Nullstellensatz and Boolean Satisfiability Application of Gröbner Bases for SAT

Priyank Kalla

Professor Electrical and Computer Engineering, University of Utah kalla@ece.utah.edu http://www.ece.utah.edu/~kalla

Slides updated: Nov 4, 2019

Agenda

- Application of Gröbner Bases to Equivalence Checking and SAT
 - Based on Hilbert's Weak Nullstellensatz result
- Interesting application of algebraic geometry over finite fields and Boolean rings $\mathbb{F}_2=\mathbb{Z}_2$
- Main References: [1] [2]

The Weak Nullstellensatz

 The Weak Nullstellensatz reasons about the presence or absence of solutions to an ideal – over algebraically closed fields!

Theorem (Weak NullStellensatz)

Let $\overline{\mathbb{F}}$ be an algebraically closed field. Given ideal $J \subseteq \overline{\mathbb{F}}[x_1, \dots, x_n], V_{\overline{\mathbb{F}}}(J) = \emptyset \iff J = \overline{\mathbb{F}}[x_1, \dots, x_n].$

Theorem

Based on the above notation, $J = \overline{\mathbb{F}}[x_1, \dots, x_n] \iff 1 \in J$.

Theorem

Let G be a reduced Gröbner basis of J. Then $1 \in J \iff G = \{1\}$. Therefore, $V_{\overline{\mathbb{F}}}(J) = \emptyset \iff 1 \in J \iff G = \{1\}$.

Weak Nullstellensatz when ${\mathbb F}$ is not Algebraically Closed

Theorem (Weak Nullstellensatz)

Let \mathbb{F} be a field and $\overline{\mathbb{F}}$ be its algebraic closure. Given ideal $J \subseteq \mathbb{F}[x_1, \dots, x_n], V_{\overline{\mathbb{F}}}(J) = \emptyset \iff 1 \in J \iff reducedGB(J) = \{1\}.$

There is no solution over the closure $\overline{\mathbb{F}}$ iff $1 \in J!$

No solution over the closure $\overline{\mathbb{F}}$ implies no solution over \mathbb{F} itself.

SAT/UNSAT Checking

Compute reduced $G = GB(f_1, ..., f_s) = GB(J)$ and see if $G = \{1\}$.

Weak Nullstellensatz when ${\mathbb F}$ is not Algebraically Closed

Theorem (Weak Nullstellensatz)

Let $\mathbb F$ be a field and $\overline{\mathbb F}$ be its algebraic closure. Given ideal $J\subseteq \mathbb F[x_1,\ldots,x_n], V_{\overline{\mathbb F}}(J)=\emptyset \iff 1\in J \iff reducedGB(J)=\{1\}.$

There is no solution over the closure $\overline{\mathbb{F}}$ iff $1 \in J!$

No solution over the closure $\overline{\mathbb{F}}$ implies no solution over \mathbb{F} itself.

SAT/UNSAT Checking

Compute reduced $G = GB(f_1, ..., f_s) = GB(J)$ and see if $G = \{1\}$.

But, what if $G \neq 1$?

Weak Nullstellensatz when ${\mathbb F}$ is not Algebraically Closed

Theorem (Weak Nullstellensatz)

Let \mathbb{F} be a field and $\overline{\mathbb{F}}$ be its algebraic closure. Given ideal $J \subseteq \mathbb{F}[x_1, \dots, x_n], V_{\overline{\mathbb{F}}}(J) = \emptyset \iff 1 \in J \iff reducedGB(J) = \{1\}.$

There is no solution over the closure $\overline{\mathbb{F}}$ iff $1 \in J!$

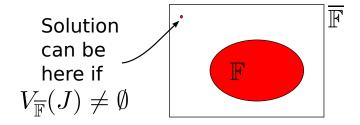
No solution over the closure $\overline{\mathbb{F}}$ implies no solution over \mathbb{F} itself.

SAT/UNSAT Checking

Compute reduced $G = GB(f_1, ..., f_s) = GB(J)$ and see if $G = \{1\}$.

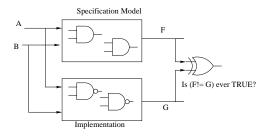
But, what if $G \neq 1$? Where are the solutions? Somewhere in the closure.... [We don't know where]

Weak Nullstellensatz



Weak Nullstellensatz to Equivalence Checking

Demonstrate the difference between GB(J) versus $GB(J+J_0)$ over \mathbb{Z}_2 :



Spec: $x_1 = a \lor (\neg a \land b)$

Implementation: $y_1 = a \lor b$

Miter gate: $x_1 \oplus y_1$

Prove Equivalence using Nullstellensatz

From Boolean \mathbb{B} to \mathbb{Z}_2

• Boolean AND-OR-NOT can be mapped to $+, \cdot \pmod{2}$

$$\mathbb{B} \to \mathbb{F}_2$$
:

$$\neg a \rightarrow a+1 \pmod{2}$$

$$a \lor b \rightarrow a+b+a \cdot b \pmod{2}$$

$$a \land b \rightarrow a \cdot b \pmod{2}$$

$$a \oplus b \rightarrow a+b \pmod{2}$$
(1)

where $a, b \in \mathbb{F}_2 = \{0, 1\}$.

