
ECE/CS 5710/6710 Digital VLSI Design

Guest Lecture

Introduction to VLSI Testing

Prof. Priyank Kalla

1

Agenda for Today

• Introduction to VLSI Testing

• Why bother? Or who cares?

– Not just Pentium Bug!

• Design versus Testing

• Testing versus Verification

• Testing Problems: where to they come from?

• Test Apps: gate-level, ckt-level, comb./seq., memory...

• Design-for-Testability, Synthesis-for-Testability

2

VLSI Circuit Realization Process

• Customer’s requirements

• Design Conceptualization by customers and designers

• Design Specifications (usually in English)

• Design Descriptions - VHDL, Verilog, SystemC, . . .

• Circuit realization: Synthesis, Custom Design

• Marketing.....

• Where do Test and Verification fit-in?

• Validation v/s Verification v/s Testing

3

VLSI Circuit Realization Process

Fabricated ICs

Manufacturing
Process

Mask−level Layout

Physical Synthesis
Tools

Mapped Netlist

Technology Mapping

Optimized Logic Netlist

Logic Optimization
Tools

Un−optimized Logic

RTL Description

Cell
Library

Translation Tools
(HDL Compilers)

4

Design Validation

• Is the specification fool-proof?

– Bugs: mis-understanding, incorrect modeling, oversight...

– How to ascertain validity of the specs?

– Simulate (randomly?) and observe ... too slow

– Mathematically infer validity..... computationally infeasible

– Not everyone knows/likes “math”

– Today’s solutions: little-bit of math + little-bit of

simulation + little-bit of luck!

• Topics on design validation: Simulation, coverage metrics,

property verification, model checking, among others..

5

Enhancing the Power of Simulation

Module
 input ports, output ports, internal signal declarations;
 begin description

 if (condition) then
 assign signal = function();
 end if;

 end description

Generate the simulation vectors to excite this statement!

Was this if−then statement covered
by simulation vectors?

U
nr

ol
l t

he
 lo

gi
c

Figure 1: Enhancing RTL code coverage.

6

Formal Design Verification

• Simulation is incomplete - Remember Pentium Bug?

• Mathematicians say: “Mathematically prove that your system

is fool-proof!”

• Theorem Proving and Model Checking.....

• Problem: Computationally infeasible, difficult to automate

• While mathematicians argue, industry simulates.....

• Proof of equivalence is (somewhat) manageable

• Implementation Verification via Equivalence Checking.

7

Verification: Equivalence Checking

Fabricated ICs

Manufacturing
Process

Mask−level Layout

Physical Synthesis
Tools

Optimized Logic Netlist

Logic Optimization

Un−optimized Logic

RTL Description

Translation Tools
(HDL Compilers)

and Mapping Tools

Design−for−Test
Modifications

Testability Enhanced Netlist

RTL−to−Gate level
Equivalence Verification

Pre− and Post−Test Synthesis
Equivalence Verification

Layout Verification

8

Equivalence Checking Examples

module verify(a, b, c, f, y, X, Z, F)

input a, b, c; // Boolean

input [3:0] X; // Bit-vectors

output f, y;

output [3:0] F, Z;

assign f = a’bc + ab’c + abc’ + abc;

assign y = ab + ac + bc; // a(b+c) + bc

assign F[3:0] = 8 * X[3:0] * X[3:0] + 8* X[3:0];

assign Z[3:0] = 4’b0000;

9

VLSI Testing

• Testing a fabricated chip for manufacturing defects.

• Physical Failures and Fabrication Defects due to:

• Shorts or opens on wires.... unreliable metalization

• Electromigration over a period of time

• Shorts (fusing) of Source-Drain

• Improper ion-implantation... slow switching

• Ever heard of latch-up?

• Reliability of a manufacturing process in general

10

VLSI Testing

• What is testing?

– Examine a product

– Ensure correct operation

– Exhibits the properties that it was designed for

• Detect malfunction and incorrect behaviour

• What if malfunction exists? Diagnose it.... (not testing)

• In VLSI domain, testing has a lot of secondary applications

– Reliability measurement of both, the product and the

process

– Quality assurance

– Can help in verification + validation

11

Automatic Test Equipment & Test Environment

Test

UUT

Controller
Test

Log
Error Fault-Free

Response

UUT’s
Response

Comparator

Report
Error

Interface
Test

Vectors

Fault-Free
Unit

(Model)

12

What to Test for and How?

• Defects, Errors and Faults....

• Design Errors, fabrication defects, physical defects

• Design errors: Specification? Logical? Design rule violation?

• Fabrication defects: shorts, opens, incorrect wiring, improper

ion-implantation, poor oxidation...

• Physical failures: Electromigration, latch-up, wear-out due to

heat/humidity/vibrations...

