Intro to Rings, Fields, Polynomials: Hardware Modeling

 by Modulo ArithmeticPriyank Kalla

Associate Professor
Electrical and Computer Engineering, University of Utah
kalla@ece.utah.edu
http://www.ece.utah.edu/~kalla
Lectures: Sept. 11, 2017 onwards

Agenda for Today

- Wish to build a polynomial algebra model for hardware
- Modulo arithmetic model is versatile: can represent both bit-level and word-level constraints
- To build the algebraic/modulo arithmetic model:
- Rings, Fields, Modulo arithmetic
- Polynomials, Polynomial functions, Polynomial Rings
- Finite fields $\mathbb{F}_{p}, \mathbb{F}_{p^{k}}$ and $\mathbb{F}_{2^{k}}$
- Later on, we will study
- Ideals, Varieties, and Gröbner Bases
- Decision procedures in verification

Motivation for Algebraic Computation

- Modeling for bit-precise algebraic computation
- Arithmetic RTLs: functions over k-bit-vectors
- k-bit-vector \mapsto integers $\left(\bmod 2^{k}\right)=\mathbb{Z}_{2^{k}}$
- k-bit-vector \mapsto Galois (Finite) field $\mathbb{F}_{2^{k}}$
- For many of these applications SAT/SMT fail miserably!
- Computer Algebra and Algebraic Geometry + SAT/SMT
- Model: Circuits as polynomial functions $f: \mathbb{Z}_{2^{k}} \rightarrow \mathbb{Z}_{2^{k}}, f: \mathbb{F}_{2^{k}} \rightarrow \mathbb{F}_{2^{k}}$

Ring algebra

All we need is an algebraic object where we can ADD, MULTIPLY, DIVIDE. These objects are Rings and Fields.

Groups, $(G, 0,+)$

An Abelian group is a set G and a binary operation " +" satisfying:

- Closure: For every $a, b \in G, a+b \in G$.
- Associativity: For every $a, b, c \in G, a+(b+c)=(a+b)+c$.
- Commutativity: For every $a, b \in G, a+b=b+a$.
- Identity: There is an identity element $0 \in G$ such that for all $a \in G ; a+0=a$.
- Inverse: If $a \in G$, then there is an element $a^{-1} \in G$ such that $a+a^{-1}=0$.
Example: The set of Integers \mathbb{Z} or \mathbb{Z}_{n} with + operation.

Rings $(R, 0,1,+, \cdot)$

A Commutative ring with unity is a set R and two binary operations $"+"$ and " .", as well as two distinguished elements $0,1 \in R$ such that, R is an Abelian group with respect to addition with additive identity element 0 , and the following properties are satisfied:

- Multiplicative Closure: For every $a, b \in \mathrm{R}, a \cdot b \in \mathrm{R}$.
- Multiplicative Associativity: For every $a, b, c \in \mathrm{R}$, $a \cdot(b \cdot c)=(a \cdot b) \cdot c$.
- Multiplicative Commutativity: For every $a, b \in \mathrm{R}, a \cdot b=b \cdot a$.
- Multiplicative Identity: There is an identity element $1 \in \mathrm{R}$ such that for all $a \in \mathrm{R}, a \cdot 1=a$.
- Distributivity: For every $a, b, c \in R, a \cdot(b+c)=a \cdot b+a \cdot c$ holds for all $a, b, c \in R$.
Example: The set of Integers \mathbb{Z} or \mathbb{Z}_{n} with + ,. operations.

Rings

- Examples of rings: $\mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{Z}$
- $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$ where,$+ \cdot$ computed,$+ \cdot(\bmod n)$
- Modulo arithmetic:
- $(a+b)(\bmod n)=(a(\bmod n)+b(\bmod n))(\bmod n)$
- $(a \cdot b)(\bmod n)=(a(\bmod n) \cdot b(\bmod n))(\bmod n)$
- $-a(\bmod n)=(n-a)(\bmod n)$
- Arithmetic k-bit vectors \mapsto arithmetic over $\mathbb{Z}_{2^{k}}$
- For $k=1, \mathbb{Z}_{2} \equiv \mathbb{B}$

Rings

- Examples of rings: $\mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{Z}$
- $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$ where,$+ \cdot$ computed,$+ \cdot(\bmod n)$
- Modulo arithmetic:
- $(a+b)(\bmod n)=(a(\bmod n)+b(\bmod n))(\bmod n)$
- $(a \cdot b)(\bmod n)=(a(\bmod n) \cdot b(\bmod n))(\bmod n)$
- $-a(\bmod n)=(n-a)(\bmod n)$
- Arithmetic k-bit vectors \mapsto arithmetic over $\mathbb{Z}_{2^{k}}$
- For $k=1, \mathbb{Z}_{2} \equiv \mathbb{B}$

But, what about division?

