Verification of Finite Field Arithmetic Circuits using Ideal Membership Testing

Overcoming the Complexity of Gröbner Bases for Efficient Verification of Finite Field and Integer Multipliers

Priyank Kalla

UNIVERSITY ${ }^{0}$ UTAH

Associate Professor
Electrical and Computer Engineering, University of Utah
kalla@ece.utah.edu
http://www.ece.utah.edu/~kalla

Nov 22, 2023 - onwards

Verification using Nullstellensatz over \mathbb{F}_{q}

We have two approaches to verify circuits using the Nullstellensatz

- Verify circuits using the miter model
- Construct a miter, and apply the Weak Nullstellensatz
- Construct ideal $J_{m}=\left\langle f_{\text {spec }}, f_{1}, \ldots, f_{s}, f_{m}\right\rangle$
- Polynomials f_{1}, \ldots, f_{s} are the polynomials from the circuit
- $J_{0}=$ ideal of all vanishing polynomials
- Circuit \equiv Spec if and only if $G B\left(J_{m}+J_{0}\right)=\{1\}$.

Figure: The equivalence checking setup: miter.

Second Approach to Verification: Using Ideal Membership

- The second approach is based on Ideal Membership
- It uses the concepts of Radical Ideals and the Strong Nullstellensatz
- Today, I will teach the procedure, with an intuitive explanation of the formulation. I will give the proof of correctness of the procedure next week onwards, as it requires the understanding of radical ideals.

Verification Formulation using Ideal Membership

- We are given a finite field $\mathbb{F}_{2^{k}}$, for a given k.
- Given a spec polynomial $f_{\text {spec }}$ and an implementation circuit C
- Derive ideal $J=\left\langle f_{1}, \ldots, f_{s}\right\rangle$, where $\left\{f_{1}, \ldots, f_{s}\right\}$ are polynomials from the given circuit C
- It is NOT sufficient to check if $f_{\text {spec }} \in J$.
- It is necessary and sufficient to check if $f_{\text {spec }} \in J+J_{0}$, where $J_{0}=$ ideal of all vanishing polynomials.

Verification Setup and Formulation

Verification Formulation for Finite Field Multipliers

- Setup the verification formulation over the polynomial ring $R=\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right], q=2^{k}$.
- Let $f_{\text {spec }}: Z-A \cdot B$ be the specification polynomial.
- From the given circuit implementation C, derive the polynomials from the gates of the circuit $\left\{f_{1}, \ldots, f_{s}\right\}$.
- Let ideal $J=\langle F\rangle=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq R$.
- For each variable, create the ideal of vanishing polynomials

$$
J_{0}=\left\langle Z^{q}-Z, A^{q}-A, B^{q}-B, x_{1}^{2}-x_{1}, \ldots, x_{n}^{2}-x_{n}\right\rangle>.
$$

- Then, the circuit C implements $f_{\text {spec }} \Longleftrightarrow$ (if and only if)

$$
f_{\text {spec }} \in\left(J+J_{0}\right) \Longleftrightarrow f_{\text {spec }} \xrightarrow{G B\left(J+J_{0}\right)}+0
$$

Compute $G=G B\left(J+J_{0}\right)=\left\{g_{1}, \ldots, g_{t}\right\}$, and divide $f_{\text {spec }}$ by $G=\left\{g_{1}, \ldots, g_{t}\right\}$, and see if the remainder is 0 .

Verification Formulation: The Mathematical Problem

- Given specification polynomial: $f: Z=A \cdot B(\bmod P(x))$ over $\mathbb{F}_{2^{k}}$, for given k, and given $P(x)$, s.t. $P(\alpha)=0$
- Given circuit implementation C
- Primary inputs: $A=\left\{a_{0}, \ldots, a_{k-1}\right\}, B=\left\{b_{0}, \ldots, b_{k-1}\right\}$
- Primary Output $Z=\left\{z_{0}, \ldots, z_{k-1}\right\}$
- $A=a_{0}+a_{1} \alpha+a_{2} \alpha^{2}+\cdots+a_{k-1} \alpha^{k-1}$
- $B=b_{0}+b_{1} \alpha+\cdots+b_{k-1} \alpha^{k-1}, Z=z_{0}+z_{1} \alpha+\cdots+z_{k-1} \alpha^{k-1}$
- Does the circuit C implement f ?

Mathematically:

- Model the circuit (gates) as polynomials: f_{1}, \ldots, f_{s} $J=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subset \mathbb{F}_{2^{k}}\left[x_{1}, \ldots, x_{n}\right]$
- Does f agree with solutions to $f_{1}=f_{2}=\cdots=f_{s}=0$?
- Can the spec f be written as a combination of f_{1}, \ldots, f_{s} and J_{0} ?
- Is $f \xrightarrow{G B\left(J+J_{0}\right)}+0$?