• Types of Testing:

– Functional Testing (Validation) and Verification

– Characterization tests on first-pass Silicon

– Production Tests: acceptance and rejection of product

– Burn-in tests: “Burn it at high speed”; detect freak-errors

13

Logical Modeling of Physical Failures

• Physical failures → anything can fail anywhere

• “Impossible” to detect physical failures on SoC/SoS

• Model physical failures as logical faults (abstract unnecessary

info)

• Logical fault model defined w.r.t. circuit structure (netlists)

• Requirement: Model should be versatile!

• Examples: Stuck-at model, bridging model, delay fault

model.... (no model at all?)

• Other defects: Delay, Transistor (stuck-open), universal,

functional, bridging....

• Overall Strategy: One-by-one, Test the chip w.r.t. each fault

model

14

“Stuck-at” Fault Model

• Borrowed from 1960’s technology, hence appealing!

• Wire w short to ground: s-a-0 or power: s-a-1

• Shorts and opens in CMOS v/s TTL (floating v/s pull-up)

• Some s-a-0/1 can cover bridging, transistor or other faults

• Multiple versus Single Stuck-at faults

Open Stuck

TTL

Multiple-stuck lines

CMOS

Poly-Metal
Fuse?

15

Test Generation Example

• Assume A s-a-0 (or A/0). Apply 〈A = 0, B = 0, C = 0, D = 0〉.

Z = 0

• Assume fault-free. Apply 〈A = 0, B = 0, C = 0, D = 0〉. Z = 0

• Assume A s-a-0. Apply 〈A = 1, B = 1, C = 1, D = 1〉. Z = 0

• Assume fault-free. Apply 〈A = 1, B = 1, C = 1, D = 1〉. Z = 1

OR

A

B

D

s-a-0

AND

AND

0

0 Z

C

16

Test Generation v/s Equivalence Check

• Find “Input values” → XOR output = 1

• If successful → test found

• If not? Complicated...

In 1

In 2 Fault−Free
Ckt

s−a−1

1

17

Issues in Test Generation

• Test for b/1

• a = 1, b = 0, c = 1

a

b

c

z
g

h

b/1

0

1

c

1/0

1/0

1/0

18

Untestable Fault

• Test for e/1: No Test...

• Faulty Circuit = Fault-Free Circuit!

a

b z
g

h

1

c

???

1

1

e/1
0

19

Redundancy Creates Testing Problems

a

b z
g

h

c

z = !a + !b + !b + !c = !a + !b + !c

20

How to test for Single Stuck-Faults

• Any and all lines can be faulty....

• Using the “computer” representation of your circuit:

• Pick a line, assume it has s-a-0 fault, derive a test that detects

that fault

• Take the same line, assume it has s-a-1 fault, derive a test for it

• One by one, go through each line, derive both tests for it

• Collect a set of “test vectors” and apply them as test stimulus,

using ATE, to the fabricated chip.

• n lines in a ckt. → 3n − 1 faults. Test for everything?

• Issues: Testing Cost, Testing Efficiency, Testing Coverage.....

• How to reduce Test Generation Effort?

21

Sequential Circuit

In Out

Yy NS
PS DQ

Comb. Logic

22

Sequential Circuit Testing

Fault−Free

Faulty

In

In

Out

Out

Yy

Y
y

23

Sequential Circuit Testing Example

0/1

1/1

y1
0/0

1/0

0/0

1/0

0/0

10

11

01

00

y2

Y1

Z

y2

y1

x

Y2

a/0
1/0

• Reset state: (00). Start in (00), and traverse the machine

until...

• : x0 = 1, x1 = 1, x2 = 0, x3 = 1

24

Untestable faults due to unreachable states

-/1

0/1

0/0

Y2 = y1’x + y1 y2’

Y1 = y1 y2 +y1’ y2’ x’

1/1

01 11

-/1

1000
a/0

X

Y2

Y1

y2’
y1

x
y1’

y2
y1
x

y2
y1

25

Logic Synthesis can cause Testing Problems

r2

r3

r1

o4

o3

o2

o1

i5

i4

i3

i2

i1

• Input i3 to output o2 cannot be “sensitized”

• Multi-Cycle “False Path”

• “Synthesize” circuit to make it easily testable!

26

IDDQ Testing

• Fault Location in Transistors: Test IDDQ

a b

c

a

b

c
N stuck−open

c

F

+ VDD

stuck−ON

V1: a=b=c=0
V2: a=b=1 ?

V3: a=b=0, c=1

27

Delay-Fault Testing

• Gates do not switch at desired speed

• Find vectors that detect delay faults!

a

b

c

V1: <111>
V2: <101>

1

1

slow

28

Conclusion

• CAD Tools for Testing

• Test Generation, Test Application, Power issues in Testing,

Test Time, Test Efficiency, Test Planning and Management

• TetraMax (Synopsys), HITEC, Mentor Graphics..

• Well Studied Problems, Good solutions

• Testing headache will always remain

• Courses:

– ECE/CS 5740/6740: CAD of Digital Circuits, S’08

– ECE/CS 5745/6745: Test & Verif. Digital Circuits, F’08

29

