constant-propagation, hence they have
different gate-counts. First, a polynomial is extracted for each
MR block (gate-level to word-level abstraction), and then the
approach is re-applied at word-level to derive the input-output
relation (solved trivially in < 1 sec). Our approach can extract
the polynomial for up to 571-bit (all NIST-specified ECC
fields) circuits for both buggy and bug-free implementations.
In these experiments, bugs are introduced in the middle MR
block, as its abstraction is the most compute intensive.

TABLE III: Abstraction of flat Montgomery multipliers. Time given
in seconds, memory given in MB. TO = 3 days (259,200 sec).

Field Size (k) 163 233 283 | 409 | 571
# of Gates 184K | 329K [ 488K | 1.0M | 1.97M
Time Bug Free | 6,897 | 63,805| TO | TO TO
Buggy | 6,961 [ 64,009 | TO | TO TO
Max Memory 153 325 505 | 971 | 2,240

TABLE IV: Abstraction of Montgomery blocks. Time given in
seconds, memory is given in MB. TO = 3 days (259,200 sec).

Field Size (k) 163 | 233 | 283 | 409 571
Blk A | 33K | 55K | 82K | 168K | 330K
# of Gates Blk B |33K| 55K | 82K | 168K | 330K
Blk Mid | 85K | 163K | 241K | 502K | 980K
Blk Out | 32K | 54K | 81K | 168K | 328K

Blk A | 25 | 142 | 330 |1,322] 5,371

Bug Free Blkk B | 25 | 141 | 329 | 1,335 5,241
Blk Mid | 73 | 408 | 883 |4,471 19,942
Time Blk Out | 24 | 140 | 321 |1,338| 5,532
Blk A | 26 | 142 | 331 |1,323| 5,372

Bugay Blkk B | 26 | 141 | 330 | 1,336 | 5,421
Blk Mid | 111 | 580 |1,411 6,829 | 37,804
Blk Out | 25 | 141 | 322 |1,339] 5,539
Max Mem Per Blk | 80 | 168 | 254 | 538 | 1,129

We have also performed experiments with abstraction and

verification of composite field multipliers for up to k = 1024
bits, where the field Fy is decomposed as Fmy. For these
experiments, the decomposition hierarchy is made available
to the tool. Similar to the design shown in Fig. P the input
A=ap+ajo+--+a_ 05 is transformed into multiple
word-level inputs over Fom, Ag,Ay,...,Ay—1, where each A; =
ajo+aip+-- +a,~(m,1)[5m’1 and P is the primitive element
of Fom. The circuit is then composed of m-bit ADD, MULT
blocks. Addition over [Fon is a bit-wise XOR operation, so
this abstraction is trivial. The m-bit multipliers are designed
using the Mastrovito-style and their word-level abstractions
are derived in similar fashion as the experiments of Table
[ Each abstraction can be performed independently. Once
these m-bit word-level polynomials are known for the blocks,
the final abstraction Z = ¥ (A,B) is performed. For this, a
functional mapping from each A; to A is derived in the form
A; = Fi(A). This is also computed similar to the concepts
shown in Eqns. [)-(@) in Section [V} the property A?" = 4; is
utilized instead of ai2 = qa; as the base field is [Fom in this case.
The results of this final word-level abstraction of buggy and
bug-free multipliers over composite fields are shown in Table
[Vl In these experiments, bugs are introduced in the high-level
interconnections of the Fom blocks, and the [Fon Mastrovito
blocks themselves are kept bug-free.

The above experiments are conducted for abstraction of
building-blocks (ADD, MULT) for finite field arithmetic com-
putations. The following experiment is conducted to evaluate
the efficacy of our abstraction procedure when these building-
blocks are instantiated in a larger system. To this end, we
perform abstraction for ECC point-addition circuits. Using Fo«
Mastrovito multipliers and adders, circuits were designed for
ECC point-addition (see Eqn. @)); these polynomials were
synthesized/optimized and then abstraction for each word-level
output X3,Y3,Z3 was performed in terms of word-level inputs
X1,Y1,Z,,X, and Y;. The results for this abstraction are shown
in Table [VI, where abstraction is successful for up to 409-bit
fields, but infeasible for the 571-bit circuit.

TABLE VI: Time and memory per abstraction of point addition
circuits. Time given in seconds, memory given in MB. 7O = 3 days
(259,200 seconds.)

[ Size (k) [ 233 ] 283 | 409 [571]
Max Time (s) 2,831 10,325{109,777 | TO
Max Memory per run (MB) | 297 | 535 942 -

The above experiments also demonstrate that we can
perform equivalence checking between different circuit im-
plementations by deriving canonical word-level polynomials
(Z1,2») from each circuit independently and then checking if
Z1 =Z,. In the case of Mastrovito (golden model) and Mont-
gomery (implementation) multipliers, our approach can verify
their equivalence for up to k = 571 bit circuits. In contrast,
contemporary equivalence checking approaches (SAT, SMT,
and AIG/ABC) cannot verify their equivalence even for k =16
bits within the timeout limit of 3 days (results omitted for this
reason).

