Gröbner Bases \& their Computation Definitions + First Results

Priyank Kalla

THE
 UNIVERSITY
 ${ }^{\text {OF }} \mathrm{UTAH}$

Professor
Electrical and Computer Engineering, University of Utah kalla@ece.utah.edu
http://www.ece.utah.edu/~kalla

Slides updated Oct 22, 2019

Agenda:

- Now that we know how to perform the reduction $f \xrightarrow{F=\left\{f_{1}, \ldots, f_{s}\right\}}{ }_{+} r$
- Study Gröbner Bases (GB)
- Motivate GB through ideal membership testing
- Study how they are related to ideal of leading terms
- Study various definitions of GB
- Study Buchberger's S-polynomials and the Buchberger's algorithm to compute GB
- Minimal and Reduced GB
- Application to ideal membership testing

From the last lecture: Multivariate Division Algorithm

Inputs: $f, f_{1}, \ldots, f_{s} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right], f_{i} \neq 0$
Outputs: u_{1}, \ldots, u_{s}, r s.t. $f=\sum f_{i} u_{i}+r$ where r is reduced w.r.t. $F=$
$\left\{f_{1}, \ldots, f_{s}\right\}$ and $\max \left(\operatorname{lp}\left(u_{1}\right) \operatorname{lp}\left(f_{1}\right), \ldots, \operatorname{lp}\left(u_{s}\right) \operatorname{lp}\left(f_{s}\right), \operatorname{lp}(r)\right)=\operatorname{lp}(f)$
1: $u_{i} \leftarrow 0 ; r \leftarrow 0, h \leftarrow f$
2: while $(h \neq 0)$ do
3: if $\exists i$ s.t. $\operatorname{Im}\left(f_{i}\right) \mid \operatorname{Im}(h)$ then
4: \quad choose i least s.t. $\operatorname{Im}\left(f_{i}\right) \mid \operatorname{Im}(h)$
5: $\quad u_{i}=u_{i}+\frac{l t(h)}{1 t\left(f_{i}\right)}$
6: $\quad h=h-\frac{l t(h)}{l t\left(f_{i}\right)} f_{i}$
7: else
8: $\quad r=r+l t(h)$
9: $\quad h=h-l t(h)$
10: end if
11: end while
Algorithm 1: Multivariate Division of f by $F=\left\{f_{1}, \ldots, f_{5}\right\}$

Motivate Gröbner basis

Let $F=\left\{f_{1}, \ldots, f_{s}\right\} ; \quad J=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ and let $f \in J$. Then we should be able to represent $f=u_{1} f_{1}+\cdots+u_{s} f_{s}+r$ where $r=0$. If we were to divide f by $F=\left\{f_{1}, \ldots, f_{s}\right\}$, then we will obtain an intermediate remainder (say, h) after every one-step reduction. Note $h \in J$ because f, f_{1}, \ldots, f_{s} are all in J. The leading term of every such remainder (LT (h)) should be divisible by the leading term of at least one of the polynomials in F. Only then we will have $r=0$.

Definition

Let $F=\left\{f_{1}, \ldots, f_{s}\right\} ; G=\left\{g_{1}, \ldots, g_{t}\right\}$;
$J=\left\langle f_{1}, \ldots, f_{s}\right\rangle=\left\langle g_{1}, \ldots, g_{t}\right\rangle$. Then G is a Gröbner Basis of J

$$
\forall f \in J \quad(f \neq 0), \quad \exists i: \operatorname{lm}\left(g_{i}\right) \mid \operatorname{Im}(f)
$$

Gröbner Basis

Definition

$G=\left\{g_{1}, \ldots, g_{t}\right\}=G B(J) \Longleftrightarrow \forall f \in J, \exists g_{i}$ s.t. $\operatorname{Im}\left(g_{i}\right) \mid \operatorname{Im}(f)$
As a consequence of the above definition:

Definition

$G=G B(J) \Longleftrightarrow \forall f \in J, f \xrightarrow{g_{1}, g_{2}, \cdots, g_{t}}+0$

- Implies a "decision procedure" for ideal membership
- To check if $f \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$:
- Compute $G B\left(f_{1}, \ldots, f_{s}\right)=G=\left\{g_{1}, \ldots, g_{t}\right\}$
- Reduce $f \xrightarrow{g_{1}, \ldots, g_{t}}+r$, and check if $r=0$

