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@ Application of Grobner Bases to Equivalence Checking and SAT
@ Based on Hilbert's Weak Nullstellensatz result

@ Interesting application of algebraic geometry over finite fields and
Boolean rings Fy = Z»

@ Main References: [1] [2]
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The Weak Nullstellensatz

@ The Weak Nullstellensatz reasons about the presence or absence of
solutions to an ideal — over algebraically closed fields!

Theorem (Weak NullStellensatz)

Let F_be an algebraically closed field. Given ideal
JCF[x,...,x), Va(J) =0 <= J=TFI[x,..., x|

Based on the above notation, J = F[xq,...,x,] <= 1¢€ J. l

Let G be a reduced Grébner basis of J. Thenl € J <— G = {1}.
Therefore, Vg(J) =0 <= 1leJ < G ={1}.
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Weak Nullstellensatz when F is not Algebraically Closed

Theorem (Weak Nullstellensatz)

Let F be a field and F be its algebraic closure. Given ideal
JCFx,...,xn), Vg(J) =0 <= 1€ J < reducedGB(J) = {1}.

There is no solution over the closure F iff 1 € J!

No solution over the closure F implies no solution over F itself. J

SAT /UNSAT Checking

Compute reduced G = GB(fi,...,f) = GB(J) and see if G = {1}.
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Weak Nullstellensatz when F is not Algebraically Closed

Theorem (Weak Nullstellensatz)

Let F be a field and F be its algebraic closure. Given ideal
JCFx,...,xn), Vg(J) =0 <= 1€ J < reducedGB(J) = {1}.

There is no solution over the closure F iff 1 € J!

No solution over the closure F implies no solution over F itself. J

SAT /UNSAT Checking

Compute reduced G = GB(fi,...,f) = GB(J) and see if G = {1}.

But, what if G # 17
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Weak Nullstellensatz when F is not Algebraically Closed

Theorem (Weak Nullstellensatz)

Let F be a field and F be its algebraic closure. Given ideal
JCFx,...,xn), Vg(J) =0 <= 1€ J < reducedGB(J) = {1}.

There is no solution over the closure F iff 1 € J!

No solution over the closure F implies no solution over F itself. J

SAT /UNSAT Checking

Compute reduced G = GB(fi,...,f) = GB(J) and see if G = {1}.

But, what if G # 1?7 Where are the solutions? Somewhere in the
closure.... [We don't know where]
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Weak Nullstellensatz

=

Solution 4
can be
here if

Ve(J) # 0
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Weak Nullstellensatz to Equivalence Checking

Demonstrate the difference between GB(J) versus GB(J + Jy) over Zs:

SpecificationModel
- - T
B
L :D Is (F!= G) ever TRUE"

G

Implementation

Spec: x; = aV (—-aAb)
Implementation: y; =aV b

Miter gate: x; ® y1

Prove Equivalence using Nullstellensatz
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From Boolean B to Z,

@ Boolean AND-OR-NOT can be mapped to +,- (mod 2)
B — Fg:

—a — a+1 (mod?2)
aVb — a+b+a-b (mod?2) 1)
)
)

aANb — a-b (mod?2
a®b — a+b (mod?2

where a,b € Fy = {0,1}.
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Union and Intersection of Varieties

Definition (Sum/Product of Ideals [3])

If I =(f,...,f)and J = (gi1,...,gs) are ideals in R, then the sum of /
and J is defined as | + J = (f,...,fr, &1,...,8s). Similarly, the product
of land Jis |- J=(figi|1<i<r,1<j<s).

Theorem (Union and Intersection of Varieties)

If I and J are ideals in R, then V(I + J) =V (/) V(J) and
V(I - J) = V(1)U V().

| \

Theorem
Finite unions and intersections of varieties are also varieties. Therefore,
any finite set of points is a variety of some ideal.
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Ideals and Varieties are Dual Concepts

Given a ring R = F[xy, ..., xp], any finite subset V C F" is a variety. In
other words, any finite set of points is a variety.

Finite unions and intersections of a varieties is a variety.

