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Integral and Euclidean Domains

Definition

An integral domain R is a set with two operations (+, ·) such that:

1 The elements of R form an abelian group under + with additive
identity 0.

2 The multiplication is associative and commutative, with multiplicative
identity 1.

3 The distributive law holds: a(b + c) = ab + ac .

4 The cancellation law holds: if ab = ac and a 6= 0, then b = c .

Examples: Z,R,Q,C,Zp,F[x ],F[x , y ]. Finite rings Zn, n 6= p are not
integral domains.
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Euclidean Domains

Definition

A Euclidean domain D is an integral domain where:

1 associated with each non-zero element a ∈ D is a non-negative
integer f (a) s.t. f (a) ≤ f (ab) if b 6= 0; and

2 ∀a, b (b 6= 0),∃(q, r) s.t. a = qb + r , where either r = 0 or
f (r) < f (b).

Can apply the Euclid’s algorithm to compute g = GCD(g1, . . . , gt)

GCD(a, b, c) = GCD(GCD(a, b), c)

Then g =
∑

i uigi , i.e. GCD can be represented as a linear
combination of the elements
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Euclid’s Algorithm

Inputs: Elements a, b ∈ D, a Euclidean domain
Outputs: g = GCD(a, b)
1: Assume a > b, otherwise swap a, b {/* GCD(a, 0) = a */}
2: while b 6= 0 do

3: t := b
4: b := a (mod b)
5: a := t
6: end while

7: return g := a

Algorithm 1: Euclid’s Algorithm
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GCD(84, 54) = 6

84 = 1 · 54 + 30

54 = 1 · 30 + 24

30 = 1 · 24 + 6

24 = 4 · 6 + 0

Lemma

If g = gcd(a, b) then ∃s, t such that s · a+ t · b = g.

Unroll Euclid’s algorithm to find s, t. A HW assignment!
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Euclidean Domains

D = Z,R,Q,C,Zp

The ring F[x ] is a Euclidean domain where F is any field

The ring R = F[x , y ] is NOT a Euclidean domain where F is any field

For x , y ∈ R ,GCD(x , y) = 1, but cannot write
1 = f1(x , y) · x + f2(x , y)y

Z2k is neither and integral domain not a Euclidean domain
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Fields

Definition

Let D be a Euclidean domain, and p ∈ D be a prime element. Then D

(mod p) is a field.

That is why Z (mod p) is a field

In R[x ], x2 + 1 is a prime — actually called an irreducible polynomial

So R[x ] (mod x2 +1) is a field and is the field of complex numbers C

R[x ] (mod p) = {f (x) | ∀g(x) ∈ R[x ], f (x) = g(x) (mod p)}
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R[x ] (mod x
2 + 1) = C

Let f , g ∈ R[x ] (mod x2 + 1)

f = remainder of division by x2 + 1, it is linear

Let f = ax + b, g = cx + d

f · g = (ax + b)(cx + d) (mod x2 + 1)

= acx2 + (ad + bc)x + bd (mod x2 + 1)

= (ad + bc)x + (bd − ac) after reducing by x2 = −1

Replace x with i =
√
−1, and we get C

C is a 2 (=degree(x2 + 1)) dimensional extension of R

Intuitively, that is why C ⊃ R (containment and closure)
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Recall from my previous slides:

From Rings to Fields

Rings ⊃ Integral Domains ⊃ Unique Factorization Domains ⊃ Euclidean
Domains ⊃ Fields

Now you know the reason for this containment
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Construct Galois Extension Fields

Fp[x ] is a Euclidean domain, let P(x) be irreducible over Fp, and let
degree of P(x) = k

Fp[x ] (mod P(x)) = Fpk , a finite field of pk elements

Denote GFs as Fq, q = pk for prime p and k ≥ 1

Fpk is a k-dimensional extension of Fp, so Fp ⊂ Fpk

Our interest F2k = F2[x ] (mod P(x)) where P(x) ∈ F2[x ] is a
degree-k irreducible polynomial
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Study F2k

Irreducible polynomials of any degree k always exist over F2, so F2k

can be constructed for arbitrary k ≥ 1

Table: Some irreducible polynomials in F2[x ].