Union and Intersection of Varieties

Definition (Sum/Product of Ideals [3])

If $I = \langle f_1, \dots, f_r \rangle$ and $J = \langle g_1, \dots, g_s \rangle$ are ideals in R, then the **sum** of I and J is defined as $I + J = \langle f_1, \dots, f_r, g_1, \dots, g_s \rangle$. Similarly, the **product** of I and J is $I \cdot J = \langle f_i g_i \mid 1 \le i \le r, 1 \le j \le s \rangle$.

Theorem (Union and Intersection of Varieties)

If I and J are ideals in R, then $\mathbf{V}(I+J) = \mathbf{V}(I) \cap \mathbf{V}(J)$ and $\mathbf{V}(I \cdot J) = \mathbf{V}(I) \cup \mathbf{V}(J)$.

Theorem

Finite unions and intersections of varieties are also varieties. Therefore, any finite set of points is a variety of some ideal.

Ideals and Varieties are Dual Concepts

Given a ring $R = \mathbb{F}[x_1, \dots, x_n]$, any finite subset $V \subseteq \mathbb{F}^n$ is a variety. In other words, any finite set of points is a variety.

Finite unions and intersections of a varieties is a variety.

Let J_1, J_2 be ideals in R. Then,

- $V(J_1 + J_2) = V(J_1) \cap V(J_2)$
- $V(J_1 \cdot J_2) = V(J_1) \cup V(J_2)$
- ullet If $J_1\subset J_2$, then $V(J_1)\supset V(J_2)$

ullet Consider ring $R=\mathbb{F}_q[x_1,\ldots,x_n]$, $\overline{\mathbb{F}_q}$ be the closure of \mathbb{F}_q

- Consider ring $R = \mathbb{F}_q[x_1, \dots, x_n]$, $\overline{\mathbb{F}_q}$ be the closure of \mathbb{F}_q
- $\forall x \in \mathbb{F}_q, x^q x = 0$ (vanishing polynomial)

- Consider ring $R = \mathbb{F}_q[x_1, \dots, x_n]$, $\overline{\mathbb{F}_q}$ be the closure of \mathbb{F}_q
- $\forall x \in \mathbb{F}_q, x^q x = 0$ (vanishing polynomial)
- ullet Denote $J_0 = \langle x_1^q x_1, x_2^q x_2, \dots, x_n^q x_n \rangle \subseteq R$

- Consider ring $R = \mathbb{F}_q[x_1, \dots, x_n]$, $\overline{\mathbb{F}_q}$ be the closure of \mathbb{F}_q
- $\forall x \in \mathbb{F}_q, x^q x = 0$ (vanishing polynomial)
- Denote $J_0 = \langle x_1^q x_1, x_2^q x_2, \dots, x_n^q x_n \rangle \subseteq R$
 - J_0 = the ideal of all vanishing polynomials of R

- Consider ring $R = \mathbb{F}_q[x_1, \dots, x_n]$, $\overline{\mathbb{F}_q}$ be the closure of \mathbb{F}_q
- $\forall x \in \mathbb{F}_q, x^q x = 0$ (vanishing polynomial)
- Denote $J_0 = \langle x_1^q x_1, x_2^q x_2, \dots, x_n^q x_n \rangle \subseteq R$
 - J_0 = the ideal of all vanishing polynomials of R
- What is $V(J_0)$?

- Consider ring $R = \mathbb{F}_q[x_1, \dots, x_n]$, $\overline{\mathbb{F}_q}$ be the closure of \mathbb{F}_q
- $\forall x \in \mathbb{F}_q, x^q x = 0$ (vanishing polynomial)
- Denote $J_0 = \langle x_1^q x_1, x_2^q x_2, \dots, x_n^q x_n \rangle \subseteq R$
 - J_0 = the ideal of all vanishing polynomials of R
- What is $V(J_0)$?
 - What is $V_{\overline{\mathbb{F}_q}}(J_0)$? What is $V_{\mathbb{F}_q}(J_0)$?

