
Verification of Arithmetic Datapaths using Polynomial Function Models and
Congruence Solving

Neal Tew1, Priyank Kalla1, Namrata Shekhar2, Sivaram Gopalakrishnan1

1ECE Dept., University of Utah, Salt Lake City UT
2Synopsys Inc., Marlborough MA

tew@cs.utah.edu, kalla@ece.utah.edu, Namrata.Shekhar@synopsys.com, sgopalak@ece.utah.edu

Abstract— This paper addresses the problem of solving fi-

nite word-length (bit-vector) arithmetic with applications to

equivalence verification of arithmetic datapaths. Arithmetic

datapath designs perform a sequence of add, mult, shift, com-

pare, concatenate, extract, etc., operations over bit-vectors.

We show that such arithmetic operations can be modeled,

as constraints, using a system of polynomial functions of the

type f : Z2n1 × Z2n2 × · · · × Z2nd → Z2m . This enables the

use of modulo-arithmetic based decision procedures for solv-

ing such problems in one unified domain. We devise a decision

procedure using Newton’s p-adic iteration to solve such arith-

metic with composite moduli, while properly accounting for

the word-sizes of the operands. We describe our implemen-

tation and show how the basic p-adic approach can be im-

proved upon. Experiments are performed over some commu-

nication and signal processing designs that perform non-linear

and polynomial arithmetic over word-level inputs. Results

demonstrate the potential and limitations of our approach,

when compared against SAT-based approaches.

I. Introduction

Many datapath designs perform a sequence of arithmetic
operations such as add, mult, shift, compare, divide, etc.,
over finite word-length operands (bit-vectors). In practice,
operating on finite word-length data-types can introduce sub-
tle, unforeseen errors such as overflow, causing incorrect func-
tion or even security vulnerabilities. With the widespread use
of finite-precision arithmetic in multimedia DSP, communica-
tion centric ASICs, embedded control, etc., it is imperative
to devise new techniques to efficiently model and verify such
systems at higher levels of abstraction.

Traditionally, bit-level decision procedures such as SAT,
BDD, ATPG, etc., have been used for verifying designs at the
bit-level [1] [2]. Techniques that rely on“bit-blasting”to solve
such problems at lower-levels of abstraction are computation-
ally infeasible. Other techniques reason about these computa-
tions using arbitrary precision arithmetic over integers (Z) or
reals (R) - which cannot always capture the nuances of finite-
precision [3] [4]. For these reasons, recent works in this area
try to integrate the above procedures [5] [6], solve a subset
of bit-vector theories [7], or use abstraction-refinement based
techniques that, at some point, rely on SAT engines for proofs
[8]. These approaches have made some headway, but solving
non-linear bit-vector arithmetic still remains a challenge.

Ideally, what is required is an intermediate level of rep-
resentation that has the requisite power of abstraction, as
well as the capability to model the effects of finite precision.
A bit-vector of size m represents integer values in the range
{0, 1, . . . , 2m−1}, i.e. integer values reduced modulo 2m. This
motivates the use of number theory and commutative algebra
for modeling and verification of bit-vector arithmetic.

This work is sponsored in part by the US National Science Foundation

Faculty Early Career (CAREER) Development Award #CCF-546859.

When dealing with unsigned and two’s complement poly-
nomial arithmetic over m-bit-vectors, i.e. overflow arith-
metic using only add, mult operations, the computations
can be modeled as polynomial functions over finite integer
rings of residue classes Z2m . Subsequently, classical ring the-
ory can be applied to solve the verification problems (see our
prior work [9] [10] [11]). However, bit-vector arithmetic en-
compasses a larger gamut of word-level operations, such as
add, mult, shift, compare, concatenate, sub-word ex-
tract, divide, etc. In the presence of such computations,
the classical polynomial function model “breaks down”. For
example, right-shift cannot be modeled as a polynomial
function over Z2m , as division by 2 is undefined in ring Z2m .
Similarly, compare is not a polynomial function; and so on.

While such computations cannot be represented by a sin-
gle polynomial function, this paper shows that they can be
modeled, as constraints, by a system of polynomial func-
tions with composite moduli. This enables the direct use of
modulo-arithmetic constraint solving to solve and verify bit-
vector arithmetic in one unified domain – sacrificing neither
word-level abstraction, nor the precision issues manifested by
finite word-length operands.

Contributions: i) We address equivalence verification of
arithmetic datapaths with finite word-length operands. The
targeted applications are those that implement non-linear
arithmetic commonly found in communication and multi-
media DSP, embedded control, etc. ii) We model finite word-
length bit-vector arithmetic, as constraints, by a system of
polynomial functions of the type f : Z2n1×Z2n2×· · ·×Z2nd →
Z2m [12]; where n1, . . . , nd, m correspond to the bit-vector
word-lengths. Following bit-vector operations are considered:
add, mult, left shift, right shift, compare, sub-word
extract, concatenate, divide, modulus, mux. Both un-
signed as well as two’s complement arithmetic are consid-
ered. iii) We devise a decision procedure based on modulo-
arithmetic congruence solving to solve such arithmetic with
composite moduli. We use Newton’s p-adic iteration [13] for
this purpose. In our case, p = 2. While the use of Newton’s
p-adic iteration was proposed in [14] for software verification,
we show how the basic number-theoretic solving approach can
be improved upon by integrating it with constraint satisfac-
tion engines. iv) Using an efficient CAD implementation, we
demonstrate its application to equivalence checking of arith-
metic datapaths (RTL-to-RTL). Experiments conducted over
some DSP and communication-centric designs demonstrate
the potential (and limitations) of our approach, as compared
against SAT-based approaches.