Let J1, > be ideals in R. Then,
o V(h+h)=V(h)NV(h)
o V(h h)=V(h)UV(h)
o If /4 C Jp, then V(J1) D V(h)
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The Ideal of Vanishing Polynomials over I,

o Consider ring R = Fy[x1,...,xs], Fq be the closure of F,
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The Ideal of Vanishing Polynomials over I,

o Consider ring R = Fy[x1,...,xs], Fq be the closure of F,

e Vx € Fy,x9 — x = 0 (vanishing polynomial)
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The Ideal of Vanishing Polynomials over I,

o Consider ring R = Fy[x1,...,xs], Fq be the closure of F,
e Vx € Fy,x9 — x = 0 (vanishing polynomial)
@ Denote Jop = (x{ — X1, %X — X2,...,Xn —Xn) C R
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The Ideal of Vanishing Polynomials over I,

o Consider ring R = Fy[x1,...,xs], Fq be the closure of F,
e Vx € Fy,x9 — x = 0 (vanishing polynomial)
@ Denote Jop = (x{ — X1, %X — X2,...,Xn —Xn) C R

@ Jo = the ideal of all vanishing polynomials of R
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The Ideal of Vanishing Polynomials over I,

o Consider ring R = Fy[x1,...,xs], Fq be the closure of F,
e Vx € Fy,x9 — x = 0 (vanishing polynomial)
@ Denote Jop = (x{ — X1, %X — X2,...,Xn —Xn) C R

@ Jo = the ideal of all vanishing polynomials of R

@ What is V/(Jp)?
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The Ideal of Vanishing Polynomials over I,

o Consider ring R = Fy[x1,...,xs], Fq be the closure of F,
e Vx € Fy,x9 — x = 0 (vanishing polynomial)
@ Denote Jop = (x{ — X1, %X — X2,...,Xn —Xn) C R
@ Jy = the ideal of all vanishing polynomials of R
@ What is V/(Jp)?
o What is Vi—(J)? What is Vi, (Jo)?
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The Ideal of Vanishing Polynomials over I,

o Consider ring R = Fy[x1,...,xs], Fq be the closure of F,
e Vx € Fy,x9 — x = 0 (vanishing polynomial)
@ Denote Jop = (x{ — X1, %X — X2,...,Xn —Xn) C R
@ Jy = the ideal of all vanishing polynomials of R
@ What is V/(Jp)?
o What is Vi—(J)? What is Vi, (Jo)?
o V(o) = Vi, (o) = 2
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The Ideal of Vanishing Polynomials over I,

Consider ring R = Fy[xi, ..., xn], Fq be the closure of Fy

Vx € Fq,x9 — x = 0 (vanishing polynomial)

Denote Jo = (x{ — X1, X% — X2,...,Xn —Xn) C R
@ Jy = the ideal of all vanishing polynomials of R
What is V(Jp)?
o What is Vi=(Jo)? What is Vi, (Jo)?
o Vi(do) = Vi, (o) =
For arbitrary ideal J, think of V(J) NTFy
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The Ideal of Vanishing Polynomials over I,

Consider ring R = Fy[xi, ..., xn], Fq be the closure of Fy
Vx € Fq,x9 — x = 0 (vanishing polynomial)
Denote Jo = (x{ — X1, X% — X2,...,Xn —Xn) C R

@ Jy = the ideal of all vanishing polynomials of R
What is V(Jp)?

o What is Vi—(Jo)? What is Vi, (Jo)?

o Vi(h) = V,(d) = IFg
For arbitrary ideal J, think of V(J) NTFy

Also see Fig. One.l in my Galois fields book chapter, to understand
V(x* — x) versus V(x'® — x) [explained in class]
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The Weak Nullstellensatz over Finite Fields

Theorem

Let F, be a finite field, IF_q be its algebraic closure, and ring
R =TFg[x1,...,xn]. Let J=(f1,...,f;) CR, and let
Jo={(x{ —x1,x3 —x2,...,x1 — Xn). Then Vg, (J) =0
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The Weak Nullstellensatz over Finite Fields

Theorem

Let F, be a finite field, IF_q be its algebraic closure, and ring
R =TFg[x1,...,xn]. Let J=(f1,...,f;) CR, and let
Jo={(x{ —x1,x3 —x2,...,x1 — Xn). Then Vg, (J) =0

—
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The Weak Nullstellensatz over Finite Fields

Theorem

Let F, be a finite field, IF_q be its algebraic closure, and ring
R =TFg[x1,...,xn]. Let J=(f1,...,f;) CR, and let
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The Weak Nullstellensatz over Finite Fields

Theorem

Let F, be a finite field, IF_q be its algebraic closure, and ring
R =TFg[x1,...,xn]. Let J=(f1,...,f;) CR, and let
Jo={(x{ —x1,x3 —x2,...,x1 — Xn). Then Vg, (J) =0

—

leJ+ Jy < reducedGB(J + Jp) = {1}
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Vi, () =0 <= Vg (J+ Do) =10
< le J+ Jy < reducedGB(J + Jp) = {1}
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Equivalence Check using Nullstellensatz