- Consider ring $R = \mathbb{F}_q[x_1, \dots, x_n]$, $\overline{\mathbb{F}_q}$ be the closure of \mathbb{F}_q
- $\forall x \in \mathbb{F}_q, x^q x = 0$ (vanishing polynomial)
- Denote $J_0 = \langle x_1^q x_1, x_2^q x_2, \dots, x_n^q x_n \rangle \subseteq R$
 - J_0 = the ideal of all vanishing polynomials of R
- What is $V(J_0)$?
 - What is $V_{\overline{\mathbb{F}_q}}(J_0)$? What is $V_{\mathbb{F}_q}(J_0)$?
 - $V_{\overline{\mathbb{F}_q}}(J_0) = V_{\mathbb{F}_q}(J_0) = \mathbb{F}_q^n$

- Consider ring $R = \mathbb{F}_q[x_1, \dots, x_n]$, $\overline{\mathbb{F}_q}$ be the closure of \mathbb{F}_q
- $\forall x \in \mathbb{F}_q, x^q x = 0$ (vanishing polynomial)
- Denote $J_0 = \langle x_1^q x_1, x_2^q x_2, \dots, x_n^q x_n \rangle \subseteq R$
 - J_0 = the ideal of all vanishing polynomials of R
- What is $V(J_0)$?
 - What is $V_{\overline{\mathbb{F}_q}}(J_0)$? What is $V_{\mathbb{F}_q}(J_0)$?
 - $\mathbf{V}_{\overline{\mathbb{F}_q}}(J_0) = V_{\mathbb{F}_q}(J_0) = \mathbb{F}_q^n$
- ullet For arbitrary ideal J, think of $V(J)\cap \mathbb{F}_q^n$

- Consider ring $R = \mathbb{F}_q[x_1, \dots, x_n]$, $\overline{\mathbb{F}_q}$ be the closure of \mathbb{F}_q
- $\forall x \in \mathbb{F}_q, x^q x = 0$ (vanishing polynomial)
- Denote $J_0 = \langle x_1^q x_1, x_2^q x_2, \dots, x_n^q x_n \rangle \subseteq R$
 - J_0 = the ideal of all vanishing polynomials of R
- What is $V(J_0)$?
 - What is $V_{\overline{\mathbb{F}_q}}(J_0)$? What is $V_{\mathbb{F}_q}(J_0)$?
 - $V_{\overline{\mathbb{F}_q}}(J_0) = V_{\mathbb{F}_q}(J_0) = \mathbb{F}_q^n$
- ullet For arbitrary ideal J, think of $V(J)\cap \mathbb{F}_q^n$
- Also see Fig. One.1 in my Galois fields book chapter, to understand $V(x^4-x)$ versus $V(x^{16}-x)$ [explained in class]

Theorem

Let \mathbb{F}_q be a finite field, $\overline{\mathbb{F}_q}$ be its algebraic closure, and ring $R = \mathbb{F}_q[x_1, \dots, x_n]$. Let $J = \langle f_1, \dots, f_s \rangle \subset R$, and let $J_0 = \langle x_1^q - x_1, x_2^q - x_2, \dots, x_n^q - x_n \rangle$. Then $V_{\mathbb{F}_q}(J) = \emptyset$

Theorem

Let \mathbb{F}_q be a finite field, $\overline{\mathbb{F}_q}$ be its algebraic closure, and ring $R = \mathbb{F}_q[x_1, \dots, x_n]$. Let $J = \langle f_1, \dots, f_s \rangle \subset R$, and let $J_0 = \langle x_1^q - x_1, x_2^q - x_2, \dots, x_n^q - x_n \rangle$. Then $V_{\mathbb{F}_q}(J) = \emptyset$

Theorem

Let \mathbb{F}_q be a finite field, $\overline{\mathbb{F}_q}$ be its algebraic closure, and ring $R = \mathbb{F}_q[x_1, \dots, x_n]$. Let $J = \langle f_1, \dots, f_s \rangle \subset R$, and let $J_0 = \langle x_1^q - x_1, x_2^q - x_2, \dots, x_n^q - x_n \rangle$. Then $V_{\mathbb{F}_q}(J) = \emptyset$

