Nov 1 Recap

Univariate Division

\[f = \text{LT}(f) + \text{Tail}(f) \]

\[g = \text{LT}(g) + \text{Tail}(g) \]

\[\frac{f}{g} \rightarrow r \quad r = f - \frac{\text{LT}(f)}{\text{LT}(g)} \cdot g \]

\[\text{dividend} \quad \text{quotient} \quad \text{divisor} \]

\[f \div g \rightarrow r \quad \text{1-step remainder} \quad \text{\#final remainder} \]
Multivariate polynomials

→ need term ordering.

Lex, deglex, degrevlex

Example:

\[f = y^2x + 4yx - 3x^2 \]

\[g = 2y + x + 1 \]

Deglex \(y > x \)

\[\gamma = f - \frac{c \cdot x}{\text{LT}(g)} \cdot g \]

\[= f - \frac{y^2x}{2y} \cdot g \]

\[= -\frac{1}{2}y^2x^2 + \frac{7}{2}yx - 3x^2 \]

\(c \cdot x = 1^{st} \text{ monomial in } f \text{ that can be cancelled by } \text{LT}(g) \).
Poly reduction via division

Given: $f, F = \{ f_i, \ldots, f_k \}$.

1. Take $\text{LT}(f)$.
2. Divisible by $\text{LT}(f_i)$? If so,

 $\gamma = f - \frac{\text{LT}(f)}{\text{LT}(f_i)} \cdot f_i$

3. Continue. $\gamma = \text{new}(f)$.

Is $\text{LT}(\gamma)$ divisible by $\text{LT}(f_i)$?

If not, is $\text{LT}(\gamma) \div \text{LT}(f_2)$?

If not, is $\text{LT}(\gamma) \div \text{LT}(f_3)$?

If not, is $\text{LT}(\gamma) \div \text{LT}(f_i) \forall i$? Then $\text{LT}(\gamma) = \text{remainder}$.

If $\text{LT}(\gamma)$ not divisible by $\text{LT}(f_i) \forall i$, then $\text{LT}(\gamma) = \text{remainder}$.

Ex. Let \(x > y \) \(\in \mathbb{Q} \setminus \{x, y\} \)

\[f = xy^2 + 1 \quad \text{and} \quad I = \langle f_1, f_2 \rangle \]

\[f_1 = xy + 1, \quad f_2 = y + 1 \]

\[\frac{\text{LT}(f_1)}{\text{LT}(f)} \quad \checkmark \]

\[x = f - \frac{\text{LT}(f)}{\text{LT}(f_1)} \cdot f_1 \]

\[= (xy^2 + 1) - \left[\frac{xy^2}{xy} \right] (xy + 1) \]

\[= xy^2 + 1 - (y)(xy + 1) \]

\[= xy^2 + 1 - xy^2 - y \]

\[= -y + 1 = x \]
\[x = -y + 1, \quad f_1 = ay^2 + 1, \quad f_2 = y + 1 \]

\[\Rightarrow \text{ new}(f) = r = -y + 1 \]

Is \(LT(f) \div LT(f_1) \)?

\(-y \div xy^2 \)? No.

Pick \(f_2 \) now.

Is \(LT(f) \div LT(f_2) \)?

\(-y \div y \)? \(\checkmark \)

\[x = f - \frac{LT(f)}{LT(f_2)} \cdot f_2 \]

\[= (y+1) - c(-1)(y+1) \]

\[= -y + 1 + y + 1 = 2 = x \]
Step 3. $x = 2 = \text{new}(f)$

Is $\text{LT}(f) \div \text{LT}(f_1)$? \times

Is $\text{LT}(f) \div \text{LT}(f_2)$? \times

Move 2 into the remainder.

$x = 2$. \text{new}_f = f - 2

$= 2 - 2 = 0$

No more terms to cancel.

So, $f \rightarrow f_1 + f_2 + 2$
Motivate Groebner basis by means of ideal membership testing:

\[J = \langle f_1, \ldots, f \rangle \] & another poly \(f \). Given.

Assume \(f \in I \).

\[f = u_1 f_1 + u_2 f_2 + \cdots + u_s f_s + \sum_j \]

1. 1-step reduction.

\[f \xrightarrow{f_i} y_1 = f - u_i f_i \]

\(f_i \in J, f \notin J, u_i f_i \notin J \) so \(y_1 \notin J \).

\(y_1 \) should have a \(\text{LT}(y_1) \)

\[\text{LT}(f_i) \) (some \(f_i \)) should divide \(\text{LT}(y_1) \)

\[y_2 = y_1 - \frac{\text{LT}(y_1)}{\text{LT}(f_i)} f_i \]

\[y_2 \in J \checkmark \]

\(\text{LT}(y_2) \) should also be cancelled!

\[\ldots \ldots \text{ultimately, all terms should cancel} \ldots \]
Example. \(f = x \). \(f_1 = x^2 \), \(f_2 = x^2 - x \)

\[f = f_1 - f_2 \] \(I = \langle f_1, f_2 \rangle \)

So \(f \in I \).

But. \(\text{LT}(f_1) \neq \text{LT}(f) \) \(x^2 + x \)

\(\text{LT}(f_2) \neq \text{LT}(f) \) \(x^2 + x \).

\(\rightarrow \) Division, by itself, cannot decide ideal membership. Why?

\(\rightarrow \) Because, I does not have "all the requisite leading terms".
So how to obtain these missing leading terms in the ideal?

Think Gaussian elimination.

\[f_1: \ 2x + 3y = 4 \]
\[f_2: \ 3x + 2y = 1 \]

\[3f_1: \ 6x + 9y = 12 \]
\[-2f_2: \ 6x + 4y = -2 \]

new leading term.

\[y = [3] f_1 - [2] f_2 \]

\[= 5y - 10 \]

new leading term.

\[I = \langle f_1, f_2 \rangle = \langle f_1, f_2, 0 \rangle \]
given \(f \) and \(I = \langle f_1, f_2, f_3 \rangle \).

Is \(f \) in \(I \)?

Compute \(G = \gcd(I) \)

\[= \{ g_1, \ldots, g_t \} \]

\[f \underset{g_1, g_2, \ldots, g_t}{\rightarrow} 0? \]

Ideal membership test!