How to define division?

- Over \mathbb{Q}, can you divide $\frac{2}{3}$ by $\frac{4}{5}$?

How to define division?

- Over \mathbb{Q}, can you divide $\frac{2}{3}$ by $\frac{4}{5}$?
- Over \mathbb{C}, can you divide $\frac{a+i b}{c+i d}$?

How to define division?

- Over \mathbb{Q}, can you divide $\frac{2}{3}$ by $\frac{4}{5}$?
- Over \mathbb{C}, can you divide $\frac{a+i b}{c+i d}$?
- Over \mathbb{Z}, can you divide $\frac{3}{4}$?

How to define division?

- Over \mathbb{Q}, can you divide $\frac{2}{3}$ by $\frac{4}{5}$?
- Over \mathbb{C}, can you divide $\frac{a+i b}{c+i d}$?
- Over \mathbb{Z}, can you divide $\frac{3}{4}$?
- Over $\mathbb{Z}(\bmod 8)$, can you divide $\frac{3}{4}$?

How to define division?

- Over \mathbb{Q}, can you divide $\frac{2}{3}$ by $\frac{4}{5}$?
- Over \mathbb{C}, can you divide $\frac{a+i b}{c+i d}$?
- Over \mathbb{Z}, can you divide $\frac{3}{4}$?
- Over $\mathbb{Z}(\bmod 8)$, can you divide $\frac{3}{4}$?
- Over $\mathbb{Z}(\bmod 7)$, can you divide $\frac{3}{4}$?

How to define division?

- Over \mathbb{Q}, can you divide $\frac{2}{3}$ by $\frac{4}{5}$?
- Over \mathbb{C}, can you divide $\frac{a+i b}{c+i d}$?
- Over \mathbb{Z}, can you divide $\frac{3}{4}$?
- Over $\mathbb{Z}(\bmod 8)$, can you divide $\frac{3}{4}$?
- Over $\mathbb{Z}(\bmod 7)$, can you divide $\frac{3}{4}$?

How to define division?

- Over \mathbb{Q}, can you divide $\frac{2}{3}$ by $\frac{4}{5}$?
- Over \mathbb{C}, can you divide $\frac{a+i b}{c+i d}$?
- Over \mathbb{Z}, can you divide $\frac{3}{4}$?
- Over $\mathbb{Z}(\bmod 8)$, can you divide $\frac{3}{4}$?
- Over $\mathbb{Z}(\bmod 7)$, can you divide $\frac{3}{4}$?

Division is multiplication by a (multiplicative) inverse!

How to define division?

- Over \mathbb{Q}, can you divide $\frac{2}{3}$ by $\frac{4}{5}$?
- Over \mathbb{C}, can you divide $\frac{a+i b}{c+i d}$?
- Over \mathbb{Z}, can you divide $\frac{3}{4}$?
- Over $\mathbb{Z}(\bmod 8)$, can you divide $\frac{3}{4}$?
- Over $\mathbb{Z}(\bmod 7)$, can you divide $\frac{3}{4}$?

Division is multiplication by a (multiplicative) inverse!

Division

For an element a in a ring $R, \frac{a}{b}=a \times b^{-1}$. Here, $b^{-1} \in R$ s.t. $b \cdot b^{-1}=1$.

Multiplicative Inverses

- Over \mathbb{Q} : if $b=\frac{2}{3}, b^{-1}=\frac{3}{2}$?

Multiplicative Inverses

- Over \mathbb{Q} : if $b=\frac{2}{3}, b^{-1}=\frac{3}{2}$?
- Over \mathbb{Z} : if $b=4, b^{-1}=$?

Multiplicative Inverses

- Over \mathbb{Q} : if $b=\frac{2}{3}, b^{-1}=\frac{3}{2}$?
- Over \mathbb{Z} : if $b=4, b^{-1}=$?
- Over rings: inverses may not exist

Multiplicative Inverses

- Over \mathbb{Q} : if $b=\frac{2}{3}, b^{-1}=\frac{3}{2}$?
- Over \mathbb{Z} : if $b=4, b^{-1}=$?
- Over rings: inverses may not exist
- Over \mathbb{Z}_{8} : if $b=3, b^{-1}=$?

