Application of Gröbner Bases to Equivalence Checking and SAT
- Based on Hilbert’s Weak Nullstellensatz result
- Interesting application of algebraic geometry over finite fields and Boolean rings $\mathbb{F}_2 = \mathbb{Z}_2$
- Main References: [1] [2]
The Weak Nullstellensatz

- The Weak Nullstellensatz reasons about the presence or absence of solutions to an ideal – over algebraically closed fields!

Theorem (Weak Nullstellensatz)

Let \overline{F} be an algebraically closed field. Given ideal $J \subseteq \overline{F}[x_1, \ldots, x_n]$, $V_{\overline{F}}(J) = \emptyset \iff J = \overline{F}[x_1, \ldots, x_n]$.

Theorem

Based on the above notation, $J = \overline{F}[x_1, \ldots, x_n] \iff 1 \in J$.

Theorem

Let G be a reduced Gröbner basis of J. Then $1 \in J \iff G = \{1\}$. Therefore, $V_{\overline{F}}(J) = \emptyset \iff 1 \in J \iff G = \{1\}$.
Weak Nullstellensatz when \overline{F} is not Algebraically Closed

Theorem (Weak Nullstellensatz)

Let F be a field and \overline{F} be its algebraic closure. Given ideal $J \subseteq F[x_1, \ldots, x_n]$, $V_{\overline{F}}(J) = \emptyset \iff 1 \in J \iff \text{reducedGB}(J) = \{1\}$.

There is no solution over the closure \overline{F} iff $1 \in J$!

No solution over the closure \overline{F} implies no solution over F itself.

SAT/UNSAT Checking

Compute reduced $G = GB(f_1, \ldots, f_s) = GB(J)$ and see if $G = \{1\}$.
Theorem (Weak Nullstellensatz)

Let F be a field and \overline{F} be its algebraic closure. Given ideal $J \subseteq F[x_1, \ldots, x_n]$, $V_{\overline{F}}(J) = \emptyset \iff 1 \in J \iff \text{reducedGB}(J) = \{1\}$.

There is no solution over the closure \overline{F} iff $1 \in J$!

No solution over the closure \overline{F} implies no solution over F itself.

SAT/UNSAT Checking

Compute reduced $G = \text{GB}(f_1, \ldots, f_s) = \text{GB}(J)$ and see if $G = \{1\}$.

But, what if $G \neq 1$?
Theorem (Weak Nullstellensatz)

Let \mathbb{F} be a field and $\overline{\mathbb{F}}$ be its algebraic closure. Given ideal $J \subseteq \mathbb{F}[x_1, \ldots, x_n]$, $V_\mathbb{F}(J) = \emptyset \iff 1 \in J \iff \text{reducedGB}(J) = \{1\}$.

There is no solution over the closure $\overline{\mathbb{F}}$ iff $1 \in J$!

No solution over the closure $\overline{\mathbb{F}}$ implies no solution over \mathbb{F} itself.

SAT/UNSAT Checking

Compute reduced $G = \text{GB}(f_1, \ldots, f_s) = \text{GB}(J)$ and see if $G = \{1\}$.

But, what if $G \neq 1$? Where are the solutions? Somewhere in the closure.... [We don’t know where]
Weak Nullstellensatz

Solution can be here if

\[V(F)(J) \neq \emptyset \]
Demonstrate the difference between $GB(J)$ versus $GB(J + J_0)$ over \mathbb{Z}_2:

Spec: $x_1 = a \lor (\neg a \land b)$

Implementation: $y_1 = a \lor b$

Miter gate: $x_1 \oplus y_1$

Prove Equivalence using Nullstellensatz
From Boolean \mathbb{B} to \mathbb{Z}_2

- Boolean AND-OR-NOT can be mapped to $+, \cdot$ (mod 2)

$\mathbb{B} \rightarrow \mathbb{F}_2$:

\[
\begin{align*}
\neg a & \rightarrow a + 1 \pmod{2} \\
 a \lor b & \rightarrow a + b + a \cdot b \pmod{2} \\
 a \land b & \rightarrow a \cdot b \pmod{2} \\
 a \oplus b & \rightarrow a + b \pmod{2}
\end{align*}
\]

(1)

where $a, b \in \mathbb{F}_2 = \{0, 1\}$.
Definition (Sum/Product of Ideals [3])

If $I = \langle f_1, \ldots, f_r \rangle$ and $J = \langle g_1, \ldots, g_s \rangle$ are ideals in R, then the **sum** of I and J is defined as $I + J = \langle f_1, \ldots, f_r, g_1, \ldots, g_s \rangle$. Similarly, the **product** of I and J is $I \cdot J = \langle f_ig_j \mid 1 \leq i \leq r, 1 \leq j \leq s \rangle$.