II. Previous Work

Straight-forward use of a SAT solver on the “bit-blasted”
design has been employed in verification [1] [2], etc. Other
techniques such as CVC [15], STP [6] and that of [16] use pre-



processing steps to simplify the generated constraints, and
then use a SAT solver. SMT solvers such as [3] and [5] also
employ bit-blasting.

There are procedures that target only a specific subset of
bit-vector theories such as concatenation, extraction and lin-
ear equations [7] [17] [18]. These techniques are limited by a
lack of generality.

The works of LPSAT [4], HSAT [19], [20] and that of Huang
[21] use linear (modulo) arithmetic formulations to decide bit-
vector formulas. A major limitation of all these works is their
inability to resolve multiplication and other non-linear word-
level operations.

In [8], authors use an abstraction-refinement based ap-
proach to solve bit-vector arithmetic. They iteratively com-
pute under- and over-approximations of the (encoded) bit-
vector formula, and use a SAT solver to ultimately find a
proof. Their approach can handle arbitrary word-level op-
erations, including multiplication and other non-linear op-
erations. The efficiency of their approach is dependent upon
finding small unsatisfiable cores from the formula. For equiva-
lence checking instances, unfortunately, the UNSAT core size
can be relatively large - in such cases their technique may not
see the full benefit of abstraction.

In a technical report, Babic et al. [14] propose the use
of p-adic approaches to solve a system of polynomial equa-
tions modulo 2m, for software verification. However, their
approach cannot model unsigned and two’s complement com-
pare operations as polynomials. Instead, they reason about
compare operations over unbounded integers; the overall sys-
tem integrates a SAT solver, a p-adic solver and inequality
reasoning in a Nelson-Oppen [22] type framework. Moreover,
implementation details and experimental results are not re-
ported, which makes it hard to gauge the effectiveness of their
overall approach. Furthermore, division is not supported in
their framework.

III. Preliminaries

Definition III.1: Integers x, y are called congruent mod-
ulo n, denoted x ≡ y mod n (or x ≡ y%n), if n is a divisor
of their difference: n|(x − y).

We denote by Z the ring of integers. The set Zn =
{0, 1, . . . , n − 1}, where n ∈ N , forms a commutative ring
with unity. It is called the residue class ring, where addi-
tion and multiplication are defined (mod n). Note that for our
applications, n = 2m, where m is the bit-vector word-length.

The concept of congruence naturally extends to polynomi-
als; e.g. f(x1, . . . , xd) ≡ 0 mod 2m is a polynomial con-
gruence. In this work, we investigate a system of such con-
gruences (mod 2m): fi(x1, . . . , xd) ≡ 0 mod 2m, 1 ≤ i ≤ n.
If such a system has solutions, then we call the system sat-
isfiable; otherwise we call it unsatisfiable. The concept of
finding the solutions to a system of polynomial congruences
is addressed in Section V.

A. Polynomial Functions and Bit-Vector Arithmetic

Functions over finite integer rings that can be represented
by polynomials are generally termed as polynomial functions
(or polyfunctions). Early studies on polyfunctions f : Zn →
Zn have been extended and generalized to those over f :
Zn → Zm and further to Zn1 × Zn2 × · · · × Znd

→ Zm [12].
The following definition of such a polynomial function is taken

from [12], and modified, for our application, to rings modulo
an integer power of 2.

Definition III.2: A function f from Z2n1 × Z2n2 × . . . ×
Z2nd → Z2m is said to be a polynomial function if it
is represented by a polynomial F ∈ Z[x1, x2, . . . , xd]; i.e.
f(x1, x2, . . . , xd) ≡ F (x1, x2, . . . , xd) for all xi ∈ Z2ni , i =
1, 2, . . . , d and ≡ denotes congruence (mod 2m).

Example III.1: Let f : Z21 × Z22 → Z23 be a function
defined as: f(0, 0) = 1, f(0, 1) = 3, f(0, 2) = 5, f(0, 3) = 7,
f(1, 0) = 1, f(1, 1) = 4, f(1, 2) = 1, f(1, 3) = 0. Then, f
is a polyfunction representable by F = 1 + 2y + xy2, since
f(x, y) ≡ F (x, y) mod 23 for x = 0, 1 and y = 0, 1, 2, 3.

Note that in the above model, each variable has its own
range, but the result F is computed modulo 2m. In our con-
text, n1, . . . , nd represent word-lengths of the input variables
and m is the output word-length.

Not every function of the type Zn1 ×Zn2 ×· · ·×Znd
→ Zm

is a polynomial function. In [12], Chen derives the necessary
and sufficient conditions for a function of his type to be a
polynomial function. Moreover, if a function is a polynomial
function, Chen shows how a (canonical) polynomial represen-
tation can be derived (interpolated) for that function.

Example III.2: For example, consider the following RTL
code-snippet, where x is a 2-bit vector and y is 5-bits wide:

if (x > 2) then y = x3 else y = x2;
By applying Chen’s polynomial interpolation criteria, the 5-
bit output y can be represented as a polyfunction from Z22 →
Z25 as Y = 3x3 + 8x2 + 22x (mod 25).

It is practically infeasible to apply Chen’s polynomial inter-
polation criteria to large designs, as it requires one to analyze
the entire function. So, we investigated whether or not in-
dividual non-linear bit-vector arithmetic operators (such as
right-shift, compare) can be represented as a polynomial
function? If this were possible, then we could: i) traverse the
data-flow graph (DFG) of the design; ii) for every bit-vector
operator, derive its polynomial representation; iii) create a
system of polynomial congruences and solve them for verifi-
cation.

Unfortunately, our studies showed that most non-linear bit-
vector operations (such as right shift, compare, divide,
modulus) are not polynomial functions. In fact, we also
found that designs with only add, mult operations, but with
arbitrary internal signal word-lengths may also cease to be
polyfunctions, as shown below.