Multiplicative Inverses

- Over \mathbb{Q} : if $b=\frac{2}{3}, b^{-1}=\frac{3}{2}$?
- Over \mathbb{Z} : if $b=4, b^{-1}=$?
- Over rings: inverses may not exist
- Over \mathbb{Z}_{8} : if $b=3, b^{-1}=$?
- Over \mathbb{Z}_{8} : if $b=6, b^{-1}=$?

Multiplicative Inverses

- Over \mathbb{Q} : if $b=\frac{2}{3}, b^{-1}=\frac{3}{2}$?
- Over \mathbb{Z} : if $b=4, b^{-1}=$?
- Over rings: inverses may not exist
- Over \mathbb{Z}_{8} : if $b=3, b^{-1}=$?
- Over \mathbb{Z}_{8} : if $b=6, b^{-1}=$?
- Over \mathbb{Z}_{7} : if $b=6, b^{-1}=$?

Fields

Field $(\mathbb{F}, 0,1,+, \cdot)$

A field \mathbb{F} is a commutative ring with unity, where every element in \mathbb{F}, except 0 , has a multiplicative inverse:
$\forall a \in(\mathbb{F}-\{0\}), \quad \exists \hat{a} \in \mathbb{F}$ such that $a \cdot \hat{a}=1$.

Fields

Field $(\mathbb{F}, 0,1,+, \cdot)$

A field \mathbb{F} is a commutative ring with unity, where every element in \mathbb{F}, except 0 , has a multiplicative inverse:
$\forall a \in(\mathbb{F}-\{0\}), \quad \exists \hat{a} \in \mathbb{F}$ such that $a \cdot \hat{a}=1$.

A field is called a finite field or Galois field when \mathbb{F} has a finite number of elements.

Fields

Field $(\mathbb{F}, 0,1,+, \cdot)$

A field \mathbb{F} is a commutative ring with unity, where every element in \mathbb{F}, except 0 , has a multiplicative inverse:
$\forall a \in(\mathbb{F}-\{0\}), \quad \exists \hat{a} \in \mathbb{F}$ such that $a \cdot \hat{a}=1$.

A field is called a finite field or Galois field when \mathbb{F} has a finite number of elements.

The set $\mathbb{Z}_{p}=\mathbb{Z}(\bmod p)=\{0,1, \ldots, p-1\}$ is a finite field, when p is a prime integer.

Fields

Field $(\mathbb{F}, 0,1,+, \cdot)$

A field \mathbb{F} is a commutative ring with unity, where every element in \mathbb{F}, except 0 , has a multiplicative inverse:
$\forall a \in(\mathbb{F}-\{0\}), \quad \exists \hat{a} \in \mathbb{F}$ such that $a \cdot \hat{a}=1$.

A field is called a finite field or Galois field when \mathbb{F} has a finite number of elements.

The set $\mathbb{Z}_{p}=\mathbb{Z}(\bmod p)=\{0,1, \ldots, p-1\}$ is a finite field, when p is a prime integer.
$\mathbb{Z}_{n}, n \neq p$ is a ring but not a field. So, $\mathbb{Z}_{2^{k}}$ is not a field, as even numbers in $\mathbb{Z}_{2^{k}}$ have no inverses.

Fields

Field $(\mathbb{F}, 0,1,+, \cdot)$

A field \mathbb{F} is a commutative ring with unity, where every element in \mathbb{F}, except 0 , has a multiplicative inverse:
$\forall a \in(\mathbb{F}-\{0\}), \quad \exists \hat{a} \in \mathbb{F}$ such that $a \cdot \hat{a}=1$.

A field is called a finite field or Galois field when \mathbb{F} has a finite number of elements.