 $1 \in$

Theorem

Let \mathbb{F}_q be a finite field, $\overline{\mathbb{F}_q}$ be its algebraic closure, and ring $R = \mathbb{F}_q[x_1, \dots, x_n]$. Let $J = \langle f_1, \dots, f_s \rangle \subset R$, and let $J_0 = \langle x_1^q - x_1, x_2^q - x_2, \dots, x_n^q - x_n \rangle$. Then $V_{\mathbb{F}_q}(J) = \emptyset$

$$\iff$$

$$1 \in J + J_0 \iff reducedGB(J + J_0) = \{1\}$$

Proof

$$egin{aligned} V_{\mathbb{F}_q}(J) &= V_{\overline{\mathbb{F}_q}}(J) \cap \mathbb{F}_q^n \ &= V_{\overline{\mathbb{F}_q}}(J) \cap V_{\mathbb{F}_q}(J_0) \ &= V_{\overline{\mathbb{F}_q}}(J) \cap V_{\overline{\mathbb{F}_q}}(J_0) \ &= V_{\overline{\mathbb{F}_q}}(J+J_0) \end{aligned}$$

$$V_{\mathbb{F}_q}(J) = \emptyset \iff V_{\overline{\mathbb{F}_q}}(J + J_0) = \emptyset$$
 $\iff 1 \in J + J_0 \iff reducedGB(J + J_0) = \{1\}$

Equivalence Check using Nullstellensatz

Ideal *J*:

$$x_1 = a \lor (\neg a \land b) \mapsto x_1 + a + b \cdot (a+1) + a \cdot b \cdot (a+1) \pmod{2}$$

 $y_1 = a \lor b \mapsto y_1 + a + b + a \cdot b \pmod{2}$
 $x_1 \ne y_1 \mapsto x_1 + y_1 + 1 \pmod{2}$

Compute G = GB(J) over \mathbb{Z}_2 w.r.t. LEX $x_1 > y_1 > a > b$:

$$a^{2} \cdot b + a \cdot b + 1$$
$$y_{1} + a \cdot b + a + b$$
$$x_{1} + a \cdot b + a + b + 1$$

 $G \neq 1$, but $V(G) = \emptyset$ over \mathbb{Z}_2 ! Which means that there are solutions over the closure, so the bug = a don't care condition.

Verification: The Mathematical Problem

Let us take verification of GF multipliers as an example:

- Given specification polynomial: $f: Z = A \cdot B \pmod{P(x)}$ over \mathbb{F}_{2^k} , for given k, and given P(x), s.t. $P(\alpha) = 0$
- Given circuit implementation C
 - Primary inputs: $A = \{a_0, \dots, a_{k-1}\}, B = \{b_0, \dots, b_{k-1}\}$
 - Primary Output $Z = \{z_0, \ldots, z_{k-1}\}$
 - $A = a_0 + a_1 \alpha + a_2 \alpha^2 + \cdots + a_{k-1} \alpha^{k-1}$
 - $B = b_0 + b_1 \alpha + \dots + b_{k-1} \alpha^{k-1}, \ Z = z_0 + z_1 \alpha + \dots + z_{k-1} \alpha^{k-1}$
- Does the circuit *C* correctly compute specification *f*?

Mathematically:

- Construct a miter between the spec f and implementation C
- ullet Model the circuit (gates) as polynomials $\{f_1,\ldots,f_{ullet}\}\in \mathbb{F}_{2^k}[x_1,\ldots,x_d]$
- Apply Weak Nullstellensatz

Equivalence Checking over \mathbb{F}_{2^k}

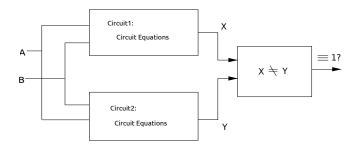


Figure: The equivalence checking setup: miter.

Spec can be a polynomial f, or a circuit implementation CModel the miter gate as: t(X - Y) = 1, where t is a free variable

Verify a polynomial spec against circuit C

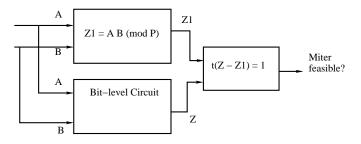


Figure: The equivalence checking setup: miter.

- When $Z = Z_1$, $t(Z Z_1) = 1$ has no solution: infeasible miter
- When $Z \neq Z_1$: let $t^{-1} = (Z Z_1)$. Then $t \cdot (t^{-1}) = 1$ always has a solution!
- Apply Nullstellensatz over \mathbb{F}_{2^k}

Example Implementation Circuit: Mastrovito Multiplier over \mathbb{F}_4

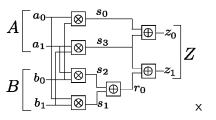


Figure: A 2-bit Multiplier

- Write $A = a_0 + a_1 \alpha$ as a polynomial $f_A : A + a_0 + a_1 \alpha$
- Polynomials modeling the entire circuit: ideal $J = \langle f_1, \dots, f_{10} \rangle$

$$f_1: z_0 + z_1\alpha + Z;$$
 $f_2: b_0 + b_1\alpha + B;$ $f_3: a_0 + a_1\alpha + A;$ $f_4: s_0 + a_0 \cdot b_0;$ $f_5: s_1 + a_0 \cdot b_1;$ $f_6: s_2 + a_1 \cdot b_0;$ $f_7: s_3 + a_1 \cdot b_1;$ $f_8: r_0 + s_1 + s_2;$ $f_9: z_0 + s_0 + s_3;$ $f_{10}: z_1 + r_0 + s_3$