Example Formulation

Gates as polynomials
$\mathbb{F}_{2} \subset \mathbb{F}_{2^{k}}$:
Ideal J:
Ideal J_{0} :
$z_{0}^{2}-z_{0}, s_{0}^{2}-s_{0}$,

$$
\begin{aligned}
z_{0}=s_{0}+s_{3} ; & \mapsto f_{1}: z_{0}+s_{0}+s_{3} \\
s_{0}=a_{0} \cdot b_{0} ; & \mapsto f_{2}: s_{0}+a_{0} \cdot b_{0}
\end{aligned}
$$

$$
\begin{aligned}
& A^{2^{k}}-A, B^{2^{k}}-B, \\
& Z^{2^{k}}-Z
\end{aligned}
$$

$A+a_{0}+a_{1} \alpha ; B+b_{0}+b_{1} \alpha ; Z+z_{0}+z_{1} \alpha$

Complexity of Gröbner Basis

- Complexity of Gröbner basis
- Degree of polynomials in G is bounded by $2\left(\frac{1}{2} d^{2}+d\right)^{2^{n-1}}[1]$
- Doubly-exponential in n and polynomial in the degree d
- This is the complexity of the GB problem, not of Buchberger's algorithm - that's still a mystery
- For $J \subset \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$, Complexity $G B\left(J+J_{0}\right): q^{O(n)}$ (Single exponential)
- Improving Buchberger's algorithm:
- Improve term ordering (heuristics)
- Get to all $S(f, g) \xrightarrow{G}+0$ quickly; i.e. arrive at a GB quickly (hard to predict)
- Improve the implementation of polynomial division; ideas proposed by Faugére in the F_{4} algorithm

Complexity of Gröbner Basis and Term Orderings

- For $J \subset \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$, Complexity $G B\left(J+J_{0}\right): q^{O(n)}$
- GB complexity very sensitive to term ordering
- A term order has to be imposed for systematic polynomial computation

Let $f=2 x^{2} y z+3 x y^{3}-2 x^{3}$

- LEX $x>y>z: f=-2 x^{3}+2 x^{2} y z+3 x y^{3}$
- DEGLEX $x>y>z: \quad f=2 \mathbf{x}^{2} \mathbf{y z}+3 x y^{3}-2 x^{3}$
- DEGREVLEX $x>y>z: f=3 x y^{3}+2 x^{2} y z-2 x^{3}$

Recall, S-polynomial depends on term ordering:

$$
S(f, g)=\frac{L}{\operatorname{lt}(f)} \cdot f-\frac{L}{\operatorname{lt}(g)} \cdot g ; \quad L=\operatorname{LCM}(\operatorname{Im}(f), \operatorname{Im}(g))
$$

Effect of Term Orderings on Buchberger's Algorithm

The Product Criteria

If $\operatorname{Im}(f) \cdot \operatorname{Im}(g)=L C M(\operatorname{Im}(f), \operatorname{Im}(g))$, then $S(f, g) \xrightarrow{G^{\prime}}+0$.
LEX: $x_{0}>x_{1}>x_{2}>x_{3}$

- $f=x_{0} x_{1}+x_{2}, g=x_{1} x_{2}+x_{3}$
- $\operatorname{Im}(f)=x_{0} x_{1} ; \quad \operatorname{Im}(g)=x_{1} x_{2}$
- $S(f, g) \xrightarrow{G^{\prime}}+x_{0} x_{3}+x_{2}^{2}$

LEX: $x_{3}>x_{2}>x_{1}>x_{0}$

- $f=x_{2}+x_{0} x_{1}, g=x_{3}+x_{1} x_{2}$
- $\operatorname{Im}(f)=x_{2} ; \quad \operatorname{Im}(g)=x_{3}, S(f, g) \xrightarrow{G^{\prime}} 0$

"Obviate" Buchberger's algorithm... really?

Find a "term order" that makes ALL $\{\operatorname{Im}(f), \operatorname{Im}(g)\}$ relatively prime.