Understanding GB through some examples

- $J=\left\langle f_{1}, f_{2}\right\rangle \subset \mathbb{Q}[x, y]$, DEGLEX $y>x$
- $f_{1}=y x-y, f_{2}=y^{2}-x$ and let $f=y^{2} x-x$
- $f=y f_{1}+f_{2}$ so $f \in J$
- Apply division: i.e. REDUCE $f \xrightarrow{f_{1}, f_{2}}+r_{1}$
- Solve it in classroom: $r_{1}=0$
- Now try: $f \xrightarrow{f_{2}, f_{1}}+r_{2}=x^{2}-x$
- Does there exist f_{i} s.t. $\operatorname{Im}\left(f_{i}\right) \mid \operatorname{Im}\left(r_{2}\right)$?
- $G=\left\{f_{1}, f_{2}, x^{2}-x\right\}$ is a GB. Why?

It has got to do with Leading Monomials

- Let $f \in J=\left\langle f_{1}, f_{2}\right\rangle$: so $f=h_{1} f_{1}+h_{2} f_{2}$
- Consider only leading terms:
- If $\operatorname{It}(f) \in\left\langle\operatorname{It}\left(f_{1}\right), \operatorname{It}\left(f_{2}\right)\right\rangle$, then some $\operatorname{Im}\left(f_{i}\right) \mid \operatorname{Im}(f)$ [observe: this has to be true!]
- But, what if $\operatorname{lt}(f) \notin\left\langle I t\left(f_{1}\right), I t\left(f_{2}\right)\right\rangle$?
- Refer to the example on the previous slide

It has got to do with Leading Monomials

- Let $f \in J=\left\langle f_{1}, f_{2}\right\rangle$: so $f=h_{1} f_{1}+h_{2} f_{2}$
- Consider only leading terms:
- If $\operatorname{It}(f) \in\left\langle\operatorname{It}\left(f_{1}\right), \operatorname{It}\left(f_{2}\right)\right\rangle$, then some $\operatorname{Im}\left(f_{i}\right) \mid \operatorname{Im}(f)$ [observe: this has to be true!]
- But, what if $\operatorname{lt}(f) \notin\left\langle I t\left(f_{1}\right), I t\left(f_{2}\right)\right\rangle$?
- Refer to the example on the previous slide

Cancellation of Leading Terms

When f is a polynomial combination of (say) $h_{i} f_{i}+h_{j} f_{j}$, such that the leading terms of $h_{i} f_{i}$ and $h_{j} f_{j}$ cancel each other, then $\operatorname{lt}(f) \notin\left\langle I t\left(f_{i}\right)\right.$, It $\left.\left(f_{j}\right)\right\rangle$. When does this happen?
This happens when the leading term of some combination of f_{i}, f_{j} $\left(a x^{\alpha} f_{i}-b x^{\beta} f_{j}\right)$ cancel!

Buchberger's S-polynomial

$$
\begin{aligned}
& S(f, g)=\frac{L}{\operatorname{lt}(f)} \cdot f-\frac{L}{\operatorname{lt}(g)} \cdot g \\
& \quad \cdot L=\operatorname{LCM}(\operatorname{Im}(f), \operatorname{Im}(g))
\end{aligned}
$$

- How to compute LCM of leading monomials?

Let $\operatorname{multideg}(f)=X^{\alpha}$, multideg $(g)=X^{\beta}$, where $X^{\alpha}=x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$, and let $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$, where $\gamma_{i}=\max \left(\alpha_{i}, \beta_{i}\right)$. Then the $x^{\gamma}=\operatorname{LCM}(\operatorname{lm}(f)$, $\operatorname{Im}(g))$.

Buchberger's S-polynomial

$$
\begin{aligned}
& S(f, g)=\frac{L}{1 t(f)} \cdot f-\frac{L}{\operatorname{ltg}(g)} \cdot g \\
& \quad \quad L=\operatorname{LCM}(\operatorname{Im}(f), \operatorname{Im}(g))
\end{aligned}
$$

- How to compute LCM of leading monomials?