Ideal J:

x1=aV(-aAb) — xx+a+b-(a+1)+a-b-(a+1) (mod?2)
yi=aVb — yi+a+b+a-b (mod?2)
x1#y — x1+y+1 (mod?2)

Compute G = GB(J) over Zy w.rt. LEX x3 > y1 > a> b:

a®-b+a-b+1
yi+a-b+a+b
x1+a-b+a+b+1

G # 1, but V(G) = 0 over Zy! Which means that there are solutions over
the closure, so the bug = a don't care condition.
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Verification: The Mathematical Problem

Let us take verification of GF multipliers as an example:
@ Given specification polynomial: f: Z =A- B (mod P(x)) over Fo,
for given k, and given P(x), s.t. P(a) =0
@ Given circuit implementation C

@ Primary inputs: A= {ap,...,ak-1},B={bo,...,bk_1}

@ Primary Output Z = {zp,...,2zk-1}

o A=ag+ ata+ apa? + - - + ag_1ak1

° B:bo—i-bloc—l—-'-—i—bk_lak_l, Z=zg+zna+ -+ zx_1ak1

@ Does the circuit C correctly compute specification 77
Mathematically:
@ Construct a miter between the spec f and implementation C

@ Model the circuit (gates) as polynomials {f1,...,f} € Fox[x1, ..., x4]
o Apply Weak Nullstellensatz
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Equivalence Checking over I«

Circuit1:

Circuit Equations

T

Circuit2:

Circuit Equations

X XY

=17

Figure: The equivalence checking setup: miter.

Spec can be a polynomial f, or a circuit implementation C

Model the miter gate as: t(X — Y) =1, where t is a free variable
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Verify a polynomial spec against circuit C

A

Z1

Z1=AB (mod P)

Miter
(Z-21)=1 | __ feasible’

A
Bit-level Circuit
Z

B

Figure: The equivalence checking setup: miter.

@ When Z = 7, t(Z — Z1) = 1 has no solution: infeasible miter

o When Z # Z;: let t71 = (Z — Z;). Then t-(t71) = 1 always has a
solution!

@ Apply Nullstellensatz over Fo«
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Example Implementation Circuit: Mastrovito Multiplier over [F,

Figure: A 2-bit Multiplier

® Write A = ag + aj« as a polynomial f4 : A+ ag + a1«

@ Polynomials modeling the entire circuit: ideal J = (fi,..., fig)

f:zp+znna+2Z;, h:bg+bia+B;, KR:a+aia+ A f4:

so+ao-bo; fsisi+ap-bi; feiso+ar-by; fr:s3+a1-bi; fg:

nn+si+s; forzog+so+s3; fiorzi+ro+s3
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Continue with multiplier verification

So far, ideal J = (f1,..., fip) models the implementation

Let polynomial f : Z; — A- B denote the spec

Miter polynomial f, : t-(Z — Z3) — 1

Update the ideal representation of the miter: J = J + (f, fp,)
Finally: ideal J = (fi,..., fio, f, fn) represents the miter circuit
J CFx[A,B,Z, 71, a0, a1, bo, b1, o, S0, - - -, 53, t]

Verification problem: is the variety W, (J) = 07

How will we solve this problem?
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Weak Nullstellensatz over o«

Theorem (Weak Nullstellensatz over Fo«)

Let ideal J = (fi,...,fs) C Fok[x1,...,x,] be an ideal. Let

Jo = <X12k — X1, ,xﬁk — xpn) be the ideal of all vanishing polynomials.

Then:

Ve, (J) =0 <= Ve (J+ ) =0 < reducedGB(J + Jo) = {1}

v

Proof:
Vi, (J) :VW(J) N Fo
:V@(J) NV, (J) = V@(J) N V@(Jo)
:V@(J + Jo)
Remember: Vg (Jo) = VE(JO). The variety of Jy does not change over J
the field or the closure!
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Apply Weak Nullstellesatz to the Miter

Note: Word-level polynomials f4 : A+ ag + a1 € Fox

Gate level polynomials f4 : s+ ag - by € F»

Since Fp C Fo, we can treat ALL polynomials of the miter,
collectively, over the larger field Fy, so
J - ]F2k[A7 8727217307317 s 720721]

Consider word-level vanishing polynomials: A2 _ A

What about bit-level vanishing polynomials: ag — ap
So, Jop = (W2 — W, B2 — B), where W are all the word-level
variables, and B are all the bit-level variables

Now compute G = GB(J + Jp). If G = {1}, the circuit is correct.
Otherwise there is definitely a BUG within the field Fo«