Degree Irreducible Polynomials

1 x ; x + 1

2 x2 + x + 1

3 x3 + x + 1; x3 + x2 + 1

4 x4 + x + 1; x4 + x3 + 1; x4 + x3 + x2 + x + 1
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F2k = F2[x ] (mod P(x)), let α be a root of P(x), i.e. P(α) = 0

P(x) has no roots in F2 (irreducible); root lies in its algebraic
extension F2k

Any element A ∈ F2k :
A =

∑k−1
i=0 (ai · αi ) = a0 + a1 · α+ · · · + ak−1 · αk−1 where ai ∈ F2

The “degree” of A < k

Think of A = {ak−1, . . . , a0} as a bit-vector
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Example of F16

F24 as F2[x ] (mod P(x)), where P(x) = x4 + x3 + 1, P(α) = 0

Any element A ∈ F16 = a3α
3 + a2α

2 + a1α+ a0 (degree < 4)

Table: Bit-vector, Exponential and Polynomial representation of elements in
F24 = F2[x ] (mod x4 + x3 + 1)

a3a2a1a0 Expo Poly a3a2a1a0 Expo Poly
0000 0 0 1000 α3 α3

0001 1 1 1001 α4 α3 + 1
0010 α α 1010 α10 α3 + α

0011 α12 α+ 1 1011 α5 α3 + α+ 1
0100 α2 α2 1100 α14 α3 + α2

0101 α9 α2 + 1 1101 α11 α3 + α2 + 1
0110 α13 α2 + α 1110 α8 α3 + α2 + α

0111 α7 α2 + α+ 1 1111 α6 α3 + α2 + α+ 1
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Add, Mult in F2k

Definition

The characteristic of a finite field Fq with unity element 1 is the smallest
integer n such that 1 + · · ·+ 1 (n times) = 0.
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Add, Mult in F2k

Definition

The characteristic of a finite field Fq with unity element 1 is the smallest
integer n such that 1 + · · ·+ 1 (n times) = 0.

What is the characteristic of F2k? Of Fpk?
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Add, Mult in F2k

Definition

The characteristic of a finite field Fq with unity element 1 is the smallest
integer n such that 1 + · · ·+ 1 (n times) = 0.

What is the characteristic of F2k? Of Fpk?

Characteristic = 2 and p, respectively, of course!
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Add, Mult in F2k

Definition

The characteristic of a finite field Fq with unity element 1 is the smallest
integer n such that 1 + · · ·+ 1 (n times) = 0.

What is the characteristic of F2k? Of Fpk?

Characteristic = 2 and p, respectively, of course!

In F2k coefficients reduced modulo 2

α5 + α11 = α3 + α+ 1 + α3 + α2 + 1

= 2 · α3 + α2 + α+ 2

= α2 + α (as characteristic of F2k = 2)

= α13
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Add, Mult in F2k

Definition

The characteristic of a finite field Fq with unity element 1 is the smallest
integer n such that 1 + · · ·+ 1 (n times) = 0.

What is the characteristic of F2k? Of Fpk?

Characteristic = 2 and p, respectively, of course!

In F2k coefficients reduced modulo 2

α5 + α11 = α3 + α+ 1 + α3 + α2 + 1

= 2 · α3 + α2 + α+ 2

= α2 + α (as characteristic of F2k = 2)

= α13

Addition in F2k is Bit-vector XOR operation
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Add, Mult in F2k

α4 · α10 = (α3 + 1)(α3 + α)

= α6 + α4 + α3 + α

= α4 · α2 + (α4 + α3) + α

= (α3 + 1) · α2 + (1) + α (as α4 = α3 + 1)

= α5 + α2 + α+ 1

= α4 · α+ α2 + α+ 1

= (α3 + 1) · α+ α2 + α+ 1

= α4 + α2 + 1

= α3 + α2

Reduce everything (mod P(x) = x4 + x3 + 1), and −1 = +1 in F2k
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Every non-zero element has an inverse

How to find the inverse of α?

HW for you: think Euclidean algorithm!

What is the inverse of α in our F16 example?
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Vanishing Polynomials of Fq

Lemma

Let A be any non-zero element in Fq, then Aq−1 = 1.

Theorem

[Generalized Fermat ′s Little Theorem] Given a finite field Fq, each
element A ∈ Fq satisfies: Aq ≡ A or Aq − A ≡ 0

Example

Given F22 = {0, 1, α, α + 1} with P(x) = x2 + x + 1, where P(α) = 0.

