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Agenda for Today

Wish to build a polynomial algebra model for hardware

Modulo arithmetic model is versatile: can represent both bit-level and
word-level constraints

To build the algebraic/modulo arithmetic model:

Rings, Fields, Modulo arithmetic
Polynomials, Polynomial functions, Polynomial Rings
Finite fields Fp, Fpk and F2k

Later on, we will study

Ideals, Varieties, and Gröbner Bases
Decision procedures in verification
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Motivation for Algebraic Computation

Modeling for bit-precise algebraic computation

Arithmetic RTLs: functions over k-bit-vectors
k-bit-vector 7→ integers (mod 2k) = Z2k

k-bit-vector 7→ Galois (Finite) field F2k

For many of these applications SAT/SMT fail miserably!

Computer Algebra and Algebraic Geometry + SAT/SMT

Model: Circuits as polynomial functions f : Z2k → Z2k , f : F2k → F2k

P. Kalla (Univ. of Utah) Rings, Fields, Algebra
Lectures: Sept. 11, 2017 onwards 3 /

22



Ring algebra

All we need is an algebraic object where we can add, multiply, divide.
These objects are Rings and Fields.
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Groups, (G , 0,+)

An Abelian group is a set G and a binary operation ” + ” satisfying:

Closure: For every a, b ∈ G , a + b ∈ G .

Associativity: For every a, b, c ∈ G , a+ (b + c) = (a + b) + c .

Commutativity: For every a, b ∈ G , a+ b = b + a.

Identity: There is an identity element 0 ∈ G such that for all
a ∈ G ; a + 0 = a.

Inverse: If a ∈ G , then there is an element a−1 ∈ G such that
a + a−1 = 0.

Example: The set of Integers Z or Zn with + operation.
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Rings (R , 0, 1,+, ·)

A Commutative ring with unity is a set R and two binary operations
” + ” and ” · ”, as well as two distinguished elements 0, 1 ∈ R such that, R
is an Abelian group with respect to addition with additive identity element
0, and the following properties are satisfied:

Multiplicative Closure: For every a, b ∈ R, a · b ∈ R.

Multiplicative Associativity: For every a, b, c ∈ R,
a · (b · c) = (a · b) · c .

Multiplicative Commutativity: For every a, b ∈ R, a · b = b · a.

Multiplicative Identity: There is an identity element 1 ∈ R such that
for all a ∈ R, a · 1 = a.

Distributivity: For every a, b, c ∈ R , a · (b + c) = a · b + a · c holds
for all a, b, c ∈ R .

Example: The set of Integers Z or Zn with +, · operations.
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Rings

Examples of rings: R,Q,C,Z

Zn = {0, 1, . . . , n − 1} where +, · computed +, · (mod n)

Modulo arithmetic:

(a+ b) (mod n) = (a (mod n) + b (mod n)) (mod n)
(a · b) (mod n) = (a (mod n) · b (mod n)) (mod n)
−a (mod n) = (n − a) (mod n)

Arithmetic k-bit vectors 7→ arithmetic over Z2k

For k = 1, Z2 ≡ B
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Rings

Examples of rings: R,Q,C,Z

Zn = {0, 1, . . . , n − 1} where +, · computed +, · (mod n)

Modulo arithmetic:

(a+ b) (mod n) = (a (mod n) + b (mod n)) (mod n)
(a · b) (mod n) = (a (mod n) · b (mod n)) (mod n)
−a (mod n) = (n − a) (mod n)

Arithmetic k-bit vectors 7→ arithmetic over Z2k

For k = 1, Z2 ≡ B

But, what about division?
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How to define division?

Over Q, can you divide 2
3 by 4

5?
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3 by 4
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How to define division?

Over Q, can you divide 2
3 by 4

5?

Over C, can you divide a+ib
c+id

?

Over Z, can you divide 3
4?

Over Z (mod 8), can you divide 3
4?

Over Z (mod 7), can you divide 3
4?

Division is multiplication by a (multiplicative) inverse!

Division

For an element a in a ring R , a
b
= a× b−1. Here, b−1 ∈ R s.t. b · b−1 = 1.
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Multiplicative Inverses

Over Q: if b = 2
3 , b

−1 = 3
2?
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Multiplicative Inverses

Over Q: if b = 2
3 , b

−1 = 3
2?

Over Z: if b = 4, b−1 =?
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Multiplicative Inverses

Over Q: if b = 2
3 , b

−1 = 3
2?

Over Z: if b = 4, b−1 =?

Over rings: inverses may not exist
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Multiplicative Inverses

Over Q: if b = 2
3 , b

−1 = 3
2?

Over Z: if b = 4, b−1 =?

Over rings: inverses may not exist

Over Z8: if b = 3, b−1 =?
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Multiplicative Inverses

Over Q: if b = 2
3 , b

−1 = 3
2?

Over Z: if b = 4, b−1 =?

Over rings: inverses may not exist

Over Z8: if b = 3, b−1 =?

Over Z8: if b = 6, b−1 =?
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Multiplicative Inverses

Over Q: if b = 2
3 , b

−1 = 3
2?

Over Z: if b = 4, b−1 =?