However, simulation, SAT and SMT-based approaches show
success with bug-catching in equivalence check between a
golden model and a buggy implementation. These experiments
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k=128 k=256 k=512 k=1024
Time Max Time Max Time Max Time Max
min m | n m | n m | n
Bug Free | Buggy | Mem Bug Free | Buggy | Mem Bug Free | Buggy | Mem Bug Free | Buggy | Mem
2 |64 1 1 4 2 | 128 15 15 23 2 256 406 408 90 2 |512] 11,883 |[12,050| 414
4132 1 1 2 4 | o4 2 2 4 4 128 53 53 25 4 1256 1,520 1,536 | 106
8116 1 1 2 8 | 32 1 1 3 8 | 64 8 8 4 8 | 128 209 211 29
16| 8 1 1 2 16 | 16 1 1 2 16 | 32 2 2 4 16 | 64 38 37 10
321 4 1 1 2 321 8 1 1 2 32 | 16 1 1 3 32 | 32 10 10 5
64| 2 1 1 3 64 | 4 1 1 2 64 | 8 1 1 3 64 | 16 4 4 3
- - - - - 128 2 1 1 2 128] 4 1 1 2 128 8 2 2 3
- - - - - - - - - - 256 | 2 1 1 2 256 | 4 1 1 3
- - - - - - - - - - - - S12| 2 1 1 3

TABLE V: Abstraction of composite field multipliers over F(yn).. Time given in seconds, memory in MB.

are shown in Table [VIIl where a Montgomery multiplier
implementation is mitered and verified against a Mastrovito
golden model. The execution time for bug-catching is reported
in the columns. The AIG-based ABC tool outperforms all
other solvers. The simulation engine of ABC (employed for
FRAIGing) is able to detect bugs in the miter relatively
quickly.

TABLE VII: Bug-catching between a golden-model Mastrovito and
buggy Montgomery circuit using simulation, SAT and SMT-solvers.
Time given in seconds, TO = 3 days (259,200 seconds).

[Circuit Size (k) [ 163 [233] 283 [ 409 | 571 |

ABC 32| 6 96 217 | 401
Lingeling 8 |362|12,728 | 3,323 | 23,298
Picosat TO | TO| TO TO TO
Boolector 30 | 41 105 152 | 19,113
CVC4 11 | 64 | 8,660 | 280 TO
73 12 | 55 [ 10,169 | 335 TO
Yices 6 | 7 618 578 | 11,568

C. Limitations of the Approach

Our approach performs very well for Fy Galois field
circuits. The design of these circuits is based on AND-XOR
logic, where “chains of XOR gates” are often encountered.
Our experience shows that the polynomials derived during the
reduction procedures are sparse and do not explode. However,
for random logic circuits, especially logic containing chains
of OR gates, the computations explode and exhibit the worst-
case behavior, due to which this technique is not very efficient
for abstraction of random logic circuits.

e a e
=D DD
(@) (®)

Fig. 7: Polynomial division comparison

Example 6.2: Consider the circuit of Figure [A (a), apply
RATO: lex with z> f >d > e > c > b > a. Reduce z modulo
the polynomials corresponding to the circuit:

fitz+f+d fr:f+et+c frietb+a

S1./2.13

The reduction procedure 7 ——=—"= r will be computed as:
e+b+a

o d X
z aAths f+d [rete e+d+c——d+c+b+a. In each
reduction, a variable corresponding to a gate output is re-
moved and one copy of each input variable is added, leaving

a sparse polynomial. Now consider the same circuit with the
XOR gates replaced by OR gates, as shown in Figure [[ (b).
The monomial ordering stays the same, but the polynomials
derived from each gate have changed:

firz+fd+f+d fo:f+ect+e+c fy:e+ba+b+a

The reduction procedure, z Mhr

BT g d T edeted ec et det

d+c 2T deba+deb+dea+dba+de+db+da+d +

cba+cb+ca+c+ba+b+a=r. Each one-step reduction
removes the output variable of the gate, but replaces it with
two instances of each input variable. This increases the density
of the resulting polynomial exponentially.

r is now computed as:

VII. CONCLUSION

This paper has described an approach to derive a word-level
canonical polynomial representation from a combinational
circuit using algebraic geometry and symbolic computation.
Given a circuit C with k-bit inputs and outputs, we interpret the
function f:B* — B* as a polynomial function f : For — Fox.
We prove that by computing a reduced Grobner basis of
the ideal generated by the polynomials of the circuit, an
input-output relationship can be derived for the circuit as
Z=9F(A), where Z={z9,...,2k-1}, A ={ao,...,ax_1} are
the k-bit inputs and outputs, respectively. The approach is then
generalized to circuits with an arbitrary number of inputs (m)
and outputs (n), by modeling the function over f :[Fox — Fy,
where k = LCM (m,n). Subsequently, by analyzing the circuit’s
topology, an efficient symbolic computation is engineered that
obviates the need to compute a reduced Grobner basis. This
enables the abstraction and verification of large (up to 1024-
bit) Galois field arithmetic circuits, whereas prior approaches
are practically infeasible. The complexity of our approach is
also analyzed.

The function f : B¥ — BX can also be construed as a
mapping over f : Zy — Z,x. However, over finite integer
rings Zoi, not every function is a polynomial function. As
the concepts of elimination ideals and Grobner bases are
applicable over rings too, it is conjectured that the abstractions
so derived may provide an over-approximation of the function
implemented by the circuit. These issues are currently under
investigation for the purpose of abstraction and verification of
integer arithmetic circuits and RTL designs.
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