◆ロト ◆個ト ◆息ト ◆息ト ・息 ・ かへで

Continue with multiplier verification

- So far, ideal $J = \langle f_1, \dots, f_{10} \rangle$ models the implementation
- Let polynomial $f: Z_1 A \cdot B$ denote the spec
- Miter polynomial $f_m: t \cdot (Z Z_1) 1$
- Update the ideal representation of the miter: $J = J + \langle f, f_m \rangle$
- Finally: ideal $J = \langle f_1, \dots, f_{10}, f, f_m \rangle$ represents the miter circuit
- $J \subseteq \mathbb{F}_{2^k}[A, B, Z, Z_1, a_0, a_1, b_0, b_1, r_0, s_0, \dots, s_3, t]$
- Verification problem: is the variety $V_{\mathbb{F}_4}(J) = \emptyset$?
- How will we solve this problem?

Weak Nullstellensatz over \mathbb{F}_{2^k}

Theorem (Weak Nullstellensatz over \mathbb{F}_{2^k})

Let ideal $J=\langle f_1,\ldots,f_s\rangle\subset \mathbb{F}_{2^k}[x_1,\ldots,x_n]$ be an ideal. Let $J_0=\langle x_1^{2^k}-x_1,\ldots,x_n^{2^k}-x_n\rangle$ be the ideal of all vanishing polynomials. Then:

$$V_{\mathbb{F}_{2^k}}(J) = \emptyset \iff V_{\overline{\mathbb{F}_{2^k}}}(J+J_0) = \emptyset \iff reducedGB(J+J_0) = \{1\}$$

Proof:

$$egin{aligned} V_{\mathbb{F}_{2^k}}(J) = & V_{\overline{\mathbb{F}_{2^k}}}(J) \cap \mathbb{F}_{2^k} \ = & V_{\overline{\mathbb{F}_{2^k}}}(J) \cap V_{\mathbb{F}_{2^k}}(J_0) = V_{\overline{\mathbb{F}_{2^k}}}(J) \cap V_{\overline{\mathbb{F}_{2^k}}}(J_0) \ = & V_{\overline{\mathbb{F}_{2^k}}}(J+J_0) \end{aligned}$$

Remember: $V_{\mathbb{F}_q}(J_0) = V_{\overline{\mathbb{F}_q}}(J_0)$. The variety of J_0 does not change over the field or the closure!

Apply Weak Nullstellesatz to the Miter

- Note: Word-level polynomials $f_A: A+a_0+a_1\alpha\in \mathbb{F}_{2^k}$
- Gate level polynomials $f_4: s_0+a_0\cdot b_0\in \mathbb{F}_2$
- Since $\mathbb{F}_2 \subset \mathbb{F}_{2^k}$, we can treat ALL polynomials of the miter, collectively, over the larger field \mathbb{F}_{2^k} , so $J \subseteq \mathbb{F}_{2^k}[A, B, Z, Z_1, a_0, a_1, \dots, z_0, z_1]$
- Consider word-level vanishing polynomials: $A^{2^2} A$
- ullet What about bit-level vanishing polynomials: $a_0^2-a_0$
- So, $J_0 = \langle W^{2^k} W, B^2 B \rangle$, where W are all the word-level variables, and B are all the bit-level variables
- Now compute $G = GB(J+J_0)$. If $G = \{1\}$, the circuit is correct. Otherwise there is definitely a BUG within the field \mathbb{F}_{2^k}

Recall the CNF-SAT problem

- Given a CNF formula $f(x_1, \ldots, x_n) = C_1 \wedge C_2 \wedge \cdots \wedge C_s$
 - Each C_i is a clause, i.e. a disjunction of literals
- Find an assignment to variables x_1, \ldots, x_n , s.t. f = true
- ullet We can formulate this problem over the (Boolean) ring $\mathbb{Z}_2[x_1,\ldots,x_n]$
- ullet Model clauses as polynomials $f_1,\ldots,f_s\in\mathbb{Z}_2[x_1,\ldots,x_n]$
- Apply Gröbner basis concepts to reason about SAT/UNSAT (think varieties!)