Theorem (Union and Intersection of Varieties)

If I and J are ideals in R, then $V(I + J) = V(I) \cap V(J)$ and $V(I \cdot J) = V(I) \cup V(J)$.

Theorem

Finite unions and intersections of varieties are also varieties. Therefore, any finite set of points is a variety of some ideal.
Ideals and Varieties are Dual Concepts

Given a ring $R = \mathbb{F}[x_1, \ldots, x_n]$, any finite subset $V \subseteq \mathbb{F}^n$ is a variety. In other words, any finite set of points is a variety.

Finite unions and intersections of varieties are varieties.

Let J_1, J_2 be ideals in R. Then,

- $V(J_1 + J_2) = V(J_1) \cap V(J_2)$
- $V(J_1 \cdot J_2) = V(J_1) \cup V(J_2)$
- If $J_1 \subset J_2$, then $V(J_1) \supset V(J_2)$
Consider ring $R = \overline{\mathbb{F}_q}[x_1, \ldots, x_n]$, $\overline{\mathbb{F}_q}$ be the closure of \mathbb{F}_q.
The Ideal of Vanishing Polynomials over $\overline{\mathbb{F}}_q$

- Consider ring $R = \mathbb{F}_q[x_1, \ldots, x_n]$, $\overline{\mathbb{F}}_q$ be the closure of \mathbb{F}_q
- $\forall x \in \mathbb{F}_q$, $x^q - x = 0$ (vanishing polynomial)
Consider ring $R = \mathbb{F}_q[x_1, \ldots, x_n]$, $\overline{\mathbb{F}}_q$ be the closure of \mathbb{F}_q

$\forall x \in \mathbb{F}_q, x^q - x = 0$ (vanishing polynomial)

Denote $J_0 = \langle x_1^q - x_1, x_2^q - x_2, \ldots, x_n^q - x_n \rangle \subseteq R$
The Ideal of Vanishing Polynomials over \mathbb{F}_q

- Consider ring $R = \mathbb{F}_q[x_1, \ldots, x_n]$, $\overline{\mathbb{F}}_q$ be the closure of \mathbb{F}_q
- $\forall x \in \mathbb{F}_q$, $x^q - x = 0$ (vanishing polynomial)
- Denote $J_0 = \langle x_1^q - x_1, x_2^q - x_2, \ldots, x_n^q - x_n \rangle \subseteq R$
 - $J_0 = \text{the ideal of all vanishing polynomials of } R$
The Ideal of Vanishing Polynomials over \mathbb{F}_q

- Consider ring $R = \mathbb{F}_q[x_1, \ldots, x_n]$, $\overline{\mathbb{F}}_q$ be the closure of \mathbb{F}_q
- $\forall x \in \mathbb{F}_q$, $x^q - x = 0$ (vanishing polynomial)
- Denote $J_0 = \langle x_1^q - x_1, x_2^q - x_2, \ldots, x_n^q - x_n \rangle \subseteq R$
 - $J_0 = \text{ the ideal of all vanishing polynomials of } R$
- What is $V(J_0)$?
Consider ring $R = \mathbb{F}_q[x_1, \ldots, x_n]$, $\overline{\mathbb{F}}_q$ be the closure of \mathbb{F}_q

$\forall x \in \mathbb{F}_q$, $x^q - x = 0$ (vanishing polynomial)

Denote $J_0 = \langle x_1^q - x_1, x_2^q - x_2, \ldots, x_n^q - x_n \rangle \subseteq R$

$J_0 =$ the ideal of all vanishing polynomials of R

What is $V(J_0)$?

What is $\text{V}_{\overline{\mathbb{F}}_q}(J_0)$? What is $\text{V}_{\mathbb{F}_q}(J_0)$?
Consider ring $R = \mathbb{F}_q[x_1, \ldots, x_n]$, $\overline{\mathbb{F}}_q$ be the closure of \mathbb{F}_q

$\forall x \in \mathbb{F}_q, x^q - x = 0$ (vanishing polynomial)

Denote $J_0 = \langle x_1^q - x_1, x_2^q - x_2, \ldots, x_n^q - x_n \rangle \subseteq R$

$J_0 =$ the ideal of all vanishing polynomials of R

What is $V(J_0)$?