Consider the (didactic) equivalence checking example
shown in Fig. 1. Fig 1 (a) implements x2 + x and Fig. 1
(b) implements x(x + 1). Over R and Z, these computations
are equivalent. However, in the figure, the designs are imple-
mented with specific bit-vector sizes and hence they are not
equivalent. Note that for x = 2, F = 2, whereas G = 6.

In Fig. 1 (a), t1(x) is a polynomial function from Z22 →
Z22 , represented as t1 ≡ x2 (mod 4). Also, F (t1, x) is a
polynomial function over Z22 × Z22 → Z23 , represented as
F ≡ t1 + x (mod 8). However, the whole design cannot be
represented as a single polynomial function because the com-
position of t1 and F is not a polynomial function. Bhargava
[23] studied this problem and found that over finite integer
rings, the composition of two or more polynomial functions is
not always a polynomial function. In such cases, we cannot
represent the entire design as a polynomial function – hence,
we cannot employ classical ring theory to reason about the
equivalence of such designs.



t2[1:0]

G[2:0]
*+

x[1:0]

1

x[1:0] t1[1:0]

F[2:0]
+*

== 1 ?

! =(a)

(b)

t2[1:0]

G[2:0]
*+

x[1:0]

1

x[1:0] t1[1:0]

F[2:0]
+*

(c)

Fig. 1. Check if x2 + x ≡ x(x + 1) with bit-vector truncation

Motivating our idea: Interpreting Bhargava’s result con-
versely, we investigated whether or not we can take a non-
polynomial function and decompose it into a system of poly-
nomial functions. Intriguingly, our investigations show that
non-polynomial bit-vector operations such as compare, di-
vide, sub-word extract, right-shift etc. can be mod-
eled, as constraints, using a sequence of add/sub, mult,
and selection operations - each of which can be individ-
ually modeled as polynomial functions of Chen’s type [12].
Now we can traverse the DFG of the design and model indi-
vidual bit-vector arithmetic computations using a system of
polynomial functions and solve the corresponding polynomial
congruences.

Fig. 1 (c) depicts our equivalence checking setup us-
ing a “word-level miter”. While the add, mult units are
polynomial functions themselves, the 6= comparator is not.
However, if this comparator can also be modeled, as con-
straints, using a system of polynomial functions over f :
Z2n1 ×Z2n2 × · · · ×Z2nd → Z2m , then we can use constraint
satisfaction and polynomial algebra to solve this problem. In
what follows, we describe the modeling of these non-linear bit-
vector arithmetic operators using polynomial function con-
straints (with composite moduli), and then show how to solve
them.

IV. Modeling Bit-Vector Arithmetic with
Polynomial Function Constraints

Boolean operations: Let x, y, c be Boolean variables, i.e. in
Z2. Then c = x̄ can be represented over Z2 as c = (1 + x).
Similarly, c = x∧y is c = x ·y, c = x∨y is c = x+y +x ·y
and c = x ⊕ y (XOR) is c = x + y, where all operations are
performed modulo 2.

A. Unsigned/Two’s Complement Bit-Vector Comparisons

We will now show how comparator operations can be mod-
eled, as constraints, using polynomial congruences. Modern
HDLs, such as Verilog, can perform comparisons over un-
signed as well as two’s complement inputs. The constraints
that we derive can model both unsigned and two’s comple-
ment comparisons1. For all the comparator operations, x and
y are m-bit vectors, representing either both unsigned or both
two’s complement values and c denotes the Boolean result.

1This should be somewhat obvious as m-bit two’s complement arithmetic

is just an “interpretation” of arithmetic modulo 2m.

1. Greater than (>): Let c = (x > y). Here, c ∈ Z2 and
x, y ∈ Z2m . In order to decide x > y, we consider whether
or not (x − y) > 0. In other words, we first compute x − y,
and based on whether the result is zero, positive or negative,
we suitably select the value of c. Since x, y are m-bit vectors,
and (x − y) will produce an (m + 1)-bit result, we introduce
intermediate variables t1 ∈ Z2m+1 and t2 ∈ Z2m . Then the
polynomial constraint set for c = (x > y) is given by:

t1 ≡ (x − y − 1) (mod 2m+1) (1)

t1 ≡ (c · t2 + (1 − c)(2m+1 − 1 − t2)) (mod 2m+1) (2)

The first constraint models t1 as a function from Z2m×Z2m →
Z2m+1 , whereas the second constraint models t1 as a function
from Z2×Z2m → Z2m+1 . The objective is to find assignments
to the variables such that the above congruences are satisfied.
Further, the constraints for c = (x ≤ y) can be obtained by
replacing c with (1 − c) in Eqn. (2).
Example IV.1: Consider the above operation for unsigned in-
tegers x, y ∈ Z23 and c = (x > y) where c ∈ Z2. The interme-
diate variables are t1 ∈ Z24 and t2 ∈ Z23 . The corresponding
constraints are:

t1 ≡ (x − y − 1) mod 2
4

t1 ≡ (c · t2 + (1 − c) · (15 − t2)) mod 2
4

Now consider the following instances of x and y. In each
case, the above model provides the correct solution for c.
• x = 4, y = 5:

t1 ≡ (4 − 5 − 1) mod 2
4

= 14 mod 2
4

14 ≡ (c · t2 + (1 − c) · (15 − t2)) mod 2
4

The only feasible solution for these congruences is t2 =
1, c = 0, which is correct as c = (x > y) is false. If we put
c = 1, t2 cannot be equal to 14 as t2 ∈ Z8.
• x = 5, y = 4 gives t1 = 0, t2 = 0, c = 1 as the only

solution.
• x = 5, y = 5 gives t1 = 15, t2 = 0, c = 0 as the only

solution.
Example IV.2: Now let us consider c = (x > y) where x, y are
3-bit two’s complement bit-vectors. Again, we have c ∈ Z2

and x, y ∈ Z23 . The intermediate variables are t1 ∈ Z24 , t2 ∈
Z23 . Now consider the following cases:
• x = −1, y = 2:

t1 ≡ (−1 − 2 − 1) mod 2
4

= 12 mod 2
4

12 ≡ (c · t2 + (1 − c) · (15 − t2)) mod 2
4



The only solution is t2 = 3, c = 0.
• x = 2, y = −2 gives t1 = 3, t2 = 3, c = 1.
• x = −4, y = −4 gives t1 = 15, t2 = 0, c = 0.