Be careful about problem formulation

In the SAT world, formula SAT means:

$$C_1 = 1$$
 $C_2 = 1$
 \vdots
 $C_s = 1$

In the polynomial world, solving means:

$$f_1 = 0$$
 $f_2 = 0$
 \vdots
 $f_n = 0$

Be careful about problem formulation

In the SAT world, formula SAT means:

$$C_1 = 1$$
 $C_2 = 1$
 \vdots
 $C_s = 1$

In the polynomial world, solving means:

$$f_1 = 0$$

$$f_2 = 0$$

$$\vdots$$

$$f_s = 0$$

$$(C_i = 1) \iff (\overline{C_i} = 0) \iff (C_i \oplus 1 = 0)$$

Be careful about problem formulation

In the SAT world, formula SAT means:

$$C_1 = 1$$
 $C_2 = 1$
 \vdots
 $C_s = 1$

In the polynomial world, solving means:

$$f_1 = 0$$
 $f_2 = 0$
 \vdots
 $f_5 = 0$

$$(C_i = 1) \iff (\overline{C_i} = 0) \iff (C_i \oplus 1 = 0)$$

Translate: $(C_i \oplus 1 = 0)$ as $f_i + 1 = 0$ over \mathbb{Z}_2

Example

•
$$f(a,b) = \underbrace{(a \lor \neg b)}_{C_1} \land \underbrace{(\neg a \lor b)}_{C_2} \land \underbrace{(a \lor b)}_{C_3} \land \underbrace{(\neg a \lor \neg b)}_{C_3}$$

- Convert each C_i from \mathbb{B} to \mathbb{Z}_2
- Consider $C_1:(a \vee \neg b)$
 - $C_1:(a\vee(1\oplus b))=a\oplus(a\oplus b)\oplus a(1\oplus b)=1\oplus b\oplus ab$
 - Here $\oplus = XOR = + \pmod{2}$
 - Over \mathbb{Z}_2 , + (mod 2) is implicit, so we write: $C_1: 1+b+ab$
- Similarly: $C_2: 1+a+ab$; $C_3: a+b+ab$; $C_4: 1+ab$

However: this still corresponds to $C_i=1$, whereas we need $C_i+1=0$ over \mathbb{Z}_2

Example

In the SAT world:

In the polynomial world

$$C_1: (a \lor \neg b) = 1$$
 $f_1: b + ab = 0$
 $C_2: (\neg a \lor b) = 1$ $f_2: a + ab = 0$
 $C_3: (a \lor b) = 1$ $f_3: a + b + ab + 1 = 0$
 $C_4: (\neg a \lor \neg b) = 1$ $f_4: ab = 0$

- Now $J = \langle f_1, \dots, f_4 \rangle$ generates an ideal in $\mathbb{Z}_2[a,b]$
- ullet We need to analyze $V_{\mathbb{Z}_2}(J)$

Apply Nullstellensatz to Boolean rings $\mathbb{Z}_2[x_1,\ldots,x_n]$

Boolean rings: Rings with indempotence $a \wedge a = a$ or $a^2 = a$

- Consider the ideal of vanishing polynomials
 - In \mathbb{Z}_p , $x^p = x \pmod{p}$, or $x^p x = 0$
 - In $\mathbb{Z}_2: x^2 x$ vanishes on $\{0,1\}$: vanishing polynomial
- Let $J_0 = \langle x_1^2 x_1, x_2^2 x_2, \dots, x_n^2 x_n \rangle$ denote the ideal of all vanishing polynomials
- ullet $V_{\mathbb{Z}_2}(J_0)=(\mathbb{Z}_2)^n$ (the *n*-dimensional space over \mathbb{Z}_2)
- ullet Variety of J_0 doesn't change over the closure: $V_{\overline{\mathbb{Z}_2}}(J)=(\mathbb{Z}_2)^n$
- ullet These vanishing polynomial restrict the solutions to only over \mathbb{Z}_2
- So compute $G = GB(J + J_0) = GB(f_1, \dots, f_s, x_1^2 x_1, x_2^2 x_2, \dots, x_n^2 x_n)$
- ullet If $G
 eq \{1\}$ then definitely there is a SAT solution within \mathbb{Z}_2

Weak Nullstellensatz over $\mathbb{F}_2 = \mathbb{Z}_2$

Theorem (Weak Nullstellensatz over Boolean Rings)

Let ideal
$$J = \langle f_1, \dots, f_s \rangle \subset \mathbb{Z}_2[x_1, \dots, x_n]$$
 and let $J_0 = \langle x_1^2 - x_1, \dots, x_n^2 - x_n \rangle$. Then $V_{\mathbb{Z}_2}(J) = \emptyset \iff$ the reduced $GB(J + J_0) = GB(f_1, \dots, f_s, x_1^2 - x_1, \dots, x_n^2 - x_n) = \{1\}.$

If $GB(J + J_0) = \{1\}$ then the problem is UNSAT.

If $GB(J+J_0) \neq \{1\}$ then there is definitely a solution in \mathbb{Z}_2 .