Let $\operatorname{multideg}(f)=X^{\alpha}$, multideg $(g)=X^{\beta}$, where $X^{\alpha}=x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$, and let $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$, where $\gamma_{i}=\max \left(\alpha_{i}, \beta_{i}\right)$. Then the $x^{\gamma}=\operatorname{LCM}(\operatorname{lm}(f)$, $\operatorname{lm}(g))$.

This S-polynomial $(S=$ syzygy $)$ cancels $I t(f), I t(g)$, gives a polynomial $h=S(f, g)$ with a new $I t(h)$.

This S-polynomial with a new $I t()$ is the missing piece of the GB puzzle!

Understanding S-poly some more...

- While S-poly gives new $l t(h)$, it may still have some redundant information
- $f=x^{3} y^{2}-x^{2} y^{3} ; \quad g=3 x^{4}+y^{2}$
- Spoly $(f, g)=-x^{3} y^{3}+x^{2}-\frac{1}{3} y^{3}$
- $x^{3} y^{3}$ can be composed of $\operatorname{lt}(f)$
- Reduce: $\operatorname{Spoly}(f, g) \xrightarrow{f, g}+r$
- IN this case: $r=-x^{2} y^{4}-1 / 3 y^{3}$
- If $r \neq 0$ then r provides "new information" regarding the basis

Buchberger's Theorem

Theorem (Buchberger's Theorem [1])

Let $G=\left\{g_{1}, \ldots, g_{t}\right\}$ be a set of non-zero polynomials in $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. Then G is a Grobner basis for the ideal $J=\left\langle g_{1}, \ldots, g_{t}\right\rangle$ if and only if for all $i \neq j$

$$
S\left(g_{i}, g_{j}\right) \xrightarrow{G} 0
$$

Buchberger's Theorem

Theorem (Buchberger's Theorem [1])

Let $G=\left\{g_{1}, \ldots, g_{t}\right\}$ be a set of non-zero polynomials in $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. Then G is a Grobner basis for the ideal $J=\left\langle g_{1}, \ldots, g_{t}\right\rangle$ if and only if for all $i \neq j$

$$
S\left(g_{i}, g_{j}\right) \xrightarrow{G} 0
$$

Can you think of an algorithm to compute $\mathrm{GB}(J)$?

Buchberger's Algorithm Computes a Gröbner Basis

Buchberger's Algorithm

INPUT: $F=\left\{f_{1}, \ldots, f_{s}\right\}$
OUTPUT: $G=\left\{g_{1}, \ldots, g_{t}\right\}$
$G:=F$;
REPEAT
$G^{\prime}:=G$
For each pair $\{f, g\}, f \neq g$ in $G^{\prime} \mathrm{DO}$
$S(f, g) \xrightarrow{G^{\prime}} r$
IF $r \neq 0$ THEN $G:=G \cup\{r\}$
UNTIL $G=G^{\prime}$

$$
S(f, g)=\frac{L}{l t(f)} \cdot f-\frac{L}{l t(g)} \cdot g
$$

$L=\operatorname{LCM}(\operatorname{Im}(f), \operatorname{Im}(g)), \quad \operatorname{Im}(f)$: leading monomial of f

With some more detail...

```
Inputs: \(F=\left\{f_{1}, \ldots, f_{s}\right\} \subset \mathbb{F}\left[x_{1}, \ldots, x_{n}\right], f_{i} \neq 0\)
Outputs: \(G=\left\{g_{1}, \ldots, g_{t}\right\}\), a Gröbner basis for \(\left\langle f_{1}, \ldots, f_{s}\right\rangle\)
    1: Initialize: \(G:=F ; \mathcal{G}:=\left\{\left\{f_{i}, f_{j}\right\} \mid f_{i} \neq f_{j} \in G\right\}\)
    2: while \(\mathcal{G} \neq \emptyset\) do
    3: \(\quad\) Pick a pair \(\{f, g\} \in \mathcal{G}\)
    4: \(\quad \mathcal{G}:=\mathcal{G}-\{\{f, g\}\}\)
    5: \(\quad \operatorname{Spoly}(f, g) \xrightarrow{G}+h\)
    6: if \(h \neq 0\) then
    7: \(\quad \mathcal{G}:=\mathcal{G} \cup\{\{u, h\} \mid \forall u \in G\}\)
    8: \(\quad G:=G \cup\{h\}\)
    9: end if
10: end while
```