Another way to understand why the same model works for
both unsigned and two’s complement compares is to consider
that: i) in the two’s complement case, we sign-extend x, y by
1-bit to normalize it to a (m+1)-bit computation; whereas in
ii) the unsigned case we zero-extend x, y by 1-bit. Moreover,
the second congruence models the selection of c based upon
whether x− y is zero, or between 1 and 2m − 1 (positive), or
between 2m and 2m+1 − 1 (negative).
2. Less than (<): Let c = (x < y). Hence, c ∈ Z2 and
x, y ∈ Z2m . Let t1 ∈ Z2m+1 and t2 ∈ Z2m . Then, the
polynomial constraints for c = (x < y) are given by:

t1 ≡ (x − y) mod 2m+1 (3)

t1 ≡ ((1 − c) · t2 + c · (2m+1 − 1 − t2)) mod 2m+1 (4)

Again, the corresponding constraints for c = (x ≥ y) can be
obtained by replacing c with (1 − c) in Eqn. (4).
3. Not Equal (6=): Let c = (x 6= y). Here, c ∈ Z2 and
x, y ∈ Z2m . We can rewrite this as

c = (x > y) ∨ (x < y)

= c1 ∨ c2 (5)

where c1, c2 ∈ Z2, and use their corresponding models
to represent (x 6= y). The polynomial representation for
c = (x == y) can be similarly obtained by rewriting it
as

c = (x ≥ y) ∧ (x ≤ y) (6)

and using their corresponding representations. This way we
can model all compare operations.

Another model for using the (6=) compare as a
miter: As shown in Fig. 1 (c), we need to “miter” the out-
puts of the two designs for equivalence checking. In principle,
the 6= comparator model described above can be used for this
purpose. However, this model is inefficient as it introduces
too many extra variables with different word-lengths. This
complicates and slows-down the solving process. A better
way to model the x 6= y comparator as a miter is as follows:
Let x, y ∈ Z2m , and let t ∈ Z2m be a free variable. Then:

t · (x − y) ≡ 2m−1 (mod 2m) (7)

will have no solution for t when x = y. On the other hand,
when x and y are different, x − y is a non-zero integer, and
there will always exist a t ∈ Z2m that satisfies the above
constraint.

B. Right Shift and Sub-Word Extraction

Left shift is simply multiplication by 2, so let us instead
consider the right shift operation. Let x and F denote m-
bit vectors and k denote a positive integer such that F =
(x ≫ k). Here, ≫ k denotes x being shifted to the right
by k bits. We represent this operation using an intermediate
computation t ∈ Z2k where t = x mod 2k. The model for F
over Z2m is :

2k · F ≡ (x − t) mod 2m (8)

Sub-Word Extraction: Let x[m − 1 : 0] denote a bit-
vector, i, j denote positive integers, and F = x[i : j]. Here,

x ∈ Z2m , F ∈ Z2i−j+1 and i, j ∈ Z+. To model this compu-
tation as a polynomial, we introduce an intermediate compu-
tation t ∈ Z2m such that t ≡ (2m−i−1 · x) mod 2m. Now, F
can be modeled by

F ≡ (t ≫ m − i + j − 1) mod 2i−j+1

(2m−i+j−1)F ≡ (t − t % 2m−i+j−1) mod 2i−j+1 (9)

In similar fashion, concatenate and rotate operations can be
modeled using a sequence of shifts, extracts and adds.

C. Division Operation

To model the unsigned division, let Q = F/D be the quo-
tient and R = F%D be the remainder of the division. As-
sume that F, D, Q, R ∈ Z2m . Then division is modeled by
representing F = Q ·D + R (mod 2m), and then selecting Q.
However, we also have to add the following extra constraints:
R < D; Q ≤ F , and Q · D + R < 2m.

Example IV.3: Let F, D, Q, R be 4-bit vectors representing
unsigned integers. Let F = 5, D = 2. Note that if we do not
consider the constraints R < D and Q ≤ F , then (Q, R) =
(0, 5), (3, 15), (10, 1), . . . (among others) can satisfy F = Q ·
D + R (mod 24), which are all incorrect. However, when we
add the extra constraints on the range of Q, D, R, we obtain
the only correct solution (Q, R) = (2, 1).

D. Dealing with Composite Moduli

Consider a system of n polynomials Fi (1 ≤ i ≤ n) in
variables x1, x2, . . . , xd, where each Fi represents a bit-vector
computation. Let mi (1 ≤ i ≤ n) correspond to the output
bit-widths of each of these polynomials, such that Fi ∈ Z2mi .
Then,

F1(x1, . . . , xd) ≡ 0 mod 2
m1

.

.

.

Fn(x1, . . . , xd) ≡ 0 mod 2
mn (10)

Once these constraints are generated, they need to be solved.
We are unaware of any approach that can directly solve
such arithmetic with composite moduli. However, these con-
straints can be scaled to a uniform modulus and then solved
using a p-adic approach. To perform the scaling, we first
compute the least common multiple (lcm) of the moduli in
the above system, i.e. 2M = LCM(2m1 , . . . , 2mn). Now, we
rewrite the polynomials as:

2M

2m1
· F1(x1, . . . , xd) ≡ 0 mod 2

M

.