What is $V_{\mathbb{F}_q}(J_0)$? What is $V_{\overline{\mathbb{F}}_q}(J_0)$?

$V_{\overline{\mathbb{F}}_q}(J_0) = V_{\mathbb{F}_q}(J_0) = \mathbb{F}_q^n$
The Ideal of Vanishing Polynomials over \mathbb{F}_q

- Consider ring $R = \mathbb{F}_q[x_1, \ldots, x_n]$, $\overline{\mathbb{F}}_q$ be the closure of \mathbb{F}_q
- $\forall x \in \mathbb{F}_q$, $x^q - x = 0$ (vanishing polynomial)
- Denote $J_0 = \langle x_1^q - x_1, x_2^q - x_2, \ldots, x_n^q - x_n \rangle \subseteq R$
 - $J_0 = \text{the ideal of all vanishing polynomials of } R$
- What is $V(J_0)$?
 - What is $V_{\mathbb{F}_q}(J_0)$? What is $V_{\overline{\mathbb{F}}_q}(J_0)$?
 - $V_{\mathbb{F}_q}(J_0) = V_{\overline{\mathbb{F}}_q}(J_0) = \mathbb{F}_q^n$
- For arbitrary ideal J, think of $V(J) \cap \mathbb{F}_q^n$
The Ideal of Vanishing Polynomials over \mathbb{F}_q

- Consider ring $R = \mathbb{F}_q[x_1, \ldots, x_n]$, $\overline{\mathbb{F}_q}$ be the closure of \mathbb{F}_q
- $\forall x \in \mathbb{F}_q$, $x^q - x = 0$ (vanishing polynomial)
- Denote $J_0 = \langle x_1^q - x_1, x_2^q - x_2, \ldots, x_n^q - x_n \rangle \subseteq R$
 - $J_0 = $ the ideal of all vanishing polynomials of R
- What is $V(J_0)$?
 - What is $V_{\overline{\mathbb{F}_q}}(J_0)$? What is $V_{\mathbb{F}_q}(J_0)$?
 - $V_{\overline{\mathbb{F}_q}}(J_0) = V_{\mathbb{F}_q}(J_0) = \mathbb{F}_q^n$
- For arbitrary ideal J, think of $V(J) \cap \mathbb{F}_q^n$
- Also see Fig. One.1 in my Galois fields book chapter, to understand $V(x^4 - x)$ versus $V(x^{16} - x)$ [explained in class]
Let \mathbb{F}_q be a finite field, $\overline{\mathbb{F}}_q$ be its algebraic closure, and ring
$R = \mathbb{F}_q[x_1, \ldots, x_n]$. Let $J = \langle f_1, \ldots, f_s \rangle \subset R$, and let
$J_0 = \langle x_1^q - x_1, x_2^q - x_2, \ldots, x_n^q - x_n \rangle$. Then $V_{\mathbb{F}_q}(J) = \emptyset$
The Weak Nullstellensatz over Finite Fields

Theorem

Let \mathbb{F}_q be a finite field, \mathbb{F}_q^alg be its algebraic closure, and ring $R = \mathbb{F}_q[x_1, \ldots, x_n]$. Let $J = \langle f_1, \ldots, f_s \rangle \subset R$, and let $J_0 = \langle x_1^q - x_1, x_2^q - x_2, \ldots, x_n^q - x_n \rangle$. Then $V_{\mathbb{F}_q}(J) = \emptyset$ if and only if $\mathcal{P}(J) \neq \emptyset$.

\[\iff \]
The Weak Nullstellensatz over Finite Fields

Theorem

Let \mathbb{F}_q be a finite field, $\overline{\mathbb{F}_q}$ be its algebraic closure, and ring

$R = \mathbb{F}_q[x_1, \ldots, x_n]$. Let $J = \langle f_1, \ldots, f_s \rangle \subset R$, and let $J_0 = \langle x_1^q - x_1, x_2^q - x_2, \ldots, x_n^q - x_n \rangle$. Then $V_{\mathbb{F}_q}(J) = \emptyset$

