ECE/CS 3700 Digital System Design

Chapter 3: Fast Adders and Multipliers

Priyank Kalla Professor Electrical & Computer Engineering

Problems with Ripple Carry Adders

- Ripple carry adders are compact, simple to design and implement, and there is uniformity of design fabrication
- Ripple carry adders can be slow, when the carry ripples all the way across the carry chain

Figure 3.5. An *n*-bit ripple-carry adder.

- Observation:
- Carry-out of each stage relies on carry-in of the previous stage
 - This creates a **multi-level** logic circuit, where **levels** = **topological depth** = **gate delay**
- Objective to Speed-up the circuits:
- Can we have the carry-out of each stage rely mostly on the primary inputs of previous stages?
- Example: can we have *carry-out(stage 2)* = *F(x2, y2, x1, y1, x0, y0, c0)*?
- Then, c_{i+1} does not have to wait for c_i (cause of the delay)

Towards a Faster Circuit

• Since carry-chains are a culprit, target the c_{i+1} signal:

 $c_{i+1} = x_i y_i + x_i c_i + y_i c_i$

If we factor this expression as

 $c_{i+1} = x_i y_i + (x_i + y_i) c_i$

then it can be written as

 $c_{i+1} = g_i + p_i c_i$

where

$$g_i = x_i y_i$$
$$p_i = x_i + y_i$$

Figure 3.14. A ripple-carry adder based on Expression 3.3.

Towards a Faster Circuit

• Since carry-chains are a culprit, target the c_{i+1} signal:

$$c_{i+1} = g_i + p_i c_i$$

$$c_{i+1} = g_i + p_i (g_{i-1} + p_{i-1} c_{i-1})$$

$$= g_i + p_i g_{i-1} + p_i p_{i-1} c_{i-1}$$

Specifically, for 3 stage ripple-carry adder:

$$c_{1} = g_{0} + p_{0} \cdot c_{0}$$

$$c_{2} = g_{1} + g_{0} \cdot p_{1} + p_{1} \cdot p_{0} \cdot c_{0}$$

$$c_{3} = g_{2} + g_{1} \cdot p_{2} + g_{0} \cdot p_{1} \cdot p_{2} + p_{2} \cdot p_{1} \cdot p_{0} \cdot c_{0}$$

Carry Lookahead Adder Design for Lab 2

- Design the logic in such a way that the topological depth for each carry-out is 3-levels
- Use assign statements:

Figure 3.16 A hierarchical carry-lookahead adder with ripple-carry between blocks.

- c_8 is a look-ahead carry
- $c_8 = g_7 + g_6 p_7 + g_5 p_6 p_7 + \dots + p_7 \cdots p_0 \cdot c_0$
- But c_8 ripples to the next block
- $c_{16} = g_{15} + g_{14}p_{15} + \ldots + p_{15} \cdot p_8 \cdot c_8$
- And so on..

							Multip Multip	licand l lier Q	M (14 (1	4) 1)	1110 x 1011
Multiplicand M Multiplier Q	(14) (11)	1 1 1 × 1 0 1 1 1 1	$ \begin{array}{c} 1 & 0 \\ 1 & 1 \\ \hline 1 & 0 \end{array} $			Partial product 0 Partial product 1				$ \begin{array}{r} 1110 \\ + 1110 \\ \hline 10101 \\ + 0000 \\ \end{array} $	
		1 00 111	11 00 0	0		Partial product 2			+	01010 + 1110	
Product P	(154)	(154) 1001				Product P (154)			4)	10011010	
(a) Mult	iplication	by har	nd				(m ₃	b) Usi	ng mu	Itiple	adders
						x	q_3	q_2	q_1	q_0	
Partial product 0					+	m_3q_1	$m_3 q_0 \ m_2 q_1$	${m_2 q_0 \atop m_1 q_1}$	$m_1 q_0 \ m_0 q_1$	$m_0 q_0$	
]	Partial proc	luct 1			$\frac{PP1_5}{m_2a_2}$	$\frac{PP1_4}{m_2q_2}$	$\frac{PP1_3}{m_1q_2}$	$\frac{PP1_2}{m_0q_2}$	<i>PP</i> 1 ₁		
]	Partial proc	luct 2	+	$\frac{PP2_6}{m_3q_3}$	$m_{3}q_{2}$ $PP2_{5}$ $m_{2}q_{3}$	$\frac{PP2_4}{m_1q_3}$	$\frac{PP2_3}{m_0q_3}$	PP22			
1	Product P		<i>p</i> ₇	p_6	p_5	P_4	P_3	P_2	p_1	P_0	

c) Hardware implementation

Figure 3.34. Multiplication of unsigned numbers.

Figure 3.35. A 4x4 multiplier circuit.