ECE/CS 5745/6745: Testing & Verification of
Digital Circuits

Prepared by Priyank Kalla
Fall 2025, Homework # 3
Due Date: Wed Oct 15, 2025, by midnight. Upload on Canvas.

Note: The HWs should be uploaded by the students electronically on Canvas. Please have the HW
completed by midnight Oct 15.

In this assignment, you will get introduced to two types of tools that are used in design verifica-
tion: i) SAT solvers; and ii) AIG-based synthesis and verification tool ABC. You should download,
compile and install these tools on your personal and/or (CADE) lab machines (in your home
directories, of course). The URLs to access these tools are available on the class website under
the “CAD, Verification, and Computer Algebra Tools and Resources” section.

SAT solvers: Many SAT solvers are freely available on the web, feel free to download and install
any and all of them. Both Lingeling (recent SAT competition winner) and Picosat solvers from
Prof. Armin Biere (Univ. Freiburg, DE) can be downloaded and compiled. I have also uploaded my
own compiled copy of the zChaff solver on the class website. All the SAT solvers use the DIMACS
Conjunctive Normal Form (CNF) file format, which writes one clause per line.

The ABC tool: ABC is a And-Invert-Graph (AIG) based logic synthesis and verification tool,
available from Alan Mishchenko of UC Berkeley. Downloading and compiling is quite painless. Go
to Alan’s ABC website — the URL is also given on the class website:
https://people.eecs.berkeley.edu/~alanmi/abc/ — download the ABC source and compile the pack-
age. I've also uploaded an older version of my personal compiled copy for you (in case you are
having problems in compiling the tool). Please also go through the ABC manual and tutorials
available on Alan’s website.

Sample BLIF, EQN and CNF files: The ones needed for the experiments are uploaded along with
this document. ABC works with all of these file formats.

BLIF to CNF Conversion: The ABC tool can convert a blif file to a CNF or EQN file: read_blif,
write_cnf, or read_blif, write_eqgn. I have also uploaded a Perl Script blif2cnf.pl, which can

convert a BLIF file to a CNF file for you. Note that a BLIF file has net names, whereas a CNF file


https://people.eecs.berkeley.edu/~alanmi/abc/

uses numbers to denote a literal or its complement. The blif2cnf.pl script can also write out a file
with info on how the net names were mapped to numbers: perl blif2cnf.pl -m fname <file>.

It would be a good idea to install these tools in a 'tools’ directory in your own home-dir, and
also update your PATH environment variable to point to these executables. Later, when you start
working on the programming assignments and projects, you may have to modify the source-
code of some of these tools. Therefore, 1t would be a good idea to try to compile them, and
start reading their user and programmer’s manuals. Just to get started for this assignment,
you could use my pre-compiled binaries; however, you cannot rely on them forever. I will also
request that you help each other in compiling and installing these tools. In case the newer
versions of these tools require modification of the Makefiles or configure files (and you have
figured it out!), please document those changes and share with the class and with me. Feel free
to use the discussion forum on our Canvas website for issues with tool usage.

Now, let us get to the assignment:

b

) f u
L
Cc y v
L 4 e
E— w
d

Fig. 1: The circuit for equivalence checking

1) [Simulation vector generation, 30 points] Consider the circuit of Fig. 1. You are asked to identify
an input vector that excites u =1,v =1,w =0 at the primary outputs. Formulate and solve
the problem using SAT, i.e. using a SAT solver.

a) Write the CNF file (your own CNF file, manually!) corresponding to the above problem,
and execute a SAT solver on this file. Use any SAT solver.

b) Make sure to associate the names of the nets of the circuit to the variable number in the
CNF file. Read the CNF-SAT solver’s output to identify the simulation vector. Write the
obtained simulation vector.

c) Repeat the experiment for u=v=w=1.

d) Submission: Describe your problem formulation and attach your solver’s output. Explain

how you converted the logic gates to CNF clauses. Which SAT solver did you use?



2) [AlG-based equivalence check, 20 points] This experiment will help you gain some experience
with the usage and the capabilities of AIG-based tool ABC. In this question, you will use
ABC to perform combinational equivalence checking (cec) between two designs: C7552.blif
and C7552_opt.blif. Then you will introduce a bug in the design and use ABC to detect the

presence of the bug(s). Proceed as follows:

a) To verify the two circuits using ABC, the commands that you need to explore in ABC are:
help,
read_blif,
strash (builds AIG for the circuit),
print_stats,
ifraig -sv (does fraiging to identify and merge equivalent nodes in the network),
miter (builds a miter between two BLIF files),
cec, (combinational equivalence checking)
write_blif,
write_cnf, etc.