\iff

$1 \in$
The Weak Nullstellensatz over Finite Fields

Theorem

Let \mathbb{F}_q be a finite field, $\overline{\mathbb{F}}_q$ be its algebraic closure, and ring $R = \mathbb{F}_q[x_1, \ldots, x_n]$. Let $J = \langle f_1, \ldots, f_s \rangle \subset R$, and let $J_0 = \langle x_1^q - x_1, x_2^q - x_2, \ldots, x_n^q - x_n \rangle$. Then $V_{\mathbb{F}_q}(J) = \emptyset$ if and only if $1 \in J + J_0 \iff \text{reducedGB}(J + J_0) = \{1\}$.
Proof

\[V_{\mathbb{F}_q}(J) = V_{\mathbb{F}_q}(J) \cap \mathbb{F}_q^n \]
\[= V_{\mathbb{F}_q}(J) \cap V_{\mathbb{F}_q}(J_0) \]
\[= V_{\mathbb{F}_q}(J) \cap V_{\mathbb{F}_q}(J_0) \]
\[= V_{\mathbb{F}_q}(J + J_0) \]

\[V_{\mathbb{F}_q}(J) = \emptyset \iff V_{\mathbb{F}_q}(J + J_0) = \emptyset \]
\[\iff 1 \in J + J_0 \iff \text{reducedGB}(J + J_0) = \{1\} \]
Equivalence Check using Nullstellensatz

Ideal J:

\[
\begin{align*}
 x_1 &= a \lor (\neg a \land b) \implies x_1 + a + b \cdot (a + 1) + a \cdot b \cdot (a + 1) \pmod{2} \\
 y_1 &= a \lor b \implies y_1 + a + b + a \cdot b \pmod{2} \\
 x_1 \neq y_1 &\implies x_1 + y_1 + 1 \pmod{2}
\end{align*}
\]

Compute $G = GB(J)$ over \mathbb{Z}_2 w.r.t. LEX $x_1 > y_1 > a > b$:

\[
\begin{align*}
 a^2 \cdot b + a \cdot b + 1 \\
 y_1 + a \cdot b + a + b \\
 x_1 + a \cdot b + a + b + 1
\end{align*}
\]

$G \neq 1$, but $V(G) = \emptyset$ over \mathbb{Z}_2! Which means that there are solutions over the closure, so the **bug = a don’t care condition**.
Let us take verification of GF multipliers as an example:

- **Given specification polynomial**: \(f : Z = A \cdot B \pmod{P(x)} \) over \(\mathbb{F}_{2^k} \), for given \(k \), and given \(P(x) \), s.t. \(P(\alpha) = 0 \)
- **Given circuit implementation** \(C \)
 - Primary inputs: \(A = \{a_0, \ldots, a_{k-1}\} \), \(B = \{b_0, \ldots, b_{k-1}\} \)
 - Primary Output \(Z = \{z_0, \ldots, z_{k-1}\} \)
 - \(A = a_0 + a_1\alpha + a_2\alpha^2 + \cdots + a_{k-1}\alpha^{k-1} \)
 - \(B = b_0 + b_1\alpha + \cdots + b_{k-1}\alpha^{k-1} \), \(Z = z_0 + z_1\alpha + \cdots + z_{k-1}\alpha^{k-1} \)

Does the circuit \(C \) correctly compute specification \(f \)?

Mathematically:

- Construct a miter between the spec \(f \) and implementation \(C \)
- Model the circuit (gates) as polynomials \(\{f_1, \ldots, f_s\} \in \mathbb{F}_{2^k}[x_1, \ldots, x_d] \)
- Apply Weak Nullstellensatz
Equivalence Checking over \mathbb{F}_{2^k}

Figure: The equivalence checking setup: miter.

Spec can be a polynomial f, or a circuit implementation C
Model the miter gate as: $t(X - Y) = 1$, where t is a free variable
Verify a polynomial spec against circuit C

- $Z_1 = A \cdot B \pmod{P}$

Figure: The equivalence checking setup: miter.

- When $Z = Z_1$, $t(Z - Z_1) = 1$ has no solution: infeasible miter
- When $Z \neq Z_1$: let $t^{-1} = (Z - Z_1)$. Then $t \cdot (t^{-1}) = 1$ always has a solution!
- Apply Nullstellensatz over \mathbb{F}_{2^k}
Write $A = a_0 + a_1 \alpha$ as a polynomial $f_A : A + a_0 + a_1 \alpha$

- Polynomials modeling the entire circuit: ideal $J = \langle f_1, \ldots, f_{10} \rangle$

\begin{align*}
f_1 & : z_0 + z_1 \alpha + Z; \\
f_2 & : b_0 + b_1 \alpha + B; \\
f_3 & : a_0 + a_1 \alpha + A; \\
f_4 & : s_0 + a_0 \cdot b_0; \\
f_5 & : s_1 + a_0 \cdot b_1; \\
f_6 & : s_2 + a_1 \cdot b_0; \\
f_7 & : s_3 + a_1 \cdot b_1; \\
f_8 & : r_0 + s_1 + s_2; \\
f_9 & : z_0 + s_0 + s_3; \\
f_{10} & : z_1 + r_0 + s_3\
\end{align*}
Continue with multiplier verification