.

.

2M

2mn
· Fn(x1, . . . , xd) ≡ 0 mod 2

M
(11)

All the polynomials F1, . . . , Fn are now computed mod 2M .
Once the solutions to these constraints are obtained for the
scaled system of equations, they have to be refined to see
if solution to each xi ∈ Z2ni . We explain our approach by
means of an example.

Example IV.4: Let us re-visit the equivalence checking
problem depicted in Fig. 1 (c). Here, the input is x[1 : 0]
and the outputs are F [2 : 0] and G[2 : 0]. The problem in-
stance requires to check whether there exists an assignment to
x[1 : 0] such that F 6= G. Since the internal signals t1, t2 ∈ Z4

and F, G ∈ Z8, the corresponding equations have to be scaled



to a common modulus 2M = LCM(22, 22, 23, 23) = 23. Con-
sequently, the scaled system of equations is:

2x2 − 2t1 ≡ 0 mod 23

t1 + x − F ≡ 0 mod 23

2x + 2 − 2t2 ≡ 0 mod 23

t2 · x − G ≡ 0 mod 23

t · (F − G) − 4 ≡ 0 mod 23

Note that the last constraint t · (F − G) − 4 ≡ 0 mod 23

models the miter at the output. The solutions are: i) x =
2; F = 2; G = 6; ii) x = 3; F = 4; G = 0; iii) x = 5; F =
6; G = 2 and iv) x = 6; F = 6; G = 2. Since x ∈ Z4, solutions
(x = 5, 6) are out of bounds and need to be discarded. As
(x = 2, 3) are valid solutions, we deduce that F 6= G.

V. Solving Polynomial Congruences modulo 2m

To solve the system of polynomial equations mod 2m, we
make use of Newton’s iteration formula on the space of p-adic
(p = 2) expansion. We borrow the basic solving concept from
the textbook [13] and from Babic et al. [14], and show how
it can be improved upon for our specific problems.

To solve a univariate polynomial f(x) = 0 mod pm, the
basic concept is to first obtain solutions for f(x) = 0 modp.
Once all solutions are obtained (mod p), they are successively
lifted modulo p2, p3, . . . , pm. To derive the recurrence formula
for lifting, we begin with the Taylor’s Expansion of a polyno-
mial f(x) at x = r:

f(x) = f(r) + f
′

(r) · (x − r) +
f
′′

(r)

2!
· (x − r)

2
+

· · · +
f(n) (r)

n!
· (x − r)

n
(12)

= f0 + f1 · (x − r) + · · · + fn · (x − r)
n

(13)

We have to solve f(x) ≡ 0 mod pm, for p = 2. Assume that
a solution rk−1 ∈ Zpk , k < m is known. Since f(rk−1) ≡
0 mod pk, then it follows that f(rk−1) ≡ 0 mod pk−1. There-
fore, we see that solutions can be given as rk = rk−1+t ·pk−1,
for 0 ≤ t < p. The p-adic expansion of the polynomial can
then be written as:

f
“

rk−1 + t · p
k−1

”

≡ f (rk−1) + f
′

(rk−1) · t · p
k−1

+ · · · +

f
(k−1)

(rk−1)
“

t · p
k−1

”n
(mod p

k
) (14)

Note that higher order terms (pn·(k−1)) are divisible by pk

for n ≥ 2 and vanish. Eqn. (14) subsequently reduces to the
one below, where we have to solve for t, 0 ≤ t < p:

f(rk−1) + f
′

(rk−1) · t · p
k−1

≡ 0 (mod p
k
) (15)

The corresponding value of t is then computed as:

t ≡ −f
′

(rk−1)
−1

·

f (rk−1)

pk−1
(mod p) (16)

where f ′ denotes the derivative of f w.r.t. x, and f−1

denotes the multiplicative inverse of f mod p. Thus, if we
have a root rk−1 (mod pk−1), the root rk (mod pk) can be
computed as as rk = rk−1 + t · pk−1, with the value of t
computed from Eqn. (16). Consolidating the above results,
we arrive at the following lemma.

Lemma 1: (Lifting Lemma) Let f be a polynomial with
integer coefficients, and r be a solution to f(x) ≡ 0 (mod
pk−1), with k ≥ 2 and prime p. Then:
1. If f ′(r) 6= 0 mod p, then there exists a unique integer
t, 0 ≤ t < p such that f(r + t · pk−1) ≡ 0 mod pk and is given

by t = −f ′(r)−1 f(r)

pk−1 mod p;

2. If f ′(r) ≡ 0 mod p and f(r) ≡ 0 mod pk, then f(r + t ·
pk−1) ≡ 0 mod pk for all integers t;

3. If f ′(r) ≡ 0 mod p and f(r) 6= 0 mod pk, then the current
solution (r) does not lift.
Moreover, if f(r) ≡ 0 (mod p) and f ′(r) 6= 0 (mod p), then
there is a unique solution rk modulo pk for k = 2, 3, . . ., given
by the recurrence: rk = rk−1 − f(rk−1) · f ′(r)−1.

Example V.1: For example, suppose we have to solve
f(x) = x2 + x + 47 ≡ 0 mod 73. First we solve f(x) ≡ 0
mod 7 and get r = 1, 5 as the solutions. We have to see if
each of these solutions lifts to a solution modulo 72 and then
to 73. Here f ′(x) = 2x + 1.