P. Kalla (Univ. of Utah) Nulstellensatz + SAT Slides updated: Nov 4, 2019 20 / 37



Recall the CNF-SAT problem

@ Given a CNF formula f(xq,...,x5) = G A G A--- A Cs
o Each C; is a clause, i.e. a disjunction of literals
@ Find an assignment to variables xi,...,x,, s.t. f = true
@ We can formulate this problem over the (Boolean) ring Zs[x, . .., Xa]
@ Model clauses as polynomials fi, ..., fs € Za[x1,. .., Xa]
@ Apply Grobner basis concepts to reason about SAT/UNSAT (think
varieties!)
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Be careful about problem formulation

In the SAT world, formula In the polynomial world,
SAT means: solving means:

G =1 f

G =1 h =0

G =1 s = 0
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Be careful about problem formulation

In the SAT world, formula In the polynomial world,
SAT means: solving means:

G =1 f

G =1 h =0

G =1 s = 0

(C=1) <= (C=0) < (C®1=0)
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Be careful about problem formulation

In the SAT world, formula In the polynomial world,
SAT means: solving means:

G =1 f

G =1 h =0

G =1 s = 0

(C=1) <= (C=0) < (C®1=0)
Translate: (C;®1=0) as f; +1 =0 over Z;
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e f(a,b)=(aV-b)A(=aV b)A(aV b)A(—aV —b)
—_—— —m— Y—— Y—\—
C1 G G G
@ Convert each C; from B to Z»
@ Consider Gy : (aV —b)

o Gi:(av(lob)=ad(adb)da(ldb)=1dbDab
@ Here & = XOR = + (mod 2)
o Over Z,, + (mod 2) is implicit, so we write: C; : 1+ b+ ab

o Similarly: Go:1+a+ab;, CGi:a+b+ab;, G :1+ab

However: this still corresponds to C; = 1, whereas we need C; +1 =0
over Zo
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In the SAT world: In the polynomial world
G: (av-b) =1 f: b+ ab =0
G: (navb) = f: a+ab =
G: (avb) =1 i: a+b+ab+1 =0

G (—mav-b) =1 fa ab =0

@ Now J = (f1,...,fa) generates an ideal in Z>|a, b]
@ We need to analyze Vz,(J)
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Apply Nullstellensatz to Boolean rings Zs[x1, . - ., X,

Boolean rings: Rings with indempotence aAa=aor a’>=a

@ Consider the ideal of vanishing polynomials

o InZp, xP = x (mod p), or xP —x =0
o In Z : x> — x vanishes on {0, 1}: vanishing polynomial

Let Jo = (X2 — x1,%3 — x2,...,x2 — xp) denote the ideal of all
vanishing polynomials

Vz,(J) = (Z2)" (the n-dimensional space over Z5)
Variety of Jo doesn’t change over the closure: V—(J) = (Z2)"

These vanishing polynomial restrict the solutions to only over Z,

So compute
G =GB(J+ Jo) = GB(f1,...,fe;, X2 — X1, X3 — X2, ., X2 — Xp)

»'n

If G # {1} then definitely there is a SAT solution within Z;
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Weak Nullstellensatz over Fy, = Z5

Theorem (Weak Nullstellensatz over Boolean Rings)

Let ideal J = (fi,...,fs) C Zy[x1,...,xn| and let

Jo= 02 —x1,...,x2 —xp). Then Vz,(J) =0 <= the reduced
GB(J+ Jo) = GB(f, ... fs, X2 —x1,...,x2 — x,) = {1}.

If GB(J+ Jo) = {1} then the problem is UNSAT.
If GB(J + Jo) # {1} then there is definitely a solution in Zj.

Notation for Sum of Ideals: If J; = (fi,...,f) and /o = (g1,...,8¢), then
J1+J2:<ﬁ.’-"7f5’ glv"'vgf>
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If GB # {1}, is V/(J) finite or infinite?

Let F be any field and F be its closure, and J C F[xq, ..., x,] be an ideal.
Let G ={gi,...,8t} be a Grobner basis of J. Then:

Vz(J) = finite <+

Vxi € {x1,...,%n}, g € G,s.t.Im(gj) = x,-', for some | € N

P. Kalla (Univ. of Utah) Nulstellensatz + SAT Slides updated: Nov 4, 2019 27 / 37



Example of a finite variety

Example

-~

R=Qyl fi=(x-1°+y>—1; h=4(x-102+y"+x -2

circle ellipse

G = GB(f1, ) with lex x >y

G={g=5" -3y -6y +2y +2, g =x-5y>+3y*+3y -2}
Variety is finite.
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A Grobner basis example [From Cox/Little/O’Shea]