Over rings: inverses may not exist

Over Z8: if b = 3, b−1 =?

Over Z8: if b = 6, b−1 =?

Over Z7: if b = 6, b−1 =?
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Fields

Field (F, 0, 1,+, ·)

A field F is a commutative ring with unity, where every element in F,
except 0, has a multiplicative inverse:
∀a ∈ (F− {0}), ∃â ∈ F such that a · â = 1.
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A field F is a commutative ring with unity, where every element in F,
except 0, has a multiplicative inverse:
∀a ∈ (F− {0}), ∃â ∈ F such that a · â = 1.

A field is called a finite field or Galois field when F has a finite number
of elements.

The set Zp = Z (mod p) = {0, 1, . . . , p − 1} is a finite field, when p is a
prime integer.

Zn, n 6= p is a ring but not a field. So, Z2k is not a field, as even numbers
in Z2k have no inverses.
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Fields

Field (F, 0, 1,+, ·)

A field F is a commutative ring with unity, where every element in F,
except 0, has a multiplicative inverse:
∀a ∈ (F− {0}), ∃â ∈ F such that a · â = 1.

A field is called a finite field or Galois field when F has a finite number
of elements.

The set Zp = Z (mod p) = {0, 1, . . . , p − 1} is a finite field, when p is a
prime integer.

Zn, n 6= p is a ring but not a field. So, Z2k is not a field, as even numbers
in Z2k have no inverses.
Z2 ≡ F2 ≡ B ≡ {0, 1}
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B is arithmetic (mod 2)

Boolean AND-OR-NOT can be mapped to +, · (mod 2)
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B is arithmetic (mod 2)

Boolean AND-OR-NOT can be mapped to +, · (mod 2)

B → F2:

¬a → a+ 1 (mod 2)

a ∨ b → a + b + a · b (mod 2)

a ∧ b → a · b (mod 2)

a ⊕ b → a + b (mod 2)

(1)

where a, b ∈ F2 = {0, 1}.
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B is arithmetic (mod 2)

Boolean AND-OR-NOT can be mapped to +, · (mod 2)

B → F2:

¬a → a+ 1 (mod 2)

a ∨ b → a + b + a · b (mod 2)

a ∧ b → a · b (mod 2)

a ⊕ b → a + b (mod 2)

(1)

where a, b ∈ F2 = {0, 1}.

In Z2 ≡ F2,−1 = +1 (mod 2)
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Hardware Model in Z2

Figure: ⊗ = AND, ⊕ = XOR.

f1 : s0 + a0 · b0; f2 : s1 + a0 · b1,

f3 : s2 + a1 · b0; f4 : s3 + a1 · b1,

f5 : r0 + s1 + s2; f6 : z0 + s0 + s3,

f7 : z1 + r0 + s3
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Finite Fields

Zp: field of p elements, p = 2, 3, 5, 7, . . . , 163, . . .
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Finite Fields

Zp: field of p elements, p = 2, 3, 5, 7, . . . , 163, . . .

Is there a field of 4 elements F4?
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Finite Fields

Zp: field of p elements, p = 2, 3, 5, 7, . . . , 163, . . .

Is there a field of 4 elements F4?

Yes, we can have fields of pk elements Fpk

These are called extension fields, we will study them later

In fact, we are interested in F2k (k-bit vector arithmetic)

Fields are unique factorization domains (UFDs)

Fermat’s Little Theorem

∀x ∈ Fp, xp − x = 0
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Zero Divisors

Zero Divisors (ZD)

For a, b ∈ R , a, b 6= 0, a · b = 0. Then a, b are zero divisors of each other.
Zn, n 6= p has zero divisors. What about Zp?

Integral Domains

Any set (ring) with no zero divisors: Z,R,Q,C,Zp ,F2k . What about Z2k?

Relationships

Commutative Rings ⊃ Integral Domains (no ZD) ⊃ Unique Factorization
Domains ⊃ Fields

For Hardware: Our interests – non-UFD Rings (Z2k ) and Fields F2k
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Verification Problems and UFDs

In 3-bit arithmetic Z8: (x2 + 6x) (mod 8)
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Verification Problems and UFDs

In 3-bit arithmetic Z8: (x2 + 6x) (mod 8)

Factorize according to its roots: x(x + 6)

What about (x + 2)(x + 4)?

Degree 2 polynomial has more roots than the degree? Roots
x = 0, 2, 4, 6?

Z8 = non-UFD

Cannot use factorization to prove equivalence over non-UFDs.
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Consolidating the results so far...

Over fields Zp,F2k ,R,Q,C

We can add, multiply, divide

No zero-divisors, can uniquely factorize a polynomial according to its
roots

Rings Z: integral domains, unique factorization, but no inverses

Over Rings Zn, n 6= p; e.g. n = 2k

Presence of zero divisors
non-UFDs, polynomial can have more zeros than its degree
Cannot perform division
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Polynomials

Let x1, . . . , xd be variables

Monomial is a power product: X = xα1
1 · xα2

2 · · · xαd

d , αi ∈ Z≥0

Polynomial: finite sum of terms f = c1X1 + c2X2 + · · ·+ ctXt , where
Xi are monomials and ci are coefficients

f = x−55 not a polynomial!