The set $\mathbb{Z}_{p}=\mathbb{Z}(\bmod p)=\{0,1, \ldots, p-1\}$ is a finite field, when p is a prime integer.
$\mathbb{Z}_{n}, n \neq p$ is a ring but not a field. So, $\mathbb{Z}_{2^{k}}$ is not a field, as even numbers in $\mathbb{Z}_{2^{k}}$ have no inverses.
$\mathbb{Z}_{2} \equiv \mathbb{F}_{2} \equiv \mathbb{B} \equiv\{0,1\}$

- Boolean AND-OR-NOT can be mapped to,$+ \cdot(\bmod 2)$
- Boolean AND-OR-NOT can be mapped to,$+ \cdot(\bmod 2)$ $\mathbb{B} \rightarrow \mathbb{F}_{2}:$

$$
\begin{array}{rlr}
\neg a \rightarrow a+1 & (\bmod 2) \\
a \vee b & \rightarrow a+b+a \cdot b & (\bmod 2) \\
a \wedge b & \rightarrow a \cdot b & (\bmod 2) \tag{1}\\
a \oplus b & \rightarrow a+b & (\bmod 2)
\end{array}
$$

where $a, b \in \mathbb{F}_{2}=\{0,1\}$.

- Boolean AND-OR-NOT can be mapped to,$+ \cdot(\bmod 2)$ $\mathbb{B} \rightarrow \mathbb{F}_{2}:$

$$
\begin{array}{rrr}
\neg a \rightarrow a+1 & (\bmod 2) \\
a \vee b & \rightarrow a+b+a \cdot b & (\bmod 2) \\
a \wedge b & \rightarrow a \cdot b & (\bmod 2) \tag{1}\\
a \oplus b & \rightarrow a+b & (\bmod 2)
\end{array}
$$

where $a, b \in \mathbb{F}_{2}=\{0,1\}$.
$\ln \mathbb{Z}_{2} \equiv \mathbb{F}_{2},-1=+1(\bmod 2)$

Hardware Model in \mathbb{Z}_{2}

Figure: $\otimes=$ AND, $\oplus=$ XOR.

$$
\begin{array}{cc}
f_{1}: s_{0}+a_{0} \cdot b_{0} ; & f_{2}: s_{1}+a_{0} \cdot b_{1} \\
f_{3}: s_{2}+a_{1} \cdot b_{0} ; & f_{4}: s_{3}+a_{1} \cdot b_{1} \\
f_{5}: r_{0}+s_{1}+s_{2} ; & f_{6}: z_{0}+s_{0}+s_{3} \\
f_{7}: z_{1}+r_{0}+s_{3}
\end{array}
$$

Finite Fields

- \mathbb{Z}_{p} : field of p elements, $\mathrm{p}=2,3,5,7, \ldots, 163, \ldots$

Finite Fields

- \mathbb{Z}_{p} : field of p elements, $p=2,3,5,7, \ldots, 163, \ldots$
- Is there a field of 4 elements \mathbb{F}_{4} ?

Finite Fields

- \mathbb{Z}_{p} : field of p elements, $\mathrm{p}=2,3,5,7, \ldots, 163, \ldots$
- Is there a field of 4 elements \mathbb{F}_{4} ?
- Yes, we can have fields of p^{k} elements $\mathbb{F}_{p^{k}}$

Finite Fields

- \mathbb{Z}_{p} : field of p elements, $p=2,3,5,7, \ldots, 163, \ldots$
- Is there a field of 4 elements \mathbb{F}_{4} ?
- Yes, we can have fields of p^{k} elements $\mathbb{F}_{p^{k}}$
- These are called extension fields, we will study them later

Finite Fields

- \mathbb{Z}_{p} : field of p elements, $p=2,3,5,7, \ldots, 163, \ldots$
- Is there a field of 4 elements \mathbb{F}_{4} ?
- Yes, we can have fields of p^{k} elements $\mathbb{F}_{p^{k}}$
- These are called extension fields, we will study them later
- In fact, we are interested in $\mathbb{F}_{2^{k}}$ (k-bit vector arithmetic)

Finite Fields

- \mathbb{Z}_{p} : field of p elements, $p=2,3,5,7, \ldots, 163, \ldots$
- Is there a field of 4 elements \mathbb{F}_{4} ?
- Yes, we can have fields of p^{k} elements $\mathbb{F}_{p^{k}}$
- These are called extension fields, we will study them later
- In fact, we are interested in $\mathbb{F}_{2^{k}}$ (k-bit vector arithmetic)
- Fields are unique factorization domains (UFDs)

Finite Fields

- \mathbb{Z}_{p} : field of p elements, $p=2,3,5,7, \ldots, 163, \ldots$
- Is there a field of 4 elements \mathbb{F}_{4} ?
- Yes, we can have fields of p^{k} elements $\mathbb{F}_{p^{k}}$
- These are called extension fields, we will study them later
- In fact, we are interested in $\mathbb{F}_{2^{k}}$ (k-bit vector arithmetic)
- Fields are unique factorization domains (UFDs)