- So far, ideal $J = \langle f_1, \ldots, f_{10} \rangle$ models the implementation
- Let polynomial $f : Z_1 - A \cdot B$ denote the spec
- Miter polynomial $f_m : t \cdot (Z - Z_1) - 1$
- Update the ideal representation of the miter: $J = J + \langle f, f_m \rangle$
- Finally: ideal $J = \langle f_1, \ldots, f_{10}, f, f_m \rangle$ represents the miter circuit
- $J \subseteq \mathbb{F}_2[A, B, Z, Z_1, a_0, a_1, b_0, b_1, r_0, s_0, \ldots, s_3, t]$
- Verification problem: is the variety $V_{\mathbb{F}_4}(J) = \emptyset$?
- How will we solve this problem?
Weak Nullstellensatz over \mathbb{F}_{2^k}

Theorem (Weak Nullstellensatz over \mathbb{F}_{2^k})

Let ideal $J = \langle f_1, \ldots, f_s \rangle \subset \mathbb{F}_{2^k}[x_1, \ldots, x_n]$ be an ideal. Let $J_0 = \langle x_1^{2^k} - x_1, \ldots, x_n^{2^k} - x_n \rangle$ be the ideal of all vanishing polynomials. Then:

$$V_{\mathbb{F}_{2^k}}(J) = \emptyset \iff V_{\mathbb{F}_{2^k}}(J + J_0) = \emptyset \iff \text{reducedGB}(J + J_0) = \{1\}$$

Proof:

\[
V_{\mathbb{F}_{2^k}}(J) = V_{\mathbb{F}_{2^k}}(J) \cap \mathbb{F}_{2^k} = V_{\mathbb{F}_{2^k}}(J) \cap V_{\mathbb{F}_{2^k}}(J_0) = V_{\mathbb{F}_{2^k}}(J) \cap \overline{V_{\mathbb{F}_{2^k}}}(J_0) = V_{\mathbb{F}_{2^k}}(J + J_0)
\]

Remember: $V_{\mathbb{F}_q}(J_0) = \overline{V_{\mathbb{F}_q}}(J_0)$. The variety of J_0 does not change over the field or the closure!
Apply Weak Nullstellensatz to the Miter

- Note: Word-level polynomials $f_A : A + a_0 + a_1 \alpha \in \mathbb{F}_{2^k}$
- Gate level polynomials $f_4 : s_0 + a_0 \cdot b_0 \in \mathbb{F}_2$
- Since $\mathbb{F}_2 \subset \mathbb{F}_{2^k}$, we can treat ALL polynomials of the miter, collectively, over the larger field \mathbb{F}_{2^k}, so $J \subseteq \mathbb{F}_{2^k}[A, B, Z, Z_1, a_0, a_1, \ldots, z_0, z_1]$
- Consider word-level vanishing polynomials: $A^{2^2} - A$
- What about bit-level vanishing polynomials: $a_0^2 - a_0$
- So, $J_0 = \langle W^{2^k} - W, B^2 - B \rangle$, where W are all the word-level variables, and B are all the bit-level variables
- Now compute $G = GB(J + J_0)$. If $G = \{1\}$, the circuit is correct. Otherwise there is definitely a BUG within the field \mathbb{F}_{2^k}
Recall the CNF-SAT problem

- Given a CNF formula \(f(x_1, \ldots, x_n) = C_1 \land C_2 \land \cdots \land C_s \)
 - Each \(C_i \) is a clause, i.e. a disjunction of literals
- Find an assignment to variables \(x_1, \ldots, x_n \), s.t. \(f = true \)
- We can formulate this problem over the (Boolean) ring \(\mathbb{Z}_2[x_1, \ldots, x_n] \)
- Model clauses as polynomials \(f_1, \ldots, f_s \in \mathbb{Z}_2[x_1, \ldots, x_n] \)
- Apply Gröbner basis concepts to reason about SAT/UNSAT (think varieties!)
Be careful about problem formulation

In the SAT world, formula SAT means:

\[C_1 = 1 \]
\[C_2 = 1 \]
\[\vdots \]
\[C_s = 1 \]

In the polynomial world, solving means:

\[f_1 = 0 \]
\[f_2 = 0 \]
\[\vdots \]
\[f_s = 0 \]
Be careful about problem formulation

In the SAT world, formula SAT means:

\[
\begin{align*}
C_1 &= 1 \\
C_2 &= 1 \\
&\quad \vdots \\
C_s &= 1
\end{align*}
\]

\[\iff (C_i = 1) \iff (\overline{C_i} = 0) \iff (C_i \oplus 1 = 0)\]

In the polynomial world, solving means:

\[
\begin{align*}
f_1 &= 0 \\
f_2 &= 0 \\
&\quad \vdots \\
f_s &= 0
\end{align*}
\]
Be careful about problem formulation

In the SAT world, formula SAT means:

\begin{align*}
C_1 &= 1 \\
C_2 &= 1 \\
&\vdots \\
C_s &= 1
\end{align*}

In the polynomial world, solving means:

\begin{align*}
f_1 &= 0 \\
f_2 &= 0 \\
&\vdots \\
f_s &= 0
\end{align*}

\[(C_i = 1) \iff (\overline{C_i} = 0) \iff (C_i \oplus 1 = 0)\]

Translate: \((C_i \oplus 1 = 0)\) as \(f_i + 1 = 0\) over \(\mathbb{Z}_2\)
Example

- \(f(a, b) = (a \lor \neg b) \land (\neg a \lor b) \land (a \lor b) \land (\neg a \lor \neg b) \)

- Convert each \(C_i \) from \(\mathbb{B} \) to \(\mathbb{Z}_2 \)
- Consider \(C_1 : (a \lor \neg b) \)
 - \(C_1 : (a \lor (1 \oplus b)) = a \oplus (a \oplus b) \oplus a(1 \oplus b) = 1 \oplus b \oplus ab \)
 - Here \(\oplus = XOR = + \ (mod \ 2) \)
 - Over \(\mathbb{Z}_2 \), + (mod 2) is implicit, so we write: \(C_1 : 1 + b + ab \)
- Similarly: \(C_2 : 1 + a + ab; \ C_3 : a + b + ab; \ C_4 : 1 + ab \)

However: this still corresponds to \(C_i = 1 \), whereas we need \(C_i + 1 = 0 \) over \(\mathbb{Z}_2 \)
Example

In the SAT world:

\[
\begin{align*}
C_1 & : (a \lor \neg b) = 1 \\
C_2 & : (\neg a \lor b) = 1 \\
C_3 & : (a \lor b) = 1 \\
C_4 & : (\neg a \lor \neg b) = 1
\end{align*}
\]

In the polynomial world

\[
\begin{align*}
f_1 & : b + ab = 0 \\
f_2 & : a + ab = 0 \\
f_3 & : a + b + ab + 1 = 0 \\
f_4 & : ab = 0
\end{align*}
\]

- Now \(J = \langle f_1, \ldots, f_4 \rangle \) generates an ideal in \(\mathbb{Z}_2[a, b] \)
- We need to analyze \(V_{\mathbb{Z}_2}(J) \)
Apply Nullstellensatz to Boolean rings $\mathbb{Z}_2[x_1, \ldots, x_n]$

Boolean rings: Rings with indempotence $a \land a = a$ or $a^2 = a$

- Consider the ideal of vanishing polynomials
 - In \mathbb{Z}_p, $x^p = x \pmod{p}$, or $x^p - x = 0$
 - In \mathbb{Z}_2: $x^2 - x$ vanishes on $\{0, 1\}$: vanishing polynomial
- Let $J_0 = \langle x_1^2 - x_1, x_2^2 - x_2, \ldots, x_n^2 - x_n \rangle$ denote the ideal of all vanishing polynomials
- $V_{\mathbb{Z}_2}(J_0) = (\mathbb{Z}_2)^n$ (the n-dimensional space over \mathbb{Z}_2)
- Variety of J_0 doesn’t change over the closure: $V_{\mathbb{Z}_2}(J) = (\mathbb{Z}_2)^n$
- These vanishing polynomial restrict the solutions to only over \mathbb{Z}_2
- So compute

 $G = GB(J + J_0) = GB(f_1, \ldots, f_s, x_1^2 - x_1, x_2^2 - x_2, \ldots, x_n^2 - x_n)$
- If $G \neq \{1\}$ then definitely there is a SAT solution within \mathbb{Z}_2
Theorem (Weak Nullstellensatz over Boolean Rings)

Let ideal $J = \langle f_1, \ldots, f_s \rangle \subset \mathbb{Z}_2[x_1, \ldots, x_n]$ and let $J_0 = \langle x_1^2 - x_1, \ldots, x_n^2 - x_n \rangle$. Then $V_{\mathbb{Z}_2}(J) = \emptyset \iff$ the reduced $\text{GB}(J + J_0) = \text{GB}(f_1, \ldots, f_s, x_1^2 - x_1, \ldots, x_n^2 - x_n) = \{1\}$.