For r = 1 as a solution mod 7, we see that f ′(r = 1) ≡ 3 6= 0
mod 7. Therefore, r = 1 will lift successively to a solution
modulo 73. We set r1 = 1. Moreover, f ′(r = 1)−1 = 5 (mod
7). Therefore, we have:

r2 = r1 − f(r1) · f
′

(r = 1)
−1

= 1 − f(1)(5) = 1 mod 7
2

r3 = r2 − f(r2) · f
′

(r = 1)
−1

= 1 − f(1)(5) = 99 mod 7
3

This way, we have lifted solution x = 1 (mod 7) to a so-
lution x = 99 (mod 73). Similarly, we can check that the
solution r = 5 also lifts to a solution x = 243 mod 73.

The above approach extends analogously to the case of mul-
tivariate polynomials. Let us denote by f = [f1, . . . , fn] a
(transposed) vector of polynomials and by x = [x1, . . . , xn],
the input variables. Also, let t = [t1, . . . , tn], where 0 ≤ ti <
p. Since we are now operating over a vector of multivariate
polynomials, we need to compute the (partial) derivatives of
all polynomials w.r.t. all input variables. Therefore, we need
to consider the Jacobian matrix J , which is a square matrix
of partial derivatives, given as:

J =

2

6

6

4

∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fn

∂x1
. . . ∂fn

∂xn

3

7

7

5

(17)

Analogous to Eqn. (15), we have to solve the following
system for t = [t1, . . . , tn], where 0 ≤ ti < p:

f(xk−1) + J(xk−1) · t · p
k−1

≡ 0 (mod p
k
) (18)

Then, t is computed as:

t = −J(xk−1)
−1

· (
f(xk−1)

pk−1
) (mod p) (19)

and finally, the recurrence xk ≡ xk−1 + t · pk−1 is given by:

xk ≡ xk−1 + [−J(xk−1)
−1

· (
f(xk−1)

pk−1
)mod p] · p

k−1
(mod p

k
) (20)

It is required to compute the inverse of the Jacobian for
all the points mod p. However, every solution in Zpk is also
a solution in Zpk−1 . Therefore, xk ≡ x1 mod p and hence
J(xk−1) ≡ J(x1) mod p. In other words, the inverse of the
Jacobian needs to be computed only once for the initial points
x1. Depending upon whether or not the inverse of the Jaco-
bian exists, we have to analyze three different lifting condi-
tions analogous to those in Lemma 1, as given below:

Lifting conditions for multivariate polynomials:
• When the inverse of the Jacobian exists (mod p), then xk−1

lifts uniquely as xk−1+t·pk−1, 0 ≤ ti < p, where t is computed
as in Eqn. (19).
• When the inverse of the Jacobian does not exist (mod p),
and f(xk−1) ≡ 0 mod pk, then xk−1 lifts (non-uniquely) to
xk−1 + t · pk−1 for all values of t = [t1, . . . , tn], 0 ≤ ti < p.
• Otherwise, xk−1 does not lift.

This approach requires that we somehow compute the solu-
tions x1 (mod 2) as starting points, and then apply the lifting



lemma. To compute x1, we have to solve multi-variate non-
linear congruences in Z2, which is NP-complete. However,
since xp = x mod p (Fermat’s little theorem), the problem
reduces to that of solving multi-linear equations in Z2. Eqn.
(20) provides all solutions to the given set of equations, which
can be checked to see if each xi is in Z2ni , i.e. within the range
of the given bit-vector.

A. Implementation issues: Solution Explosion

As a first attempt, we implemented the above approach
completely within the symbolic algebra engine of Mathemat-
ica, and conducted some experiments. We observed that in
many practical instances, the inverse of the Jacobian J does
not exist (mod 2). This happens because the generated prob-
lem instances are often an incomplete system of congruences
– i.e. the number of polynomial congruences are not equal
to the number of variables (refer to Example IV.4, where we
have 6 variables and 5 congruences). In such cases, the Jaco-
bian is not a square matrix – and a non-square matrix does
not have an inverse over a commutative ring. As a result,
every solution xk−1 lifts (non-uniquely) to a large number of
solutions xk. Much of these are bad starting points for the
next iteration (bogus lifts) and have to be discarded. This
causes a solution explosion problem, as shown in the ex-
ample below.

Example V.2: Consider the following system of polynomial
congruences (from [14]) to be solved:

f1 : 3x2y + 7x ≡ 0 mod 16

f2 : 2xy + 13y2 + 3 ≡ 0 mod 16

First we solve f1, f2 ≡ 0 (mod 2) and obtain solutions
x1 = {[0, 1], [1, 1]}. The corresponding Jacobian has no in-
verse (mod 2). Therefore, both solutions lift (non-uniquely)
as x2 = x1 + 2 · t, where t = [t1, t2], 0 ≤ t1, t2 < 2. We see
that x1 lifts to {[0, 1], [0, 3], [2, 1], [2, 3], [1, 1], [1, 3], [3, 1], [3, 3]}
as potential solutions (mod 4). However, out of these only
x2 = {[0, 1], [0, 3]} are valid solutions (mod 4). For example,
the (lifted) point [x = 2, y = 1] is a solution to f2 ≡ 0 (mod
4), but not a solution to f1 ≡ 0 (mod 4). Similarly, [2, 3] is
also not a solution to f1 ≡ 0 (mod 4). Therefore, every such
(non-unique) lift has to be checked for validity, and all bogus
lifts have to be discarded.

The above example shows the potential for solution explo-
sion. To overcome the solution explosion problem, and to
compute only the valid solutions (lifts) at every iteration, we
do not apply the (brute-force) recurrence formula of Eqn.
(20). Instead, we directly solve Eqn. (18) – i.e. “given
xk−1, f(xk−1), and J(xk−1), find t such that Eqn. (18) is
satisfied.” Since xk−1 is known, f(xk−1) and J(xk−1) are a
vector and a matrix of constants, respectively. This implies
that Eqn. (18) is a system of linear congruences (mod 2k);
efficient algorithmic solutions for which are known in litera-
ture [24].