Finite Fields

- \mathbb{Z}_{p} : field of p elements, $p=2,3,5,7, \ldots, 163, \ldots$
- Is there a field of 4 elements \mathbb{F}_{4} ?
- Yes, we can have fields of p^{k} elements $\mathbb{F}_{p^{k}}$
- These are called extension fields, we will study them later
- In fact, we are interested in $\mathbb{F}_{2^{k}}$ (k-bit vector arithmetic)
- Fields are unique factorization domains (UFDs)

Fermat's Little Theorem

$$
\forall x \in \mathbb{F}_{p}, x^{p}-x=0
$$

Zero Divisors

Zero Divisors (ZD)

For $a, b \in R, a, b \neq 0, a \cdot b=0$. Then a, b are zero divisors of each other. $\mathbb{Z}_{n}, n \neq p$ has zero divisors. What about \mathbb{Z}_{p} ?

Integral Domains

Any set (ring) with no zero divisors: $\mathbb{Z}, \mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{Z}_{p}, \mathbb{F}_{2^{k}}$. What about $\mathbb{Z}_{2^{k}}$?

Relationships

Commutative Rings \supset Integral Domains (no ZD) \supset Unique Factorization Domains \supset Fields

For Hardware: Our interests - non-UFD Rings $\left(\mathbb{Z}_{2^{k}}\right)$ and Fields $\mathbb{F}_{2^{k}}$

Verification Problems and UFDs

- In 3-bit arithmetic $\mathbb{Z}_{8}:\left(x^{2}+6 x\right)(\bmod 8)$

Verification Problems and UFDs

- In 3-bit arithmetic $\mathbb{Z}_{8}:\left(x^{2}+6 x\right)(\bmod 8)$
- Factorize according to its roots: $x(x+6)$

Verification Problems and UFDs

- In 3-bit arithmetic $\mathbb{Z}_{8}:\left(x^{2}+6 x\right)(\bmod 8)$
- Factorize according to its roots: $x(x+6)$
- What about $(x+2)(x+4)$?

Verification Problems and UFDs

- In 3-bit arithmetic $\mathbb{Z}_{8}:\left(x^{2}+6 x\right)(\bmod 8)$
- Factorize according to its roots: $x(x+6)$
- What about $(x+2)(x+4)$?
- Degree 2 polynomial has more roots than the degree? Roots $x=0,2,4,6$?

Verification Problems and UFDs

- In 3-bit arithmetic $\mathbb{Z}_{8}:\left(x^{2}+6 x\right)(\bmod 8)$
- Factorize according to its roots: $x(x+6)$
- What about $(x+2)(x+4)$?
- Degree 2 polynomial has more roots than the degree? Roots $x=0,2,4,6$?
- $\mathbb{Z}_{8}=$ non-UFD

Verification Problems and UFDs

- In 3-bit arithmetic $\mathbb{Z}_{8}:\left(x^{2}+6 x\right)(\bmod 8)$
- Factorize according to its roots: $x(x+6)$
- What about $(x+2)(x+4)$?
- Degree 2 polynomial has more roots than the degree? Roots $x=0,2,4,6$?
- $\mathbb{Z}_{8}=$ non-UFD
- Cannot use factorization to prove equivalence over non-UFDs.

Consolidating the results so far...

- Over fields $\mathbb{Z}_{p}, \mathbb{F}_{2^{k}}, \mathbb{R}, \mathbb{Q}, \mathbb{C}$
- We can ADD, MULTIPLY, DIVIDE
- No zero-divisors, can uniquely factorize a polynomial according to its roots
- Rings \mathbb{Z} : integral domains, unique factorization, but no inverses
- Over Rings $\mathbb{Z}_{n}, n \neq p$; e.g. $n=2^{k}$
- Presence of zero divisors
- non-UFDs, polynomial can have more zeros than its degree
- Cannot perform division