The terms of f have to be ordered: X1 > X2 > · · · > Xt

Term ordering for univariate polynomials is based on the degree: e.g.
f = 3x53 + 99x3 + 4

Multi-variate term-ordering is a lot more involved – and we’ll study it
shortly
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For symbolic computation: Polynomial Rings

Let F be a field (any field: R,Q,C,Zp)
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For symbolic computation: Polynomial Rings

Let F be a field (any field: R,Q,C,Zp)
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2 (x
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F[x1, x2, . . . , xd ] denotes the set (ring) of all multi-variate polynomials
in x1, . . . , xd

R need not have coefficients over a field. E.g., Z2k [x1, . . . , xd ]:
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For symbolic computation: Polynomial Rings

Let F be a field (any field: R,Q,C,Zp)

Then, R = F[x ] denotes the set (ring) of all univariate polynomials in
x (including constants), with coefficients in F

Examples: Let R = Q[x ], then x ∈ R , (x99 + 2
3x

57) ∈ R and so on

Is F[x ] really a ring or a field?
Does every non-zero element in F[x ] have an inverse?
Let f = 3

2 (x
2) ∈ Q[x ], What is f −1?

F[x1, x2, . . . , xd ] denotes the set (ring) of all multi-variate polynomials
in x1, . . . , xd

R need not have coefficients over a field. E.g., Z2k [x1, . . . , xd ]:
polynomial ring with coefficients in Z2k

R[x1, . . . , xd ] is a finite or infinite set?

Z2k [x1, . . . , xd ] is a finite or infinite set? (It’s a loaded question)
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Operations in Polynomial Rings

add, mult polynomials, just like you did in high-school

Reduce coefficients modulo the coefficient field/ring

Consider: f1, f2 ∈ Z4[x , y ]

f1 = 3x + 2y ; f2 = 2x + 2y
f1 + f2 = x ; f1 · f2 = 2x2 + 2xy
Reduce coefficients in Z4, i.e. (mod 4)

Solve f1 = f2 = 0, Solutions (x , y) should be in Z4
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Operations in Polynomial Rings

add, mult polynomials, just like you did in high-school

Reduce coefficients modulo the coefficient field/ring

Consider: f1, f2 ∈ Z4[x , y ]

f1 = 3x + 2y ; f2 = 2x + 2y
f1 + f2 = x ; f1 · f2 = 2x2 + 2xy
Reduce coefficients in Z4, i.e. (mod 4)

Solve f1 = f2 = 0, Solutions (x , y) should be in Z4

Solutions (x , y) = {(0, 0), (0, 2)} ∈ Z4 × Z4

Finding solutions to a system of polynomial equations is not easy,
solutions also have be found within the ring or field, e.g. Z4 in our
case. That’s why we use symbolic reasoning instead of numeric
computation
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Polynomial Functions (Polyfunctions)

A function is a map f : A → B ; where A,B are the domain and
co-domain, respectively.

Ex: f : R → R is a function over Reals; and f : Z2k → Z2k is a
function over the finite integer ring Z2k

PolyFunction

Given a function f : A → B , does there exist a (canonical) polynomial F
that describes f ? If so, f is a polynomial function.

Over finite fields every function f : Fpk → Fpk is a polynomial
function. It is possible to interpolate a polynomial F from f .

Not every f : Zn → Zn, n 6= p, is a polynomial function.
Example1: f : Z4 → Z4, f (0) = 0; f (1) = 1; f (2) = 0; f (3) = 1; then
F = x2 (mod 4)
Example2: f : Z4 → Z4, f (0) = 0; f (1) = 0; f (2) = 1; f (3) = 1; No
polynomial F (mod 4) represents f
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Zero Polynomials and Zero Functions

Over Z4[x ], F1 = 2x2,F2 = 2x

F1 − F2 = 2x2 − 2x = 0 (∀x ∈ Z4)

F1 ≡ F2 and F1 − F2 ≡ 0 (zero function)

Need a unique, canonical representation of F over Z2k ,F2k

Equivalently, need a unique, canonical representation of the zero
function

Over Z2k [x ], we’ll study canonical representations of zero functions
later in the course

Over Galois fields Zp : xp = x (mod p) or xp − x = 0 (mod p)

Zero functions in Zp[x ]

A polynomial F ∈ Zp[x ] represents the zero function ⇐⇒
F (mod xp − x) = 0, i.e. xp − x divides F .

In Zp[x ], to prove F1 ≡ F2 ⇐⇒ (F1 − F2) (mod xp − x) = 0.
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Zero Functions over Infinite Fields

Over infinite fields, life is much easier:

Let F be an infinite field, and F ∈ F[x1, . . . , xd ]. Then:
F = 0 ⇐⇒ f : Fn → F is the zero function

Circuits are functions over Z2k ,F2k . Need algorithms to test if
multi-variate polynomials F (x1, . . . , xd ) ∈ Z2k [x1, . . . , xd ] or in
F2k [x1, . . . , xd ] are zero functions. Hardware verification is a hard problem!
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