Notation for Sum of Ideals: If $J_1 = \langle f_1, \dots, f_s \rangle$ and $J_2 = \langle g_1, \dots, g_t \rangle$, then $J_1 + J_2 = \langle f_1, \dots, f_s, g_1, \dots, g_t \rangle$

If $GB \neq \{1\}$, is V(J) finite or infinite?

Theorem

Let \mathbb{F} be any field and $\overline{\mathbb{F}}$ be its closure, and $J \subseteq \mathbb{F}[x_1, \dots, x_n]$ be an ideal. Let $G = \{g_1, \dots, g_t\}$ be a Gröbner basis of J. Then:

$$V_{\overline{\mathbb{F}}}(J) = finite \iff$$

$$\forall x_i \in \{x_1, \dots, x_n\}, \ \exists g_j \in G, s.t. lm(g_j) = x_i^I, \text{ for some } I \in \mathbb{N}$$

Example of a finite variety

Example

$$R = \mathbb{Q}[x, y], \ f_1 = \underbrace{(x-1)^2 + y^2 - 1}_{circle}; \ f_2 = \underbrace{4(x-1)^2 + y^2 + xy - 2}_{ellipse}.$$

$$G = GB(f_1, f_2) \text{ with lex } x > y$$

$$G = \{g_1 = 5y^4 - 3y^3 - 6y^2 + 2y + 2, \ g_2 = x - 5y^3 + 3y^2 + 3y - 2\}$$

Variety is finite.

A Gröbner basis example [From Cox/Little/O'Shea]

Solve the system of equations:

$$f_1: x^2 - y - z - 1 = 0$$

$$f_3: x-y-z^2-1=0$$

 $f_2: x - y^2 - z - 1 = 0$

Gröbner basis with lex term order
$$x > y > z$$

$$g_1: x - y - z^2 - 1 = 0$$

$$g_2: y^2 - y - z^2 - z = 0$$

$$g_3:2yz^2-z^4-z^2 = 0$$

$$g_4: z^6 - 4z^4 - 4z^3 - z^2 = 0$$

- Is $V(\langle G \rangle) = \emptyset$? No, because $G \neq \{1\}$
- G tells me that $V(\langle G \rangle)$ is finite!
- G is triangular: solve g_4 for z, then g_2, g_3 for y, and then g_1 for x

Gröbner basis of Zero-Dimensional Ideal

Definition (Zero-Dimensional Ideals)

An ideal J is called zero dimensional when its variety V(J) is a finite set.

- $V_{\mathbb{F}_q}(J)$ is a finite set
- ullet $V_{\overline{\mathbb{F}_q}}(J)$ need not be a finite set, as $\overline{\mathbb{F}_q}$ is an infinite set
- So, ideal J may or maynot be zero dimensional
- $V_{\mathbb{F}_q}(J) = V_{\overline{\mathbb{F}_q}}(J+J_0) = V_{\mathbb{F}_q}(J+J_0)$ is always a finite set, as solutions are restricted to \mathbb{F}_q
- Ideal $J + J_0$ is zero dimensional!

The Gröbner basis of $J + J_0$ has a very special structure!

The GB of $J + J_0$ in $\mathbb{F}_q[x_1, \dots, x_n]$

Theorem (Gröbner bases in finite fields (application of Theorem 2.2.7 from [4] over \mathbb{F}_q))

For $G = GB(J + J_0) = \{g_1, \dots, g_t\}$, the following statements are equivalent:

- **1** The variety $V_{\mathbb{F}_a}(J)$ is finite.
- **②** For each $i=1,\ldots,n$, there exists some $j\in\{1,\ldots,t\}$ such that $Im(g_j)=x_i^I$ for some $I\in\mathbb{N}$.
- **3** The quotient ring $\frac{\mathbb{F}_q[x_1,...,x_n]}{\langle G \rangle}$ forms a finite dimensional vector space.

Count the number of solutions

Example

 $G = GB(J) = \{x^3y^2 - y; \ x^4 - y^2; \ xy^3 - x^2; y^4 - xy\}.$ Consider only the leading monomials in G. $LT(G) = \{x^3y^2, x^4, xy^3, y^4\}.$

List all monomials m s.t. m is not divisible by any monomial in LT(G):

Standard Monomials $SM = \{1, x, x^2, x^3, y, y^2, y^3, xy, xy^2, x^2y, x^2y^2, x^3y\}$

Cardinality |SM| = an upper bound on the number of solutions (=12 in the above example)

In general, |V(J)| is bounded by |SM(J)|, but over finite fields, the following result holds, where the upper bound becomes an equality!