Polynomials

- Let x_{1}, \ldots, x_{d} be variables
- Monomial is a power product: $X=x_{1}^{\alpha_{1}} \cdot x_{2}^{\alpha_{2}} \cdots x_{d}^{\alpha_{d}}, \alpha_{i} \in \mathbb{Z}_{\geq 0}$
- Polynomial: finite sum of terms $f=c_{1} X_{1}+c_{2} X_{2}+\cdots+c_{t} X_{t}$, where X_{i} are monomials and c_{i} are coefficients
- $f=x^{-55}$ not a polynomial!
- The terms of f have to be ordered: $X_{1}>X_{2}>\cdots>X_{t}$
- Term ordering for univariate polynomials is based on the degree: e.g. $f=3 x^{53}+99 x^{3}+4$
- Multi-variate term-ordering is a lot more involved - and we'll study it shortly

For symbolic computation: Polynomial Rings

- Let \mathbb{F} be a field (any field: $\mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{Z}_{p}$)

For symbolic computation: Polynomial Rings

- Let \mathbb{F} be a field (any field: $\mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{Z}_{p}$)
- Then, $R=\mathbb{F}[x]$ denotes the set (ring) of all univariate polynomials in x (including constants), with coefficients in \mathbb{F}

For symbolic computation: Polynomial Rings

- Let \mathbb{F} be a field (any field: $\mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{Z}_{p}$)
- Then, $R=\mathbb{F}[x]$ denotes the set (ring) of all univariate polynomials in x (including constants), with coefficients in \mathbb{F}
- Examples: Let $R=\mathbb{Q}[x]$, then $x \in R,\left(x^{99}+\frac{2}{3} x^{57}\right) \in R$ and so on

For symbolic computation: Polynomial Rings

- Let \mathbb{F} be a field (any field: $\mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{Z}_{p}$)
- Then, $R=\mathbb{F}[x]$ denotes the set (ring) of all univariate polynomials in x (including constants), with coefficients in \mathbb{F}
- Examples: Let $R=\mathbb{Q}[x]$, then $x \in R,\left(x^{99}+\frac{2}{3} x^{57}\right) \in R$ and so on
- Is $\mathbb{F}[x]$ really a ring or a field?

For symbolic computation: Polynomial Rings

- Let \mathbb{F} be a field (any field: $\mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{Z}_{p}$)
- Then, $R=\mathbb{F}[x]$ denotes the set (ring) of all univariate polynomials in x (including constants), with coefficients in \mathbb{F}
- Examples: Let $R=\mathbb{Q}[x]$, then $x \in R,\left(x^{99}+\frac{2}{3} x^{57}\right) \in R$ and so on
- Is $\mathbb{F}[x]$ really a ring or a field?
- Does every non-zero element in $\mathbb{F}[x]$ have an inverse?

For symbolic computation: Polynomial Rings

- Let \mathbb{F} be a field (any field: $\mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{Z}_{p}$)
- Then, $R=\mathbb{F}[x]$ denotes the set (ring) of all univariate polynomials in x (including constants), with coefficients in \mathbb{F}
- Examples: Let $R=\mathbb{Q}[x]$, then $x \in R,\left(x^{99}+\frac{2}{3} x^{57}\right) \in R$ and so on
- Is $\mathbb{F}[x]$ really a ring or a field?
- Does every non-zero element in $\mathbb{F}[x]$ have an inverse?
- Let $f=\frac{3}{2}\left(x^{2}\right) \in \mathbb{Q}[x]$, What is f^{-1} ?

For symbolic computation: Polynomial Rings

- Let \mathbb{F} be a field (any field: $\mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{Z}_{p}$)
- Then, $R=\mathbb{F}[x]$ denotes the set (ring) of all univariate polynomials in x (including constants), with coefficients in \mathbb{F}
- Examples: Let $R=\mathbb{Q}[x]$, then $x \in R,\left(x^{99}+\frac{2}{3} x^{57}\right) \in R$ and so on
- Is $\mathbb{F}[x]$ really a ring or a field?
- Does every non-zero element in $\mathbb{F}[x]$ have an inverse?
- Let $f=\frac{3}{2}\left(x^{2}\right) \in \mathbb{Q}[x]$, What is f^{-1} ?
- $\mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{d}\right]$ denotes the set (ring) of all multi-variate polynomials in x_{1}, \ldots, x_{d}