For our implementation, we formulate the problem as
shown in Eqn. (18), using the commercially available
constraint-programming engine of ILOG (ILOG CP Opti-
mizer). We obtain only those solutions to t that lift xk−1 to
xk correctly; thus avoiding solution explosion – to an extent.

Lifting with Composite Moduli: We encounter vari-
ables in Z2 (Booleans), in Z2m , Z2m+1 and so on. Our ap-
proach scales the Boolean variable from (mod 2) to (mod 2m).

If we were to then apply the recurrence formula of Eqn. (20),
the scaled Boolean variable would lead to a large number of
bogus lifts. In contrast, use of the constraint-programming
engine allows us to restrict the lifting of variables according
to their respective ranges. For example, let xi ∈ Z2ni , and
assume that we have lifted the solutions to (mod 2ni). For
the subsequent iterations, we can set the corresponding value
of ti = 0 in Eqn. (18), so that the value of xi does not go out
of range.

VI. Experiments

We have implemented the Newton’s lifting based approach
to solve a system of polynomial equations mod 2m by in-
tegrating the symbolic algebra engine of mathematica to-
gether with ILOG’s constraint-programming engine library.
We have also implemented a parser in JavaCC that: i)
parses the word-level arithmetic design descriptions in Ver-
ilog; ii) generates a data-flow graph and records the bit-
vector computations and word-lengths; and iii) translates
them into corresponding polynomial function constraints over
f : Z2n1 × Z2n2 × · · · × Z2nd → Z2m . For equivalence check-
ing, we add the 6= constraint as derived in Eqns. (5) or (7).
These polynomial equations are subsequently scaled to a uni-
form modulus 2M , and are ready to be solved. A proof of
unsatisfiability verifies the equivalence, whereas a solution
corresponds to a bug. Solutions (mod 2) are generated us-
ing the constraint-programming engine, the Jacobian and its
inverse is computed using mathematica and then we apply
our lifting approach.

We have tested our approach on a number of designs col-
lected from a variety of benchmark suites, as shown in Table
I. The first example is an anti-aliasing function used in MP3
decoders that computes F = 1

2
√

a2+b2
. The implementation

uses a degree-6 polynomial approximation implemented in
16-bit fixed-point arithmetic. PolyUnopt design is borrowed
from [25]; it is a degree-4 polynomial, factored as a Horner
form to be mapped into a multiply-add-accumulate (MAC)
unit. The RGB designs are image processing applications,
Quad and 4th order filters are Volterra models of polynomial
signal processing applications. MiBench example is from [26]
and is used in automotive applications.

For equivalence checking, the two RTL descriptions to be
verified are symbolically different but computationally equiv-
alent. The original designs were first modified by adding van-
ishing polynomials [9], and were then processed for common-
subexpression elimination technique of [27]. The number of
input bit-vector variables, number of adders and multipliers,
and the output bit-vector size are shown in column 2. In col-
umn 3, under the “Miter-2” heading, we use the constraint
of Eqn. (7) to model the miter at the output; whereas in
column 4, we report the result using Eqn. (5) to model the
miter. We have also performed experiments with the zChaff,
MiniSAT, PicoSAT SAT solvers. We synthesized the design
using the Synopsys design compiler, generated a netlist and
translated the CNF-constraints. The designs were mitered
and then given to the SAT solver. The RGB applications
are only 10-bit datapaths with degree-2 polynomials, and the
SAT solvers were able to prove equivalence quickly. For the
other larger designs, our approach is faster. For the Quad
filter, we found that the system of congruences had too many
solutions – which created the solution explosion problem and
hence required a large amount of time to lift every solution.



TABLE I

Comparison of time taken by various approaches
Benchmark Specs Miter-2 Miter-1 zChaff MiniSat PicoSAT

Var/+/*/m Time (s) Time(s) Time Time Time(s)

Anti-alias 1/4/5/16 11 8 >1000s >1000s 32s

Poly Unopt 1/3/7/16 13 9 >1000s 966 23s

RGB 1 3/3/4/10 15 7 6.3 10.62 2s

RGB 2 3/4/6/11 19.047 13 11 14 14s

RGB 3 3/3/6/10 10 8 7 10 9

Quad Filter 2/4/8/16 2103 1294 N/A N/A N/A

4th Order 1/4/9/16 567 10 >1000 >1000 25

MiBench 2/8/7/8 321 N/A N/A N/A N/A

Quad Filter (bug) 2/4/8/16 597/1335 419/2104 1s 1s <1s

Anti-alias (bug) 1/4/5/16 1s 3s 1s 1s <1s

We then changed one of the adders in one design to a“satura-
tion adder”and found the bug – e.g. using the Miter-2 model,
the first bug was found in 597s, whereas all the bugs (42 so-
lutions) were enumerated in 1335s. Overall, for these class of
designs that have a large number of multiply and other non-
linear operations, our approach appears to be competitive
against the SAT-based approach.

Limitations: The main limitation that we have observed
is the problem of solution explosion. While in our imple-
mentation, we have attempted to mitigate this problem to an
extent, the problem still remains, particularly for the equiva-
lence checking setup. Due to this problem, we have not been
able to verify designs containing larger than 16-bit vectors.