You will use these commands to explore the use of ABC.

b) The -h option tells you how to use a command. Eg: 'ifraig -h’, 'miter -h’, etc. Most of
the commands have a ’-v’ option, which denotes high verbosity level. Try to use -v where
available, so you can get more information from the tool.

c) First of all, create a miter between filel and file2 (miter filel.blif file2.blif).

d) Then, use the following sequence of commands: strash; print_stats; ifraig -sv; print_stats.
This will tell you the number of AIG nodes in the miter-circuit prior to and post FRAIGing.

e) Then perform combinational equivalence checking between C7552.b1lif and C7552_opt.blif
using the cec command.

f) To experiment with both bug-free and buggy designs, modify some logic function in the
C7552_opt.blif file to introduce a bug — e.g. change a gate, or change inputs to a gate, etc.
Does ABC provide you with a counter-example that excites the bug in the design?

g) To compare the performance of ABC-CEC with SAT-based CEC, you can perform the
following experiment: i) miter filel.blif file2.blif; ii) write cnf miter.cnf; iii) then invoke a
SAT solver on miter.cnf. [The only issue is that the miter command of ABC already does
some FRAIGing and reduces the AIGs in the CEC instance, so the miter.cnf file is already
kind of optimized|. Nevertheless, try to run SAT on miter.cnf and compare the run-time

stats.



h) Submission: Briefly describe your experiments, and also your conclusions from these experi-
ments. Print the AIG stats for the circuits, the number of AIG nodes removed by FRAIGing,
and attaching the script/output of your ABC run.

i) In all the experiments, try to use the verbose options (-v) of the tools/commands, and print
out as much information (print stats) that you can from the tools. It will give you an idea

of various operations and their results.

3) (Rectification of buggy circuits with Craig Interpolation — 50 points.)

a) Consider the circuit of Fig. 2. Assume that this is a “specification” model (Spec). Write the
corresponding BLIF file for this circuit: spec.blif.

f u

)
L
c \j?y v
d

Fig. 2: The specification circuit for the rectification problem

b) Consider the net e = a-b in the circuit. Introduce a bug by changing this gate in the circuit
to an OR gate, i.e. introduce the buggy gate: e = a \V b. Write the corresponding buggy
implementation blif file: impl.blif.

c) Perform equivalence checking using ABC: cec spec.blif impl.blif. Confirm that the gate
change is indeed a bug, i.e. confirm that CEC generates a counter-example to equivalence.

d) This bug should be rectifiable at the same net e, of course. Using the single-fix rectification
theorem (Thm 1 in our slides on rectification), confirm if the circuit can be rectified at net
e.

o Explain how are you performing this experiment. From our slides, you may recall that the
circuit is rectifiable at a net x; if and only if the intersection of the miters is UNSAT, i.e.
Mo A M; = L. How are you performing this check using ABC and SAT?

o Hint: You could write out M,.blif and M;.blif as BLIF files using ABC, and then combine
them with an AND gate thml.blif, and then run SAT on them. If you do so, make
sure to simplify the BLIF files: e.g., miter spec.blif impl.blif; strash; ifraig -sv;
collapse; resyn; write_blif MO.blif.



e)

f)

g)

o Also, remember to constrain the output of the final AND gate to 1.
e You can also use the BLIF 2 CNF Perl Script.

Subsequently, compute the rectification functions using both the smallest and the largest
interpolants, and validate your result by re-running CEC with the rectified functions.

For the bug e = aVV'b, can the circuit be rectified at net g7 If so, compute the corresponding
rectification function at g for the bug at e. Keep in mind the fanout at net f.

Important Note: Note that the computations for the rectification check as well as for the
rectification function can be performed manually (of course), but also using ABC. Since the
rectification function can be computed as an interpolant of appropriate My and M; miters
(see slides pp. 12), | want you to compare your results of rectification functions computed using
smallest and the largest interpolants against the one provided by ABC. Recall, ABC has a heuristic
procedure to compute any interpolant between (and including) the smallest and the largest
one.

To compute interpolants using ABC, see command: “inter -h”. I have created two blif
files “ci_A.blif, ci_B.blif” corresponding to the example given on my rectification slides
on page 15. Run the commands: “inter ci_A.blif ci_B.blif; write_blif inter.blif”,
and see in the file inter.blif which interpolant is computed. These files are uploaded with

this HW assignment.



