
1

ECE/CS 5745/6745: Testing and Verification
of Digital Circuits

Hardware Verification Using Symbolic
Computation

Prepared by Priyank Kalla
Fall 2024, Homework # 4

Due Date: Thursday Oct 26, 2023. Upload on Canvas by midnight.

Z2

Z1

c

b

a

B

A

C

Fig. 1: Test for faults b/1, tests for distinguishing a/0 from c/0 and test for multi-fault {a/0, b/1}.

1) [ATPG: 15 points] For the circuit shown in Fig. 1:

a) Find the set of all tests that detect single stuck-at fault b s-a-1.

b) Find the set of all tests that distinguish between single stuck-at faults (i.e. their fault effects)

a s-a-0 and c s-a-0.

c) Derive a test for the multi-fault { a s-a-0, b s-a-1 }.

d) Based on the outcome of the above three tests, state your observations regarding the (un)testability

of single and multi-faults. [If you are confused, refer to the appropriate class slides on multiple

stuck-at faults].

2) [ATPG Checkpoints: 25 points] For the circuit shown in Fig. 2, solve the following:

a) (10 pts) Suppose we wish to derive a set of tests to distinguish between all distinguishable

single stuck-at faults in the circuit of Fig. 2. Identify a set of faults for which tests need not



2

be derived.

b) (5 pts) List all the checkpoint faults of this circuit.

c) (10 pts) Find a smallest/minimal subset of checkpoint faults that must be targeted for

test generation if the detection of all single stuck-at faults is the goal.

p

Gate 6

q

d

c

Gate 5

Gate 3

Gate 2

h

g

e

Gate 1

Zb

rn

m

a

k

j

f

Gate 4

Fig. 2: The circuit diagram related to Checkpoint faults

3) [Stuck-at faults at fanout stems and branches: 20 points] For the circuit shown in Fig. 2:

a) (15 pts) Derive a test that detects the following single faults (i) k/1; (ii) m/1; and (iii)

n/1. You should use path-sensitization to derive these tests. Of course, you can check your

answer by setting up the problem as a miter between a fault-free and a faulty circuit, and

use the ’cec’ command of ABC!

b) (5 pts) If any of the above faults is undetectable, remove the redundancy by removing

redundant gates and/or lines.

4) [20 points] This question is for ECE/CS 6745 students. ECE/CS 5745 students may solve it for extra

credit. Let N be a combinational circuit composed only of NAND gates. Assume that all the

primary inputs of the circuit have a fanout of exactly one (1). Show that any test set T that

detects all single stuck-at-1 faults in the circuit, detects all single stuck-at-0 faults as well. Note:

Do not assume that the circuit is fanout-free. Only the primary inputs (PIs) are fanout

free. (A fanout of 1 means that the gate output is connected to only 1 other gate input,

and this gate is also referred to as being fanout-free).



3

5) [10 points: Equivalence checking versus bug-detection in arithmetic circuits]. On the class website,

along with this HW, I have uploaded two BLIF files. They correspond to a 16-bit Mastro-

vito GF multiplier (MastrovitoF_q16.blif) and another 16-bit Montgomery GF multiplier

(MontgomeryF_q16.blif). As described in my book chapter, (which we will study in the next

few lectures) these architectures perform modulo-multiplication, but are based on different

mathematical concepts; due to which these designs do not exhibit any internal structural or

functional equivalences. As a result, SAT/AIG-based techniques are unable to prove equiva-

lence between them. Instead of taking my word for it, you will gain a first-hand experience for

yourself.

• Input the two designs into the ABC tool, and miter them.

• Using print_stats, strash, ifraig, print_stats, identify the structural similarity

in the design. Let N1 be the number of AIG nodes in the miter before fraiging, and N2

be the number of AIG nodes after fraiging. Then N1−N2

N1

roughly depicts the structural

similarity as a percentage.

• Solve sat on the miter (or equivalently run the ’cec’ command) to perform the combi-

national equivalence check. How many years does it take to prove equivalence of (fairly

small) 16-bit datapath circuits? ,

• Now introduce a bug in any one of these circuits, by making any modification to any one of

the BLIF files. Now run ABC-CEC and report whether bug catching or correctness proofs

for arithmetic circuits is easier.