Product Criteria and Gröbner Bases

Recall Buchberger's theorem

The set $G=\left\{g_{1}, \ldots, g_{t}\right\}$ is a Gröbner basis iff for all pairs $(f, g) \in G, S(f, g) \xrightarrow{G}+0$

- If we can make leading monomials of all pairs $\operatorname{Im}(f), \operatorname{Im}(g)$ relatively prime, then all $\operatorname{Spoly}(f, g)$ reduce to 0
- This would imply that the polynomials already constitute a Gröbner basis
- No need to compute a GB, may be able to circumvent the GB complexity issues
- Can a term order be derived that makes leading monomials of all polynomials relatively prime?
- For an "acyclic" circuit, make the gate output variable x_{i} greater than all variables x_{j} that are inputs to the gate

For Circuits, such an order can be derived

$$
\begin{array}{rlr}
f_{1}: s_{0}+a_{0} \cdot b_{0} ; & f_{2}: s_{1}+a_{0} \cdot b_{1} ; & f_{3}: s_{2}+a_{1} \cdot b_{0} ; \\
f_{4}: s_{3}+a_{1} \cdot b_{1} ; & f_{5}: r_{0}+s_{1}+s_{2} ; & f_{6}: z_{0}+s_{0}+s_{3} \\
f_{7}: z_{1}+r_{0}+s_{3} ; & f_{8}: A+a_{0}+a_{1} \alpha ; & f_{9}: B+b_{0}+b_{1} \alpha \\
& f_{10}: Z+z_{0}+z_{1} \alpha ; &
\end{array}
$$

- Perform a Reverse Topological Traversal of the circuit, order the variables according to their reverse topological levels
- LEX with $Z>\{A>B\}>\left\{z_{0}>z_{1}\right\}>\left\{r_{0}>s_{0}>s_{3}\right\}>\left\{s_{1}>s_{2}\right\}>$ $\left\{a_{0}>a_{1}>b_{0}>b_{1}\right\}$
- This makes every gate output a leading term, and $\left\{f_{1}, \ldots, f_{10}\right\}$ is a Gröbner basis

This term order also renders a Gröbner Basis of $J+J_{0}$

Using the Topological Term Order:

- $F=\left\{f_{1}, \ldots, f_{s}\right\}$ is a Gröbner Basis of $J=\left\langle f_{1}, \ldots, f_{s}\right\rangle$
- $F_{0}=\left\{x_{1}^{q}-x_{1}, \ldots, x_{n}^{q}-x_{n}\right\}$ is also a Gröbner basis of J_{0} (these polynomials also have relatively prime leading terms)
- But we have to compute a Gröbner Basis of $J+J_{0}=\left\langle f_{1}, f_{2} \ldots, f_{s}, x_{1}^{q}-x_{1}, \ldots, x_{n}^{q}-x_{n}\right\rangle$
- It turns out that $\left\{f_{1}, f_{2} \ldots, f_{s}, x_{1}^{q}-x_{1}, \ldots, x_{n}^{q}-x_{n}\right\}$ is a Gröbner basis!!
- From our circuit: $f_{i}=x_{i}+\operatorname{tail}\left(f_{i}\right)=x_{i}+P$
- Vanishing polynomials $x_{i}^{q}-x_{i}$ with same variable x_{i}
- Only pairs to consider: $S\left(f_{i}, \quad x_{i}^{q}-x_{i}\right)$ in Buchberger's Algorithm
- All other pairs will have relatively prime leading terms, which will reduce to 0 modulo G

This term order renders a Gröbner basis by construction

So, let us compute $S\left(f_{i}=x_{i}+P, x_{i}^{q}-x_{i}\right)$:

$$
\begin{gathered}
S\left(f_{i}=x_{i}+P, \quad x_{i}^{q}-x_{i}\right)=x_{i}^{q-1} P+x_{i} \\
x_{i}^{q-1} P+x_{i} \xrightarrow{x_{i}+P} x_{i}^{q-2} P^{2}+x_{i} \xrightarrow{x_{i}+P} \ldots \xrightarrow{x_{i}+P} P^{q}-P \xrightarrow{J_{0}}+0
\end{gathered}
$$

Since $P^{q}-P$ is a vanishing polynomial, $P^{q}-P \in J_{0}$ and $P^{q}-P \xrightarrow{J_{0}} 0$
Conclusion: The set of polynomials $F \cup F_{0}=\left\{f_{1}, \ldots, f_{s}, \quad x_{i}^{q}-x_{i}, \ldots, x_{n}^{q}-x_{n}\right\}$ is itself a Gröbner basis due to the reverse topological term order derived from the circuit!

Our Minimal Gröbner Basis

Conclusion:

- Our term order makes $G=\left\{f_{1}, \ldots, f_{s}, x_{1}^{q}-x_{1}, \ldots, x_{n}^{q}-x_{n}\right\}$ a Gröbner Basis
- This $\mathrm{GB}\left(J+J_{0}\right)$ can be further simplified (made minimal)
- Two types of polynomials: $f_{i}=x_{i}+P, g_{i}=x_{i}^{q}-x_{i}$
- Primary inputs bits are never a leading term of any polynomial
- Primary inputs are not the output of any gate
- For $x_{i} \notin$ primary inputs, $f_{i}=x_{i}+P$ divides $x_{i}^{q}-x_{i}$; remove $x_{i}^{q}-x_{i}$
- Keep $J_{0}=\left\langle x_{i}^{2}-x_{i}: x_{i} \in\right.$ primary input bits \rangle

Our term order makes $G=\left\{f_{1}, \ldots, f_{s}, \quad x_{P I}^{2}-x_{P I}\right\}$ a minimal Gröbner basis by construction!
Verify the circuit only by a reduction: $f \xrightarrow{G}+^{G}$?

Our Overall Approach

- Given the circuit, perform reverse topological traversal
- Derive the term order to represent the polynomials for every gate, call it the Reverse Topological Term Order (RTTO) >
- The set: $\left\{F, F_{0}\right\}=\left\{f_{1}, \ldots, f_{s}, \quad x_{i}^{2}-x_{i}: x_{i} \in X_{P I}\right\}$ is a minimal Gröbner Basis
- Obtain: $f \xrightarrow{F, F_{0}}+r$
- If $r=0$, the circuit is verified correct
- If $r \neq 0$, then r contains only the primary input variables
- Any SAT assignment to $r \neq 0$ generates a counter-example
- Counter-example found in no time as r is simplified by Gröbner basis reduction

Move the complexity to that of Polynomial Division

Is this Magic? Or have I told you the full story?

- Reduce x^{n} modulo $\langle x+P\rangle$, how many cancellations?
- Requires raising P to the $n^{\text {th }}$ power
- P is the $\operatorname{tail}\left(f_{i}\right)$
- Depending upon n, this can become complicated
- Reduce this minimal GB $G=\left\{F, F_{0}\right\}$, what does it look like?
- $f_{i}=x_{i}+\operatorname{tail}\left(f_{i}\right)$, where tail $\left(f_{i}\right)=P\left(x_{j}\right), x_{i}>x_{j}$
- There exists $f_{j}=x_{j}+\operatorname{tail}\left(f_{j}\right)$, where $f_{j} \mid P\left(x_{j}\right)$
- All non-PI variables x_{j} can be canceled in this reduction
- Reduction results in GB G with only primary input variables, potentially explosive

This approach should work for specification polynomials f with low degree terms

Experiments: Correctness Proof, Miter Mastrovito v/s Montgomery Multipliers

Table: Verification Results of SAT, SMT, BDD, ABC.

	Word size of the operands k-bits		
Solver	8	12	16
MiniSAT	22.55	TO	TO
CryptoMiniSAT	7.17	16082.40	TO
PrecoSAT	7.94	TO	TO
PicoSAT	14.85	TO	TO
Yices	10.48	TO	TO
Beaver	6.31	TO	TO
CVC	TO	TO	TO
Z3	85.46	TO	TO
Boolector	5.03	TO	TO
SimplifyingSTP	14.66	TO	TO
ABC	242.78	TO	TO
BDD	0.10	14.14	1899.69

Experimental Results: Correctness Proof

Verify a specification polynomial f against a circuit C by performing the test $f \xrightarrow{J+J_{0}}+0$?

Table: Verify bug-free and buggy Mastrovito multipliers. Singular computer algebra tool used for division.

Size k-bits	32	64	96	128	160	163
\#variables	1155	4355	9603	16899	26243	27224
\#polynomials	1091	4227	9411	16643	25923	26989
\#terms	7169	28673	64513	114689	179201	185984
Compute-GB:	93.80	MO	MO	MO	MO	MO
Ours: Bug-free	1.41	112.13	758.82	3054	9361	16170
Ours: Bugs	1.43	114.86	788.65	3061	9384	16368

Why does Compute-GB (SingULAR) run out of memory?

Limitations of RTTO-based GB-reduction

For XOR logic:

$$
f_{1}: z+f+d \quad f_{2}: f+e+c \quad f_{3}: e+b+a
$$

The reduction procedure $z \xrightarrow{f_{1}, f_{2}, f_{3}}+r$ will be computed as follows:

- $z \xrightarrow{z+f+d} f+d$
- $(f+d) \xrightarrow{f+e+c} e+d+c$
- $(e+d+c) \xrightarrow{e+b+a} d+c+b+a$

Limitations of GB-Reduction: OR-gates explode

For OR logic:

$$
f_{1}: z+f d+f+d \quad f_{2}: f+e c+e+c \quad f_{3}: e+b a+b+a
$$

The reduction procedure, $z \xrightarrow{f_{1}, f_{2}, f_{3}}+r$ is now computed as:

- $z \xrightarrow{z+f d+f+d} f d+f+d$
- $(f d+f+d) \xrightarrow{f+e c+e+c} f+e d c+e d+d c+d$; $(f+e d c+e d+d c+d) \xrightarrow{f+e c+e+c} e d c+e d+e c+e+d c+d+c$
- $(e d c+e d+e c+e+d c+d+c) \xrightarrow{e+b a+b+a}+$ $d c b a+d c b+d c a+d b a+d c+d b+d a+d+c b a+c b+c a+c+b a+b+a$

Verification of Integer Multipliers

- Use the same ideal membership approach to verify integer multipliers
- Consider a 2-bit (integer multiplier) circuit. Prove that it is an integer multiplier! Or prove that it is buggy.

Figure: Integer multiplier circuit

Integer Arithmetic Verification Model

- What is the spec?
- Output word: $z_{0}+2 z_{1}+4 z_{2}+8 z_{3}, z_{i}$ are bits $\{0,1\}$
- Input words: $a_{0}+2 a_{1}, \quad b_{0}+2 b_{1}$.
- $f_{\text {spec }}: z_{0}+2 z_{1}+4 z_{2}+8 z_{3}=\left(a_{0}+2 a_{1}\right)\left(b_{0}+2 b_{1}\right)$
- In polynomial form: $f_{\text {spec }}: z_{0}+2 z_{1}+4 z_{2}+8 z_{3}-\left(a_{0}+2 a_{1}\right)\left(b_{0}+2 b_{1}\right)$
- Note $f_{\text {spec }}$ has cofficients in \mathbb{Z}, but \mathbb{Z} is NOT a field, so we cannot apply Nullstellensatz!
- Trick: Model the problem over $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$, BUT, use the same RTTO order (important)
- How to model Boolean logic gates over \mathbb{Q} ?

Model Logic Gates over \mathbb{Q}

$$
\begin{array}{rlrl}
z=\neg a \mapsto & z & =1-a \quad \mapsto z-1+a \\
z & =a \wedge b \mapsto & z & =a \cdot b \mapsto z-a \cdot b \\
z & =a \vee b \mapsto & z=a+b-a \cdot b \mapsto z-a-b+a b \\
z & =a \oplus b \mapsto & z=a+b-2 \cdot a \cdot b \mapsto z-a-b+2 a b
\end{array}
$$

- This requires that every variable take binary values: $a^{2}=a$ or $J_{0}=\left\langle a^{2}-a, b^{2}-b, \ldots, z^{2}-z\right\rangle$
- Construct ideal J from logic gates, add bit-level vanishing polynomials J_{0}
- What is the leading term of polynomials in J under RTTO?
- Gate output is the leading term, and leading coefficient $=1$
- Divide by $\operatorname{Ic}(f)=1$, division will NEVER produce fractions!

Verification $f_{\text {spec }}(\bmod J+J 0)$ under RTTO

$$
\begin{aligned}
Z= & 8 z_{3}+4 z_{2}+2 z_{1}+z_{0} \\
= & \underline{8 x_{1} x_{2} x_{3}}+(4 x_{1}+\underbrace{4 x_{2} x_{3}}-\underline{8 x_{1} x_{2} x_{3}}) \\
& +(2 x_{2}+2 x_{3}-\underbrace{4 x_{2} x_{3}})+x_{4} \\
= & 4 x_{1}+2 x_{2}+2 x_{3}+x_{4}
\end{aligned}
$$

Figure: Integer multiplier circuit

- Ring $R=0,\left(z_{3}, z_{2}, z_{1}, z_{0}, x_{5}, x_{1}, x_{2}, x_{3}, x_{4}, a_{0}, a_{1}, b_{0}, b_{1}\right), I p ;$
- Circuit is an integer multiplier if $f_{\text {spec }} \xrightarrow{J+J_{0}}+0$.

In Conclusion

The Key to Success in Design Automation

- Build algorithms and techniques on solid theoretical foundations
- Use all of the mathematical tools at your disposal
- Make sure to exploit circuit structure
- Develop domain-specific implementations
- That's what SAT, BDDs, AIGs do too!

園 T. W. Dube, "The Structure of Polynomial Ideals and Gröbner bases," SIAM Journal of Computing, vol. 19, no. 4, pp. 750-773, 1990.