Algorithm 2: Buchberger's algorithm from [2]

Examples: From [2]

- $F=\left\{f_{1}, f_{2}\right\} \in \mathbb{Q}[x, y]$, LEX $y>x ; \quad f_{1}=x y-x ; \quad f_{2}=-y+x^{2}$
- Run Buchberger's algorithm:
- Polynomial Pair: there's only one $\left\{f_{1}, f_{2}\right\}$
- $\operatorname{Spoly}\left(f_{1}, f_{2}\right)=\frac{x y}{x y} f_{1}-\frac{x y}{-y} f_{2}$
- $\operatorname{Spoly}\left(f_{1}, f_{2}\right)=x y-x-x y+x^{3}=x^{3}-x \neq 0$
- $\operatorname{Spoly}\left(f_{1}, f_{2}\right) \xrightarrow{f_{1}, f_{2}}+x^{3}-x$
- New basis: $\left\{f_{1}, f_{2}, f_{3}=x^{3}-x\right\}$
- New pairs: $\left\{f_{1}, f_{3}\right\},\left\{f_{2}, f_{3}\right\}$
- Spoly $\left(f_{1}, f_{3}\right) \xrightarrow{f_{1}, f_{2}, f_{3}}+=y x-x^{3} \xrightarrow{f_{1}, f_{2}, f_{3}}+0$
- $\operatorname{Spoly}\left(f_{2}, f_{3}\right) \xrightarrow{f_{1}, f_{2}, f_{3}}+0$
- No more polynomial pairs remaining, so f_{1}, f_{2}, f_{3} is the GB

Change the term order

- $F=\left\{f_{1}, f_{2}\right\} \in \mathbb{Q}[x, y]$, DEGLEX $x>y ; \quad f_{1}=x y-x ; \quad f_{2}=-y+x^{2}$
- Then: $f_{1}=x y-x ; \quad f_{2}=x^{2}-y$
- $\operatorname{Spoly}\left(f_{1}, f_{2}\right) \xrightarrow{f_{1}, f_{2}}+=-x^{2}+y^{2} \xrightarrow{f_{1}, f_{2}}+y^{2}-y=f_{3}$;
- Spoly $\left(f_{1}, f_{3}\right) \xrightarrow{f_{1}, f_{2}, f_{3}}+=0$
- Spoly $\left(f_{2}, f_{3}\right) \xrightarrow{f_{1}, f_{2}, f_{3}}+=0$

A more interesting example

- $f_{1}=x^{2}+y^{2}+1 ; f_{2}=x^{2} y+2 x y+x$ in $\mathbb{Z}_{5}[x, y]$ LEX $x>y$
- $S\left(f_{1}, f_{2}\right) \xrightarrow{f_{1}, f_{2}}+f_{3}=3 x y+4 x+y^{3}+y$
- $\mathcal{G}:=\left\{\left\{f_{1}, f_{3}\right\},\left\{f_{2}, f_{3}\right\}\right\}$
- $G=\left\{f_{1}, f_{2}, f_{3}\right\}$
- $S\left(f_{1}, f_{3}\right) \xrightarrow{f_{1}, f_{2}, f_{3}}+f_{4}=4 y^{5}+3 y^{4}+y^{2}+y+3$
- $\mathcal{G}:=\left\{\left\{f_{1}, f_{3}\right\},\left\{f_{2}, f_{3}\right\},\left\{f_{1}, f_{4}\right\},\left\{f_{2}, f_{4}\right\},\left\{f_{3}, f_{4}\right\}\right\}$
- $G=\left\{f_{1}, \ldots, f_{4}\right\}$
- Now, all Spoly in \mathcal{G} reduce to 0 , so $G B=\left\{f_{1}, \ldots, f_{4}\right\}$