For symbolic computation: Polynomial Rings

- Let \mathbb{F} be a field (any field: $\mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{Z}_{p}$)
- Then, $R=\mathbb{F}[x]$ denotes the set (ring) of all univariate polynomials in x (including constants), with coefficients in \mathbb{F}
- Examples: Let $R=\mathbb{Q}[x]$, then $x \in R,\left(x^{99}+\frac{2}{3} x^{57}\right) \in R$ and so on
- Is $\mathbb{F}[x]$ really a ring or a field?
- Does every non-zero element in $\mathbb{F}[x]$ have an inverse?
- Let $f=\frac{3}{2}\left(x^{2}\right) \in \mathbb{Q}[x]$, What is f^{-1} ?
- $\mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{d}\right]$ denotes the set (ring) of all multi-variate polynomials in x_{1}, \ldots, x_{d}
- R need not have coefficients over a field. E.g., $\mathbb{Z}_{2^{k}}\left[x_{1}, \ldots, x_{d}\right]$: polynomial ring with coefficients in $\mathbb{Z}_{2^{k}}$

For symbolic computation: Polynomial Rings

- Let \mathbb{F} be a field (any field: $\mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{Z}_{p}$)
- Then, $R=\mathbb{F}[x]$ denotes the set (ring) of all univariate polynomials in x (including constants), with coefficients in \mathbb{F}
- Examples: Let $R=\mathbb{Q}[x]$, then $x \in R,\left(x^{99}+\frac{2}{3} x^{57}\right) \in R$ and so on
- Is $\mathbb{F}[x]$ really a ring or a field?
- Does every non-zero element in $\mathbb{F}[x]$ have an inverse?
- Let $f=\frac{3}{2}\left(x^{2}\right) \in \mathbb{Q}[x]$, What is f^{-1} ?
- $\mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{d}\right]$ denotes the set (ring) of all multi-variate polynomials in x_{1}, \ldots, x_{d}
- R need not have coefficients over a field. E.g., $\mathbb{Z}_{2^{k}}\left[x_{1}, \ldots, x_{d}\right]$: polynomial ring with coefficients in $\mathbb{Z}_{2^{k}}$
- $\mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$ is a finite or infinite set?

For symbolic computation: Polynomial Rings

- Let \mathbb{F} be a field (any field: $\mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{Z}_{p}$)
- Then, $R=\mathbb{F}[x]$ denotes the set (ring) of all univariate polynomials in x (including constants), with coefficients in \mathbb{F}
- Examples: Let $R=\mathbb{Q}[x]$, then $x \in R,\left(x^{99}+\frac{2}{3} x^{57}\right) \in R$ and so on
- Is $\mathbb{F}[x]$ really a ring or a field?
- Does every non-zero element in $\mathbb{F}[x]$ have an inverse?
- Let $f=\frac{3}{2}\left(x^{2}\right) \in \mathbb{Q}[x]$, What is f^{-1} ?
- $\mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{d}\right]$ denotes the set (ring) of all multi-variate polynomials in x_{1}, \ldots, x_{d}
- R need not have coefficients over a field. E.g., $\mathbb{Z}_{2^{k}}\left[x_{1}, \ldots, x_{d}\right]$: polynomial ring with coefficients in $\mathbb{Z}_{2^{k}}$
- $\mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$ is a finite or infinite set?
- $\mathbb{Z}_{2^{k}}\left[x_{1}, \ldots, x_{d}\right]$ is a finite or infinite set? (It's a loaded question)

Operations in Polynomial Rings

- ADD, mULT polynomials, just like you did in high-school
- Reduce coefficients modulo the coefficient field/ring
- Consider: $f_{1}, f_{2} \in \mathbb{Z}_{4}[x, y]$
- $f_{1}=3 x+2 y ; \quad f_{2}=2 x+2 y$
- $f_{1}+f_{2}=x ; f_{1} \cdot f_{2}=2 x^{2}+2 x y$
- Reduce coefficients in \mathbb{Z}_{4}, i.e. $(\bmod 4)$
- Solve $f_{1}=f_{2}=0$, Solutions (x, y) should be in \mathbb{Z}_{4}

Operations in Polynomial Rings

- ADD, mULT polynomials, just like you did in high-school
- Reduce coefficients modulo the coefficient field/ring
- Consider: $f_{1}, f_{2} \in \mathbb{Z}_{4}[x, y]$
- $f_{1}=3 x+2 y ; \quad f_{2}=2 x+2 y$
- $f_{1}+f_{2}=x ; f_{1} \cdot f_{2}=2 x^{2}+2 x y$
- Reduce coefficients in \mathbb{Z}_{4}, i.e. $(\bmod 4)$
- Solve $f_{1}=f_{2}=0$, Solutions (x, y) should be in \mathbb{Z}_{4}
- Solutions $(x, y)=\{(0,0),(0,2)\} \in \mathbb{Z}_{4} \times \mathbb{Z}_{4}$

Operations in Polynomial Rings

- ADD, mULT polynomials, just like you did in high-school
- Reduce coefficients modulo the coefficient field/ring
- Consider: $f_{1}, f_{2} \in \mathbb{Z}_{4}[x, y]$
- $f_{1}=3 x+2 y ; \quad f_{2}=2 x+2 y$
- $f_{1}+f_{2}=x ; f_{1} \cdot f_{2}=2 x^{2}+2 x y$
- Reduce coefficients in \mathbb{Z}_{4}, i.e. $(\bmod 4)$
- Solve $f_{1}=f_{2}=0$, Solutions (x, y) should be in \mathbb{Z}_{4}
- Solutions $(x, y)=\{(0,0),(0,2)\} \in \mathbb{Z}_{4} \times \mathbb{Z}_{4}$
- Finding solutions to a system of polynomial equations is not easy, solutions also have be found within the ring or field, e.g. \mathbb{Z}_{4} in our case. That's why we use symbolic reasoning instead of numeric computation

Polynomial Functions (Polyfunctions)

- A function is a map $f: A \rightarrow B$; where A, B are the domain and co-domain, respectively.
- Ex: $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function over Reals; and $f: \mathbb{Z}_{2^{k}} \rightarrow \mathbb{Z}_{2^{k}}$ is a function over the finite integer ring $\mathbb{Z}_{2^{k}}$

PolyFunction

Given a function $f: A \rightarrow B$, does there exist a (canonical) polynomial F that describes f ? If so, f is a polynomial function.

- Over finite fields every function $f: \mathbb{F}_{p^{k}} \rightarrow \mathbb{F}_{p^{k}}$ is a polynomial function. It is possible to interpolate a polynomial F from f.
- Not every $f: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}, n \neq p$, is a polynomial function.
- Example1: $f: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{4}, f(0)=0 ; f(1)=1 ; f(2)=0 ; f(3)=1$; then $F=x^{2}(\bmod 4)$
- Example2: $f: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{4}, f(0)=0 ; f(1)=0 ; f(2)=1 ; f(3)=1$; No polynomial $F(\bmod 4)$ represents f

Zero Polynomials and Zero Functions

- Over $\mathbb{Z}_{4}[x], F_{1}=2 x^{2}, F_{2}=2 x$
- $F_{1}-F_{2}=2 x^{2}-2 x=0 \quad\left(\forall x \in \mathbb{Z}_{4}\right)$
- $F_{1} \equiv F_{2}$ and $F_{1}-F_{2} \equiv 0$ (zero function)
- Need a unique, canonical representation of F over $\mathbb{Z}_{2^{k}}, \mathbb{F}_{2^{k}}$
- Equivalently, need a unique, canonical representation of the zero function
- Over $\mathbb{Z}_{2^{k}}[x]$, we'll study canonical representations of zero functions later in the course
- Over Galois fields $\mathbb{Z}_{p}: x^{p}=x(\bmod p)$ or $x^{p}-x=0(\bmod p)$

Zero functions in $\mathbb{Z}_{p}[x]$

A polynomial $F \in \mathbb{Z}_{p}[x]$ represents the zero function \Longleftrightarrow
$F\left(\bmod x^{p}-x\right)=0$, i.e. $x^{p}-x$ divides F.

- In $\mathbb{Z}_{p}[x]$, to prove $F_{1} \equiv F_{2} \Longleftrightarrow\left(F_{1}-F_{2}\right)\left(\bmod x^{p}-x\right)=0$.

Zero Functions over Infinite Fields

- Over infinite fields, life is much easier:

Let \mathbb{F} be an infinite field, and $F \in \mathbb{F}\left[x_{1}, \ldots, x_{d}\right]$. Then:
$F=0 \Longleftrightarrow f: \mathbb{F}^{n} \rightarrow \mathbb{F}$ is the zero function

Circuits are functions over $\mathbb{Z}_{2^{k}}, \mathbb{F}_{2^{k}}$. Need algorithms to test if multi-variate polynomials $F\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{Z}_{2^{k}}\left[x_{1}, \ldots, x_{d}\right]$ or in $\mathbb{F}_{2^{k}}\left[x_{1}, \ldots, x_{d}\right]$ are zero functions. Hardware verification is a hard problem!