If $\text{GB}(J + J_0) = \{1\}$ then the problem is UNSAT.

If $\text{GB}(J + J_0) \neq \{1\}$ then there is definitely a solution in \mathbb{Z}_2.

Notation for Sum of Ideals: If $J_1 = \langle f_1, \ldots, f_s \rangle$ and $J_2 = \langle g_1, \ldots, g_t \rangle$, then $J_1 + J_2 = \langle f_1, \ldots, f_s, g_1, \ldots, g_t \rangle$
If $GB \neq \{1\}$, is $V(J)$ finite or infinite?

Theorem

Let F be any field and \overline{F} be its closure, and $J \subseteq F[x_1, \ldots, x_n]$ be an ideal. Let $G = \{g_1, \ldots, g_t\}$ be a Gröbner basis of J. Then:

\[V_{\overline{F}}(J) = \text{finite} \iff \forall x_i \in \{x_1, \ldots, x_n\}, \exists g_j \in G, \text{s.t.} \text{lm}(g_j) = x_i^l, \text{for some } l \in \mathbb{N} \]
Example of a finite variety

Example

\[R = \mathbb{Q}[x, y], \ f_1 = (x - 1)^2 + y^2 - 1; \ f_2 = 4(x - 1)^2 + y^2 + xy - 2. \]

\[G = GB(f_1, f_2) \text{ with } \text{lex } x > y \]

\[G = \{ g_1 = 5y^4 - 3y^3 - 6y^2 + 2y + 2, \ g_2 = x - 5y^3 + 3y^2 + 3y - 2 \} \]

Variety is finite.
Solve the system of equations:

\[f_1 : x^2 - y - z - 1 = 0 \]
\[f_2 : x - y^2 - z - 1 = 0 \]
\[f_3 : x - y - z^2 - 1 = 0 \]

Gröbner basis with lex term order \(x > y > z \)

\[g_1 : x - y - z^2 - 1 = 0 \]
\[g_2 : y^2 - y - z^2 - z = 0 \]
\[g_3 : 2yz^2 - z^4 - z^2 = 0 \]
\[g_4 : z^6 - 4z^4 - 4z^3 - z^2 = 0 \]

- Is \(V(\langle G \rangle) = \emptyset \)? No, because \(G \neq \{1\} \)
- \(G \) tells me that \(V(\langle G \rangle) \) is finite!
- \(G \) is triangular: solve \(g_4 \) for \(z \), then \(g_2, g_3 \) for \(y \), and then \(g_1 \) for \(x \)
Definition (Zero-Dimensional Ideals)

An ideal J is called **zero dimensional** when its variety $V(J)$ is a finite set.

- $V_{F_q}(J)$ is a finite set
- $V_{F_q}(J)$ need not be a finite set, as $\overline{F_q}$ is an infinite set
- So, ideal J may or may not be zero dimensional
- $V_{F_q}(J) = V_{\overline{F_q}}(J + J_0) = V_{F_q}(J + J_0)$ is always a finite set, as solutions are restricted to $\overline{F_q}$
- Ideal $J + J_0$ is zero dimensional!

The Gröbner basis of $J + J_0$ has a very special structure!
The GB of $J + J_0$ in $\mathbb{F}_q[x_1, \ldots, x_n]$

Theorem (Gröbner bases in finite fields (application of Theorem 2.2.7 from [4] over \mathbb{F}_q))

For $G = \text{GB}(J + J_0) = \{g_1, \ldots, g_t\}$, the following statements are equivalent:

1. The variety $V_{\mathbb{F}_q}(J)$ is finite.
2. For each $i = 1, \ldots, n$, there exists some $j \in \{1, \ldots, t\}$ such that $\text{lm}(g_j) = x_i^l$ for some $l \in \mathbb{N}$.
3. The quotient ring $\mathbb{F}_q[x_1, \ldots, x_n]/\langle G \rangle$ forms a finite dimensional vector space.
Count the number of solutions

Example

\[G = GB(J) = \{ x^3 y^2 - y; \ x^4 - y^2; \ xy^3 - x^2; \ y^4 - xy \}. \] Consider only the leading monomials in \(G \). \(LT(G) = \{ x^3 y^2, x^4, xy^3, y^4 \}. \)

List all monomials \(m \) s.t. \(m \) is not divisible by any monomial in \(LT(G) \):

Standard Monomials \(SM = \{ 1, x, x^2, x^3, y, y^2, y^3, xy, xy^2, x^2 y, x^2 y^2, x^3 y \} \)

Cardinality \(|SM| \) = an upper bound on the number of solutions (=12 in the above example)

In general, \(|V(J)| \) is bounded by \(|SM(J)| \), but over finite fields, the following result holds, where the upper bound becomes an equality!
For a GB G, let $LM(G)$ denote the set of leading monomials of all elements of G: $LM(G) = \{lm(g_1), \ldots, lm(g_t)\}$.

Definition (Standard Monomials)

Let $X^e = x_1^{e_1} \cdots x_n^{e_n}$ denote a monomial. The set of standard monomials of G is defined as $SM(G) = \{X^e : X^e \notin \langle LM(G) \rangle\}$.

Theorem (Counting the number of solutions (Theorem 3.7 in [5]))

Let $G = GB(J + J_0)$, and $|SM(G)| = m$, then the ideal J vanishes on m distinct points in \mathbb{F}_q^n. In other words, $|V_{\mathbb{F}_q}(J)| = |SM(G)|$.
Verification over Composite Fields

- Given arbitrary circuits C_1, C_2: m-bit inputs, n-bit outputs
- Suppose m does NOT divide n: $m \nmid n$
- For example, if $m = 3, n = 2$, then how to construct a miter over a single field \mathbb{F}_q?
- Solve the problem over the smallest single field containing both \mathbb{F}_{2^m} and \mathbb{F}_{2^n}.
- Let $k = LCM(m, n)$, then solve the problem over \mathbb{F}_{2^k}.
 - Now $m \mid k$ and $n \mid k$
- What about primitive polynomials and primitive elements?
Composite Field Miter

Circuit \(C_1 \)
\[J_1 = \langle f_1, \ldots, f_s \rangle \]

Circuit \(C_2 \)
\[J_2 = \langle h_1, \ldots, h_r \rangle \]

\[f_m: t(X-Y) = 1 \]

\[A \in \mathbb{F}_{2^m}, X, Y \in \mathbb{F}_{2^n} \]

Nets of the circuits: Boolean variables \(x_1, \ldots, x_n \in \mathbb{F}_2 \)

\(t \in \) which field?

Figure: The equivalence checking setup: miter.
Pick \(P_m(X) \) as a primitive polynomial of degree \(m \), \(P_m(\beta) = 0 \)

Pick \(P_n(X) \) as another primitive polynomial of degree \(n \), \(P_n(\gamma) = 0 \)

Compute \(k = \text{LCM}(m, n) \), pick \(P_k(X) \) as another primitive polynomial of degree \(k \), \(P_k(\alpha) = 0 \)

\[
\alpha^{2^k - 1} = \beta^{2^m - 1}
\]

\[
\beta = \alpha^{\frac{2^k - 1}{2^m - 1}}
\]

\[
\alpha^{2^k - 1} = \gamma^{2^n - 1}
\]

\[
\gamma = \alpha^{\frac{2^k - 1}{2^n - 1}}
\]
Example: \(m = 3, n = 2, k = \text{LCM}(3, 2) = 6 \)

From Eqns. (2)-(3) on previous slides: \(\beta = \alpha^9, \gamma = \alpha^{21} \)

\(A \in \mathbb{F}_{2^3} : A = a_0 + a_1 \beta + a_2 \beta^2 = a_0 + a_1 \alpha^9 + a_2 \alpha^{18} \)

\(X = x_0 + x_1 \gamma = x_0 + x_1 \alpha^{21} \), same for \(Y \)

All the bit-level variables in \(\mathbb{F}_2 \subset \mathbb{F}_{2^k} \)

Ideals \(J_1, J_2 = \) polynomials for the gates in the design

Ideal of vanishing polynomials:
\[J_0 = \langle A^{2^m} - A, X^{2^n} - X, Y^{2^n} - Y, t^{2^n} - t, x_i^2 - x_i : x_i \in \text{bit-level} \rangle \]

\(J = J_1 + J_2 + \langle f_m \rangle = \langle f_1, \ldots, f_s, h_1, \ldots, h_r, f_m \rangle \)

Compute \(G = GB(J + J_0) = \{1\} \) in \(\mathbb{F}_{2^k}[A, X, Y, t, x_i] \)?