Counting the number of solutions in \mathbb{F}_q for $J + J_0$

For a GB G, let LM(G) denote the set of leading monomials of all elements of G: $LM(G) = \{Im(g_1), \ldots, Im(g_t)\}$.

Definition (Standard Monomials)

Let $\mathbf{X}^{\mathbf{e}} = x_1^{e_1} \cdots x_n^{e_n}$ denote a monomial. The set of standard monomials of G is defined as $SM(G) = \{\mathbf{X}^{\mathbf{e}} : \mathbf{X}^{\mathbf{e}} \notin \langle LM(G) \rangle \}$.

Theorem (Counting the number of solutions (Theorem 3.7 in [5]))

Let $G = GB(J + J_0)$, and |SM(G)| = m, then the ideal J vanishes on m distinct points in \mathbb{F}_q^n . In other words, $|V_{\mathbb{F}_q}(J)| = |SM(G)|$.

Verification over Composite Fields

- Given arbitrary circuits C_1 , C_2 : m-bit inputs, n-bit outputs
- Suppose m does NOT divide n: m ∤ n
- For example, if m = 3, n = 2, then how to construct a miter over a single field \mathbb{F}_q ?
- Solve the problem over the smallest single field containing both \mathbb{F}_{2^m} and \mathbb{F}_{2^n} .
- Let k = LCM(m, n), then solve the problem over \mathbb{F}_{2^k} .
 - Now m|k and n|k
- What about primitive polynomials and primitive elements?

Composite Field Miter

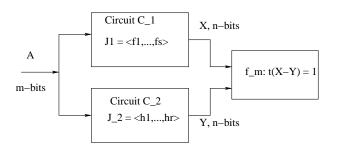


Figure: The equivalence checking setup: miter.

- $\bullet \ A \in \mathbb{F}_{2^m}, X, Y \in \mathbb{F}_{2^n}$
- Nets of the circuits: Boolean variables $x_1, \ldots, x_n \in \mathbb{F}_2$
- $t \in \text{which field}$?

Composite Fields

- Pick $P_m(X)$ as a primitive polynomial of degree m, $P_m(\beta) = 0$
- Pick $P_n(X)$ as another primitive polynomial of degree n, $P_n(\gamma) = 0$
- Compute k = LCM(m, n), pick $P_k(X)$ as another primitive polynomial of degree k, $P_k(\alpha) = 0$

$$\alpha^{2^{k}-1} = \beta^{2^{m}-1}$$

$$\beta = \alpha^{\frac{2^{k}-1}{2^{m}-1}} \tag{2}$$

$$\alpha^{2^k-1} = \gamma^{2^n-1}$$

$$\gamma = \alpha^{\frac{2^k - 1}{2^n - 1}} \tag{3}$$

Composite Fields

- Example: m = 3, n = 2, k = LCM(3, 2) = 6
- From Eqns. (2)-(3) on previous slides: $\beta=\alpha^9, \gamma=\alpha^{21}$
- $A \in \mathbb{F}_{23}$: $A = a_0 + a_1\beta + a_2\beta^2 = a_0 + a_1\alpha^9 + a_2\alpha^{18}$
- $X = x_0 + x_1 \gamma = x_0 + x_1 \alpha^{21}$, same for Y
- ullet All the bit-level variables in $\mathbb{F}_2\subset\mathbb{F}_{2^k}$
- Ideals J_1, J_2 = polynomials for the gates in the design
- Ideal of vanishing polynomials:

$$J_0 = \langle A^{2^m} - A, X^{2^n} - X, Y^{2^n} - Y, t^{2^n} - t, x_i^2 - x_i : x_i \in \mathsf{bit-level} \rangle$$

- $J = J_1 + J_2 + \langle f_m \rangle = \langle f_1, \dots, f_s, h_1, \dots, h_r, f_m \rangle$
- Compute $G = GB(J + J_0) = \{1\}$ in $\mathbb{F}_{2^k}[A, X, Y, t, x_i]$?

- [1] M. Clegg, J. Edmonds, and R. Impagliazzo, "Using the Gröbner Basis Algorithm to Find Proofs of Unsatisfiability," in *ACM Symposium on Theory of Computing*, 1996, pp. 174–183.
- [2] C. Condrat and P. Kalla, "A Gröbner Basis Approach to CNF formulae Preprocessing," in *International Conference on Tools and Algorithms for the Construction and Analysis of Systems*, 2007, pp. 618–631.
- [3] D. Cox, J. Little, and D. O'Shea, *Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra*. Springer, 2007.
- [4] W. W. Adams and P. Loustaunau, *An Introduction to Gröbner Bases*. American Mathematical Society, 1994.
- [5] S. Gao, "Counting Zeros over Finite Fields with Gröbner Bases," Master's thesis, Carnegie Mellon University, 2009.