Grobner basis with lex term

Solve the system of equations: order x >y >z
fiix?—y—z-1=0 giix—y—z2-1 =0
frix—y>—z—-1=0 oyl —y—z2—z =0
frix—y—2z2—-1=0 g3 2yz? — 2* — 72

g2 —4z* —428 22 =0
e Is V((G)) =07 No, because G # {1}
@ G tells me that V((G)) is finite!

o G is triangular. solve g4 for z, then g», g3 for y, and then gy for x
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Grobner basis of Zero-Dimensional ldeal

Definition (Zero-Dimensional Ideals)

An ideal J is called zero dimensional when its variety V/(J) is a finite set.

o Vg (J) is a finite set
° VE(J) need not be a finite set, as Fy is an infinite set
@ So, ideal J may or maynot be zero dimensional

o W (J) = VE(J + Jo) = Vi, (J + Jo) is always a finite set, as
solutions are restricted to Fg

o Ideal J + Jy is zero dimensional!

The Grobner basis of J + Jy has a very special structure!
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The GB of J+ Jy in Fy[xq, ..., Xy

Theorem (Grobner bases in finite fields (application of Theorem 2.2.7
from [4] over F,))

For G = GB(J+ b)) = {g1,...,8:}, the following statements are
equivalent:
Q@ The variety Vir (J) is finite.
© Foreachi=1,...,n, there exists some j € {1,...,t} such that
Im(g;) = x! for some I € N.

© The quotient ring W forms a finite dimensional vector space.
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Count the number of solutions

Example

G =GB(J) = {x3y? —y; x* —y% xy® — x% y* — xy}. Consider only the
leading monomials in G. LT(G) = {x3y?,x* xy3, y*}.
List all monomials m s.t. m is not divisible by any monomial in LT(G):

Standard Monomials SM = {1,x,x%,x3,y,y?, y3, xy, xy?, x2y, x*y?, x3y}

Cardinality |[SM| = an upper bound on the number of solutions (=12 in
the above example)

In general, |V/(J)| is bounded by |[SM(J)|, but over finite fields, the
following result holds, where the upper bound becomes an equality!
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Counting the number of solutions in I, for J 4 Jy

For a GB G, let LM(G) denote the set of leading monomials of all
elements of G: LM(G) = {Im(g1),...,Im(g:)}.

Definition (Standard Monomials)

Let X® = x;* - - - xg" denote a monomial. The set of standard monomials of
G is defined as SM(G) = {X®: X® ¢ (LM(G))}.

| A\

Theorem ( Counting the number of solutions (Theorem 3.7 in [5]))

Let G = GB(J + &), and |SM(G)| = m, then the ideal J vanishes on m
distinct points in Fg. In other words, |V, (J)| = |[SM(G))|.
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Verification over Composite Fields

@ Given arbitrary circuits C;, Co: m-bit inputs, n-bit outputs

@ Suppose m does NOT divide n: m{ n

@ For example, if m = 3, n =2, then how to construct a miter over a
single field Fq7?

@ Solve the problem over the smallest single field containing both Fom
and Fon.

@ Let k = LCM(m, n), then solve the problem over Fox.

o Now m|k and n|k

@ What about primitive polynomials and primitive elements?
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Composite Field Miter

CircuitC_1 X. n—bits
J1=<f1,...fs>
A
f_m:t(X-Y) =1
m-—bits
Circuit C_2
J_2=<hl,.. hr> Y. n-bits

Figure: The equivalence checking setup: miter.

@ AcFom, X, Y € Fon

@ Nets of the circuits: Boolean variables xq,
® t € which field?

., Xp €y

P. Kalla (Univ. of Utah)
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Composite Fields

@ Pick Pp(X) as a primitive polynomial of degree m, Pp,(3) =0

@ Pick Pp(X) as another primitive polynomial of degree n, Pn(y) =0

@ Compute k = LCM(m, n), pick Px(X) as another primitive
polynomial of degree k, Px(a) =0

o
k_
B = a2 (2)
AR 421
k_
v = a%"—i (3)
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Composite Fields

Example: m=3,n=2k=LCM(3,2) =6

From Egns. (2)-(3) on previous slides: 3 = o,y = a?!
AcTFy:A=ag+aiff+ af? = ap + ara® + arat®

X = xo + x17 = xo + x10°1, same for Y

All the bit-level variables in Fy C Fo«

Ideals Ji, J» = polynomials for the gates in the design

Ideal of vanishing polynomials:

Jo = (A" — A X% — X, Y2 — Y 2" — t,x? — x; : x; € bit-level)
° J:J1+J2+<fm> = <ﬁ.7~~~7f57h17"'7hr7fm>

@ Compute G = GB(J+ Jo) = {1} in Fx[A, X, Y, t,x;]?
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