
1

ECE/CS 5745/6745: Testing and Verification
of Digital Circuits

Hardware Verification Using Symbolic

Computation

Prepared by Priyank Kalla

Fall 2023, Homework # 5
Due Date: Nov 10, by midnight. Please complete the HW by the due date, as I

will give you next and last HW right after. This is a short and relatively
straight-forward HW, the next one will require programming in Singular.

• (Reading Assignment) Please read the book chapter I’ve provided on Galois fields and hardware

design, uploaded on the class website.

• (To make your Mathy-life easy) For your benefit, a LATEX tarball is also uploaded on the class

website, under the ’CAD tools and other resources’ section. If you aren’t a LATEX expert, you

can now get started with using LATEX for typesetting technical documents and manuscripts.

I hope you will be brave enough to typeset this HW and subsequent HWs also in LATEX ,.

Download the tarball, and go through the file latex-for-class.pdf. It is self-explanatory.

• This HW assignment gives you some practice with the following concepts: (i) Some basic

concepts of Galois fields (GF); (ii) design of GF circuits; and (iii) setting up verification

problems in Singular. The theory of equivalence checking using algebraic techniques will follow

in the next two assignments. For all computations, you are strongly encouraged to use Singular.

• Singular is installed on the CADE lab machines under ’/usr/local/bin/Singular’. Notice

that the ’S’ in Singular is upper-case. Feel free to download the latest version on your own

personal computers for use.

• Along with this HW, I am uploading some example Singular files, particularly the ones that

I used to give you a demo in class.



2

• On a unix terminal, the way to load a singular script file is as follows:

prompt>> Singular

SINGULAR /

A Computer Algebra System for Polynomial Computations / version 3­1­1

0<

by: G.­M. Greuel, G. Pfister, H. Schoenemann \ Feb 2010

FB Mathematik der Universitaet, D­67653 Kaiserslautern \

> < "finite­field­demo.sing";

Okay, so the HW questions are as follows:

1) (Finite fields – 20 points.) In class, we generated the field F16 as F2[x] (mod x4 + x3 + 1), where

x4 + x3 + 1 is a primitive polynomial. Now you are asked to generate F16 = F2[x] (mod P(x))

where P(x) = x4 + x3 + x2 + x+ 1, and let P(α) = 0. Identify a primitive element of the field.

In other words, find an element β such that β = a3α
3 + a2α

2 + a1α+ a0 for ai ∈ {0, 1}, and

that F16 = {0, 1 = β15, β, β2, . . . , β14}.

2) (Understanding Vanishing Polynomials and field containment – 10 points). In class, we have seen

that for any field Fq, we have that xq = x or xq − x = 0 for all x ∈ Fq. We call xq − x as

the vanishing polynomial (or the field polynomial) of Fq, as every element of Fq is a root of

xq − x. Note that any element outside of Fq may not satisfy xq − x = 0. Now, let Fq1 and Fq2

be two finite fields such that Fq1 ⊂ Fq2. Then for all elements x ∈ Fq1, we will have xq1 = x.

Similarly, for all y ∈ Fq2, we will have yq2 = y. However, we may or may not have yq1 = y.

You will confirm this with the following experiment:

In my book chapter, consider Ex. 1.1 and 1.2, along with Fig. One.1 in Section IV. Here we

construct F16 = F2[x] (mod P(x) = x4+x3+1), with P(α) = 0. We found that α5, α10
∈ F4 =

F2[x] (mod x2+x+1). Show that α5, α10 satisfy (are the roots of) x4−x, whereas any element

outside of F4 = {0, 1, α5, α10} does not satisfy x4 − x, but it should satisfy x16 − x. You may

use Singular for this computation.

3) (A finite fields challenge for ECE/CS 6745 students – 20 points. ECE/CS 5745 students are not required

to solve it, but they can attempt it for extra credit.) Let α1, α2, . . . , αt be arbitrary elements in



3

F2k. Prove that:

(α1 + α2 + · · ·+ αt)
2i

= α2i

1 + α2i

2 + · · ·+ α2i

t

for i = 1, 2, . . . [Hint: You could first try to prove (a + b)2 = a2 + b2 in F2k, then generalize

the result using induction. Alternatively, you can also try to exploit the binomial expansion

theorem: (a+ b)p =
p∑

k=0

(

p
k

)

ap−kbk, set p = 2 and reduce the coefficients modulo p = 2, and

then continue on with induction.]

4) (GF multiplier design & Miter construction – 30 points) In my slides and in my book chapter on

finite fields, I have shown you how to design a Mastrovito multiplier circuit that performs

multiplication Z = A · B (mod P(x)), where A = {ak−1, . . . , a0}, B = {bk−1, . . . , b0} are 2 k-bit

inputs, Z = {zk−1, . . . , z0} is the k-bit output and P(x) is the given primitive polynomial. In

the slides, I have given you a design of a 4-bit circuit, as well as that of a 2-bit circuit. In

addition, the book chapter also shows a circuit schematic for a 4-bit Mastrovito multiplier.

Study these multiplier design concepts carefully, and then:

a) Design a 3-bit Mastrovito multiplier over the Galois field F8 = F2[x] (mod P(x)) using

P(x) = x3 + x + 1.

b) In the lecture slides on GF, I have also shown you how to construct a miter between a

polynomial spec and a circuit implementation (towards the end of that slide-set).

c) Moreover, on the class webpage, along with this HW, I have also uploaded a file ’2-bit-

multiplier.sing’ that shows: i) how to create/write an algebraic miter in Singular; ii) declare

the ideal J generated by the miter’s polynomials; and iii) compute the Gröbner basis ’G =

groebner(J)’. Study this file and execute it in Singular to interpret the result. [I will explain

in the class what the algebraic constructs ideal and Gröbner bases are.]

d) Create a similar ’algebraic miter’ between your 3-bit GF multiplier and the spec fspec :

Z+A ·B. Describe the ideal J generated by the miter’s polynomial in Singular and compute

it’s Gröbner basis ’groebner(J)’. What do you observe?

e) Can you ascertain whether or not your design is indeed a correct (bug-free) implementation?

Explain.

f) Now purposely introduce a bug in the design – say, by changing some gate – and then

observe the output of ’groebner(J)’.

g) Submit your circuit schematic, the polynomial ideal, the singular file, and its output.



4

5) Lagrange Interpolation (20 points) Consider the function (mapping) f : B3
→ B

3 shown in the

truth-table below.

A = {a2a1a0} 7→ Z = {z2z1z0}

000 7→ 000

001 7→ 001

010 7→ 111

011 7→ 111

100 7→ 101

101 7→ 011

110 7→ 101

111 7→ 101

Interpret this function f : B3
→ B

3 as a function f : F23 → F23. Recall from the lecture slides

on finite fields (also see Sec VI in my book chapter on finite fields), any function f : Fq → Fq

is a polynomial function; i.e. there exists a polynomial Z = F(A) that describes this function.

a) Using the Lagrange’s interpolation formula (Eqn. One.5, Sec VI in my book chapter), derive

a unique, minimal, canonical polynomial representation of the function as Z = F(A) over

F23. In other words, derive an expression for F(A) ∈ F23[A]. Once again, you should use

Singular to compute F(A).

b) Using Singular, evaluate the derived polynomial expression F(A) for all inputs, and show

that your polynomial correctly models the given function. You are essentially performing

simulation-based verification here! [Hint: see the subst command in Singular].

c) In the next homework, you will design a circuit corresponding to this function and perform

formal equivalence checking using Gröbner bases.