02
2
= 0; 12

2
= 1; α22 = α (mod α2 + α+ 1)

and
(α + 1)2

2
= α+ 1 (mod α2 + α+ 1)
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Irreducible versus Primitive Polynomials

An irreducible poly P(x) is primitive if its root α can generate all
non-zero elements of the field.

Fq = {0, 1 = αq−1, α, α2, α3, . . . , αq−2}
x4 + x3 + 1 is primitive but x4 + x3 + x2 + x + 1 is not

α4 = α3 + α2 + α+ 1

α5 = α4 · α
= (α3 + α2 + α+ 1)(α)

= (α4) + α3 + α2 + α

= (α3 + α2 + α+ 1) + (α3 + α2 + α)

= 1
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Conjugates of α

Theorem

Let f (x) ∈ F2[x ] be an arbitrary polynomial, and let β be an element in

F2k for any k > 1. If β is a root of f (x), then for any l ≥ 0, β2l is also a

root of f (x). Elements β2l are conjugates of each other.

Example

Let F16 = F2[x ] (mod P(x) = x4 + x3 + 1). Let P(α) = 0. Let us find

conjugates of α as α2l .

l = 1 : α2

l = 2 : α4 = α3 + 1

l = 3 : α8 = α3 + α2 + α

l = 4 : α16 = α (conjugates start to repeat)

So α,α2, α3 + 1, α3 + α2 + α are conjugates of each other.
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Get the irreducible polynomial back from conjugates

Example

Over F16 = F2[x ] (mod x4 + x3 + 1), conjugate elements:

α,α2, α4, α8

α3, α6, α12, α24

α7, α14, α28, α56

α5, α10

Minimal Polynomial of an element β

Let e be the smallest integer such that β2e = β. Construct the polynomial
f (x) =

∏e−1
i=0 (x + β2i ). Then f (x) is an irreducible polynomial, and it is

also called the irreducible polynomial of β.
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Get the irreducible polynomial back from conjugates

Minimal polynomial of any element β is: f (x) =
∏e−1

i=0 (x + β2i )

Example

Over F16 = F2[x ] (mod x4 + x3 + 1), conjugate elements and their
minimal polynomials are:

α,α2, α4, α8 : f1(x) = (x +α)(x +α2)(x +α4)(x +α8) = x4+ x3+1

α3, α6, α12, α24 : f2(x) = x4 + x3 + x2 + x + 1

α7, α14, α28, α56 : f3(x) = x4 + x + 1

α5, α10 : f4(x) = x2 + x + 1

Some observations....

Note that f4 = x2 + x + 1 is the polynomial used to construct F4. Also
notice that associated with every element in F2k is a minimal polynomial
and its roots (conjugates), that demonstrate the containment of fields and
also the uniqueness of the fields upto the labeling of the elements.
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Containment of fields and elements

Figure: Containment of fields: F2 ⊂ F4 ⊂ F16

Additive & Multiplicative closure: α5 + α10 = 1, α5 · α10 = 1.
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Containment and Closure

Theorem

F2n ⊂ F2m if n divides m.

Example: F2 ⊂ F22 ⊂ F24 ⊂ F28 ⊂ . . .

F2 ⊂ F23 ⊂ F26 ⊂ . . .

F2 ⊂ F25 ⊂ F210 ⊂ . . .

F2 ⊂ F27 ⊂ F214 ⊂ . . . and so on

Algebraic Closure of Fq

The algebraic closure of F2k is the union of ALL such fields F2n where
k | n.
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Polynomial Functions over Fq

Any combinational circuit with k-bit inputs and k-bit output

Implements a function f : Bk → Bk

Can be viewed as a function f : F2k → F2k or f : Z2k → Z2k

Need symbolic representations: view them as polynomial functions

Treat the circuit f : Bk → Bk as a polynomial function

Please see the last section in my book chapter
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Polynomial Functions f : Fq → Fq

Every function is a polynomial function over Fq

Consider 1-bit right-shift operation Z [2 : 0] = A[2 : 0] >> 1

{a2a1a0} A → {z2z1z0} Z

000 0 → 000 0
001 1 → 000 0
010 α → 001 1
011 α+ 1 → 001 1
100 α2 → 010 α

101 α2 + 1 → 010 α

110 α2 + α → 011 α+ 1
111 α2 + α+ 1 → 011 α+ 1
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Polynomial Functions f : Fq → Fq