Complexity of Gröbner Bases

- Gröbner basis complexity is not very pleasant
- For $J=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]: n$ variables, and let d be the degree of J
- Complexity of Gröbner basis
- Degree of polynomials in G is bounded by $2\left(\frac{1}{2} d^{2}+d\right)^{2^{n-1}}[3]$
- Doubly-exponential in n and polynomial in the degree d
- This is the complexity of the GB problem, not of Buchberger's algorithm - that's still a mystery
- In many practical cases, the behaviour is not that bad - but it is still challenging to overcome this complexity
- Our objective: to glean more information from circuits to overcome this complexity - we'll study these concepts a little later
- In general DEGREVLEX orders show better performance than LEX orders - but for Boolean circuits, our experience is slightly different

Minimal GB

A Gröbner basis $G=\left\{g_{1}, \ldots, g_{t}\right\}$ is minimal if for all $i, \operatorname{lc}\left(g_{i}\right)=1$, and for all $i \neq j, \operatorname{Im}\left(g_{i}\right)$ does not divide $\operatorname{Im}\left(g_{j}\right)$.

- Obtain a minimal GB: Test if $\operatorname{Im}\left(g_{i}\right)$ divides $\operatorname{Im}\left(g_{j}\right)$, remove g_{j}. Then normalize the LC: Divide each g_{i} by $I c\left(g_{i}\right)$.
- Unfortunately, minimality is not unique
- Minimal GBs have same number of terms
- Minimal GBs have same leading terms

Make a GB minimal

- Over $\mathbb{Z}_{5}[x, y]$, LEX $x>y$

A Gröbner basis:

$$
\begin{aligned}
& f_{1}=x^{2}+y^{2}+1 \\
& f_{2}=x^{2} y+2 x y+x \\
& f_{3}=3 x y+4 x+y^{3}+y \\
& f_{4}=4 y^{5}+3 y^{4}+y^{2}+y+3
\end{aligned}
$$

Make a GB minimal

- Over $\mathbb{Z}_{5}[x, y]$, LEX $x>y$

A Gröbner basis:

$$
\begin{aligned}
& f_{1}=x^{2}+y^{2}+1 \\
& f_{2}=x^{2} y+2 x y+x \\
& f_{3}=3 x y+4 x+y^{3}+y \\
& f_{4}=4 y^{5}+3 y^{4}+y^{2}+y+3 \quad \frac{f_{4}}{4}=y^{5}+2 y^{4}+4 y^{2}+4 y+2 \\
& f_{1}=x^{2}+y^{2}+1 \\
& \frac{f_{3}}{3}=x y+3 x+2 y^{3}+2 y
\end{aligned}
$$

A minimal Gröbner basis:

A Reduced (Minimal) GB

A reduced GB for a polynomial ideal J is a GB G such that:

- $\operatorname{lc}(p)=1, \forall$ polynomials $p \in G$
- $\forall p \in G$, no monomial of p lies in $\langle\operatorname{LT}(G-\{p\})\rangle$.

In other words, no non-zero term in g_{i}, is divisible by any $\operatorname{Im}\left(g_{j}\right)$, for $i \neq j$.
Reduced, minimal GB is a unique, canonical representation of an ideal!

To Reduce a Minimal GB, do the following:

- Compute a G.B. Make it minimal: remove g_{i} if $\operatorname{lp}\left(g_{j}\right)$ divides $\operatorname{lp}\left(g_{i}\right)$. Make all LC $=1$.
- Reduce it: $G=\left\{g_{1}, \ldots, g_{t}\right\}$ is minimal G.B. Get $H=\left\{h_{1}, \ldots, h_{t}\right\}$:
- $g_{1} \xrightarrow{H_{1}}+h_{1}$, where h_{1} is reduced w.r.t. $H_{1}=\left\{g_{2}, \ldots, g_{t}\right\}$
- $g_{2} \xrightarrow{H_{2}}+h_{2}$, where h_{2} is reduced w.r.t. $H_{2}=\left\{h_{1}, g_{3}, \ldots, g_{t}\right\}$
- $g_{3} \xrightarrow{H_{3}}+h_{3}$, where h_{3} is reduced w.r.t. $H_{3}=\left\{h_{1}, h_{2}, g_{4}, \ldots, g_{t}\right\}$
- $g_{t} \xrightarrow{H_{t}} h_{t}$, where h_{t} is reduced w.r.t. $H_{t}=\left\{h_{1}, h_{2}, h_{3}, \ldots, h_{t-1}\right\}$
- