ECE/CS 3700
 Digital System Design

Chapter 3: Fast Adders and Multipliers

Priyank Kalla
Professor
Electrical \& Computer Engineering

Problems with Ripple Carry Adders

- Ripple carry adders are compact, simple to design and implement, and there is uniformity of design fabrication
- Ripple carry adders can be slow, when the carry ripples all the way across the carry chain

Figure 3.5. An n-bit ripple-carry adder.

- Observation:
- Carry-out of each stage relies on carry-in of the previous stage
- This creates a multi-level logic circuit, where levels = topological depth = gate delay
- Objective to Speed-up the circuits:
- Can we have the carry-out of each stage rely mostly on the primary inputs of previous stages?
- Example: can we have carry-out(stage 2) $=F(x 2, y 2, x 1, y 1, x 0, y 0, c 0)$?
- Then, c_{i+1} does not have to wait for c_{i} (cause of the delay)

Towards a Faster Circuit

- Since carry-chains are a culprit, target the c_{i+1} signal:

$$
c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i}
$$

If we factor this expression as

$$
c_{i+1}=x_{i} y_{i}+\left(x_{i}+y_{i}\right) c_{i}
$$

then it can be written as

$$
c_{i+1}=g_{i}+p_{i} c_{i}
$$

where

$$
\begin{aligned}
g_{i} & =x_{i} y_{i} \\
p_{i} & =x_{i}+y_{i}
\end{aligned}
$$

Figure 3.14. A ripple-carry adder based on Expression 3.3.

Towards a Faster Circuit

- Since carry-chains are a culprit, target the c_{i+1} signal:

$$
\begin{aligned}
c_{i+1} & =g_{i}+p_{i} c_{i} \\
c_{i+1} & =g_{i}+p_{i}\left(g_{i-1}+p_{i-1} c_{i-1}\right) \\
& =g_{i}+p_{i} g_{i-1}+p_{i} p_{i-1} c_{i-1}
\end{aligned}
$$

Specifically, for 3 stage ripple-carry adder:

$$
\begin{aligned}
& c_{1}=g_{0}+p_{0} \cdot c_{0} \\
& c_{2}=g_{1}+g_{0} \cdot p_{1}+p_{1} \cdot p_{0} \cdot c_{0} \\
& c_{3}=g_{2}+g_{1} \cdot p_{2}+g_{0} \cdot p_{1} \cdot p_{2}+p_{2} \cdot p_{1} \cdot p_{0} \cdot c_{0}
\end{aligned}
$$

Carry Lookahead Adder Design for Lab 2

- Design the logic in such a way that the topological depth for each carry-out is 3-levels
- Use assign statements:

Figure 3.16 A hierarchical carry-lookahead adder with ripple-carry between blocks.

- c_{8} is a look-ahead carry
- $c_{8}=g_{7}+g_{6} p_{7}+g_{5} p_{6} p_{7}+\ldots+p_{7} \cdots p_{0} \cdot c_{0}$
- But c_{8} ripples to the next block
- $c_{16}=g_{15}+g_{14} p_{15}+\ldots+p_{15} \cdot p_{8} \cdot c_{8}$
- And so on..

Multiplicand M	(14)	1110
Multiplier Q	(11)	$\times 1011$
		1110
		1110
		1110
		100

(a) Multiplication by hand

Multiplicand M	(14)	1110
Multiplier Q	(11)	X 1011
Partial product 0		1110
		+ 1110
Partial product 1		10101
		+ 0000
Partial product 2		01010
		+ 1110
Product P	(154)	10011010

Figure 3.34. Multiplication of unsigned numbers.

Figure 3.35. A 4×4 multiplier circuit.