Every function is a polynomial function over Fq

Consider 1-bit right-shift operation Z [2 : 0] = A[2 : 0] >> 1

{a2a1a0} A → {z2z1z0} Z

000 0 → 000 0
001 1 → 000 0
010 α → 001 1
011 α+ 1 → 001 1
100 α2 → 010 α

101 α2 + 1 → 010 α

110 α2 + α → 011 α+ 1
111 α2 + α+ 1 → 011 α+ 1

Z = (α2 + 1)A4 + (α2 + 1)A2 over F23 where α3 + α+ 1 = 0
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Polynomial Functions f : Fq → Fq

Theorem

(From [1]) Any function f : Fq → Fq is a polynomial function over Fq,
that is there exists a polynomial F ∈ Fq[x ] such that f (a) = F(a), for all
a ∈ Fq.

Analyze f over each of the q points, apply Lagrange’s interpolation

formula

F(x) =

q∑

n=1

∏
i 6=n(x − xi)∏
i 6=n(xn − xi )

· f (xn), (1)
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Hardware Applications over F2k

Elliptic Curve Cryptography

y2 + xy = x3 + ax2 + b over GF(2k)

R = P + Q

P

Q

−R

R

Compute Slope:
y2 − y1
x2 − x1

Computation of
inverses over F2k is
expensive
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Point addition using Projective Co-ordinates

Curve: Y 2 + XYZ = X 3Z + aX 2Z 2 + bZ 4 over F2k

Let (X3, Y3, Z3) = (X1, Y1, Z1) + (X2, Y2, 1)

A = Y2 · Z 2
1 + Y1

B = X2 · Z1 + X1

C = Z1 · B
D = B2 · (C + aZ 2

1 )

Z3 = C 2

E = A · C
X3 = A2 + D + E

F = X3 + X2 · Z3

G = X3 + Y2 · Z3

Y3 = E · F + Z3 · G
No inverses, just addition and multiplication
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Multiplication in GF(24)

Input:
A = (a3a2a1a0)
B = (b3b2b1b0)
A = a0 + a1 · α+ a2 · α2 + a3 · α3

B = b0 + b1 · α+ b2 · α2 + b3 · α3

Irreducible Polynomial:
P = (11001)
P(x) = x4 + x3 + 1, P(α) = 0

Result:
Output G = A× B (mod P(x))
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Multiplication over GF(24)

a3 a2 a1 a0
× b3 b2 b1 b0

a3 · b0 a2 · b0 a1 · b0 a0 · b0
a3 · b1 a2 · b1 a1 · b1 a0 · b1

a3 · b2 a2 · b2 a1 · b2 a0 · b2
a3 · b3 a2 · b3 a1 · b3 a0 · b3
s6 s5 s4 s3 s2 s1 s0

In polynomial expression:
S = s0 + s1 · α+ s2 · α2 + s3 · α3 + s4 · α4 + s5 · α5 + s6 · α6

S should be further reduced (mod P(x))
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Multiplication over GF(24)

s6 s5 s4 s3 s2 s1 s0
s4 0 0 s4 ⇐ s4 · α4 (mod P(α))
s5 0 s5 s5 ⇐ s5 · α5 (mod P(α))

+ s6 s6 s6 s6 ⇐ s6 · α6 (mod P(α))

g3 g2 g1 g0

s4 · α4 (mod α4 + α3 + 1) = s4(α
3 + 1) = s4 · α3 + s4

s5 · α5 (mod α4 + α3 + 1) = s5(α
3 + α+ 1) = s5 · α3 + s5 · α+ s5

s6 · α6 (mod α4 + α3 + 1) = s6(α
3 + α2 + α+ 1)

= s6 · α3 + s6 · α2 + s6 · α+ s6

G = g0 + g1 · α+ g2 · α2 + g3 · α3
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Montgomery Architecture

MM

MM

"1"

MM MM

A · R

R
2

R
2

B · R

A · B · R
A

B

G = A · B (mod P )

Figure: Montgomery multiplier over GF(2k)

Montgomery Multiply: F = A · B · R−1, R = αk

Barrett architectures do not require precomputed R−1

We can verify 163-bit circuits, and also catch bugs!