VII. Conclusions and Future Work

In this paper, we have presented an approach to solving
bit-vector arithmetic using concepts from number-theory and
commutative algebra. We show that bit-vector arithmetic can
be modeled, as constraints, by a system of polynomial func-
tions with composite moduli. We show how such non-linear
modulo-arithmetic congruences can be solved using Newton’s
p-adic iterations. We have implemented our approach within
an integration of Mathematica and ilog cp-optimizer, and
demonstrated how it can be applied to verify arithmetic dat-
apath computations. Results show the power and the limi-
tations of our approach against those of contemporary SAT
solvers. As part of future work, we are investigating the use
of Grobner bases to speed-up polynomial constraint solving.

References

[1] A. Biere, A. Cimatti, E. Clarke, and Y. Yhu, “Symbolic Model

Checking without BDDs”, in TACAS, pp. 193–207, 1999.

[2] Y. Xie and A. Aiken, “Scalable error detection using boolean

satisfiability”, in ACM Symp. Prog. Lang., pp. 351–363, 2005.

[3] B. Dutertre and L. De Moura, “The YICES SMT Solver”,

http://yices.csl.sri.com/tool-paper.pdf, 2006.

[4] Z. Zeng, P. Kalla, and M. J. Ciesielski, “LPSAT: A Unified Ap-

proach to RTL Satisfiability”, in Proc. DATE, 2001.

[5] R. Bruttomesso, A. Cimmatti, and et al., “A Lazy and Layered

SMT(BV) Solver for Hard Industrial Verification Problems”, in

Proc. CAV, LNCS, pp. 247–260. Springer-Verlag, 2007.

[6] V. Ganesh and D. Dill, “A Decision Procedure for Bit-Vectors

and Arrays”, in Proc. (CAV), LNCS. Springer-Verlag, 2007.

[7] D. Cyrluk, O. Moller, and H. Ruess, “An Efficient Procedure for

the Theory of Fixed-Size Bitvectors”, in Proc. Computer-Aided

Verification, vol. 1254, 1997.

[8] R. Brant, D. Kroening, and et al, “Deciding Bit-Vector Arithmetic

with Abstraction”, in Proc. TACAS, pp. 358–372, 2007.

[9] N. Shekhar, P. Kalla, and F. Enescu, “Equivalence Verification of

Polynomial Datapaths using Ideal Membership Testing”, IEEE

Trans. CAD, vol. 26, pp. 1320–1330, July 2007.

[10] N. Shekhar, P. Kalla, M. B. Meredith, and F. Enescu, “Simulation

Bounds for Equivalence Verification of Polynomial Datapaths us-

ing Finite Ring Algebra”, IEEE Trans.VLSI, vol. 16, pp. 376–387,

2008.

[11] N. Shekhar, P. Kalla, F. Enescu, and S. Gopalakrishnan, “Equiv-

alence Verification of Polynomial Datapaths with Fixed-Size Bit-

Vectors using Finite Ring Algebra”, in International Confer-

ence on Computer-Aided Design, ICCAD, pp. 291–296, Novem-

ber 2005.

[12] Z. Chen, “On polynomial functions from Zn1
×Zn2

× · · ·×Znr to

Zm”, Discrete Math., vol. 162, pp. 67–76, 1996.

[13] R. Zippel, Effective Polynomial Computation, Kluwer Acad.

Pub., 1993.

[14] D. Babic and M. Musuvathi, “Modular Arithmetic Decision Proce-

dure”, Technical Report TR-2005-114, Microsoft Research, 2005.

[15] Aaron Stump, Clark W. Barrett, and David L. Dill, “CVC: A

Cooperating Validity Checker”, in Proc. CAV, vol. 2404, pp. 500–

504, 2002.

[16] M. Wedler, D. Stoffel, and W. Kunz, “Normalization at the arith-

metic bit level”, in Proc. Design Auto. Conf., pp. 457–462, 2005.

[17] C. W. Barlett, D. L. Dill, and J. R. Levitt, “A Decision Procedure

for bit-Vector Arithmetic”, in DAC, June 1998.

[18] M.O. Moller and H. Ruess, “Solving Bit-Vector Equations”, in

Proc. FMCAD’98, pp. 36–48, 1998.

[19] F. Fallah, S. Devadas, and K. Keutzer, “Functional Vector Gen-

eration for HDL models using Linear Programming and Boolean

Satisfiability”, in Proc. DAC, ’98.

[20] R. Brinkmann and R. Drechsler, “RTL-Datapath Verification us-

ing Integer Linear Programming”, in Proc. ASP-DAC, 2002.

[21] C.-Y. Huang and K.-T. Cheng, “Using Word-Level ATPG and

Modular Arithmetic Constraint Solving Techniques for Assertion

Property Checking”, IEEE Trans. CAD, vol. 20, pp. 381–391,

2001.

[22] G. Nelson and D. Oppen, “Simplification by cooperating deci-

sion procedures”, ACM Trans. on Programming Languages and

Systems, vol. 1, pp. 245–257, 1979.

[23] M. Bhargava, “Congruence Preservation and Polynomial Func-

tions from zn to zm”, Discrete Mathematics, vol. 173, pp. 15–21,

1997.

[24] M. Müller-Olm and H. Seidl, “Analysis of modular arithmetic”,

ACM Trans. Program. Lang. Syst., vol. 29, pp. 29, 2007.

[25] A. K. Verma and P. Ienne, “Improved use of the Carry-save Rep-

resentation for the Synthesis of Complex Arithmetic Circuits”, in

Proceedings of the International Conference on Computer Aided

Design, 2004.

[26] M. R. Guthaus and et al., “Mibench: A Free, Commercially Rep-

resentative Embedded Benchmark Suite”, in IEEE 4th Annual

Workshop on Workload Characterization, Dec 2001.

[27] A. Hosangadi, F. Fallah, and R. Kastner, “Factoring and elim-

inating common subexpressions in polynomial expressions”, in

ICCAD, pp. 169–174, 2004.