Conventional techniques fail beyond 16-bit circuits
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Verification: The Mathematical Problem

Let us take verification of GF multipliers as an example:

Given specification polynomial: f : Z = A · B (mod P(x)) over F2k ,
for given k , and given P(x), s.t. P(α) = 0

Given circuit implementation C

Primary inputs: A = {a0, . . . , ak−1},B = {b0, . . . , bk−1}
Primary Output Z = {z0, . . . , zk−1}
A = a0 + a1α+ a2α

2 + · · ·+ ak−1α
k−1

B = b0 + b1α+ · · ·+ bk−1α
k−1, Z = z0 + z1α+ · · ·+ zk−1α

k−1

Does the circuit C correctly compute specification f ?

Mathematically:

Construct a miter between the spec f and implementation C

Model the circuit (gates) as polynomials {f1, . . . , fs} ∈ F2k [x1, . . . , xd ]

Apply Weak Nullstellensatz
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Equivalence Checking over F2k

B

A

Circuit1:

Circuit Equations

Circuit2:

Circuit Equations

1?

X

Y

X Y

Figure: The equivalence checking setup: miter.

Spec can be a polynomial f , or a circuit implementation C
Model the miter gate as: t(X − Y ) = 1, where t is a free variable
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Verify a polynomial spec against circuit C

Miter

Z1 = A B (mod P)

A

B

A

B

Bit−level Circuit

Z1

Z

t(Z − Z1) = 1 feasible?

Figure: The equivalence checking setup: miter.

When Z = Z1, t(Z − Z1) = 1 has no solution: infeasible miter

When Z 6= Z1: let t
−1 = (Z − Z1). Then t · (t−1) = 1 always has a

solution!

Apply Nullstellensatz over F2k
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Example Implementation Circuit: Mastrovito Multiplier over F4

x

Figure: A 2-bit Multiplier

Write A = a0 + a1α as a polynomial fA : A+ a0 + a1α

Polynomials modeling the entire circuit: ideal J = 〈f1, . . . , f10〉
f1 : z0 + z1α+ Z ; f2 : b0 + b1α+ B ; f3 : a0 + a1α+ A; f4 :
s0 + a0 · b0; f5 : s1 + a0 · b1; f6 : s2 + a1 · b0; f7 : s3 + a1 · b1; f8 :
r0 + s1 + s2; f9 : z0 + s0 + s3; f10 : z1 + r0 + s3
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Continue with multiplier verification

So far, ideal J = 〈f1, . . . , f10〉 models the implementation

Let polynomial f : Z − A · B denote the spec

Miter polynomial fm : t · (Z − Z1)− 1

Update the ideal representation of the miter: J = J + 〈f , fm〉
Finally: ideal J = 〈f1, . . . , f10, f , fm〉 represents the miter circuit

J ⊆ F2k [A,B ,Z ,Z1, a0, a1, b0, b1, r0, s0, . . . , s3, t]

Verification problem: is the variety VF4(J) = ∅?
How will we solve this problem?
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Weak Nullstellensatz over F2k

Theorem (Weak Nullstellensatz over F2k )

Let ideal J = 〈f1, . . . , fs〉 ⊂ F2k [x1, . . . , xn] be an ideal. Let

J0 = 〈x2k1 − x1, . . . , x
2k
n − xn〉 be the ideal of all vanishing polynomials.

Then:

VF
2k
(J) = ∅ ⇐⇒ VF

2k
(J + J0) = ∅ ⇐⇒ reducedGB(J + J0) = {1}

Proof:

VF
2k
(J) =V

F
2k
(J) ∩ F2k

=VF
2k
(J) ∩ VF

2k
(J0) = VF

2k
(J) ∩ VF

2k
(J0)

=VF
2k
(J + J0)

Remember: VFq(J0) = VFq
(J0). The variety of J0 does not change over

the field or the closure!
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Apply Weak Nullstellesatz to the Miter

Note: Word-level polynomials fA : A+ a0 + a1α ∈ F2k

Gate level polynomials f4 : s0 + a0 · b0 ∈ F2

Since F2 ⊂ F2k , we can treat ALL polynomials of the miter,
collectively, over the larger field F2k , so
J ⊆ F2k [A,B ,Z ,Z1, a0, a1, . . . , z0, z1]

Consider word-level vanishing polynomials: A22 − A

What about bit-level vanishing polynomials: a20 − a0

So, J0 = 〈W 2k −W ,B2 − B〉, where W are all the word-level
variables, and B are all the bit-level variables

Now compute G = GB(J + J0). If G = {1}, the circuit is correct.
Otherwise there is definitely a BUG within the field F2k
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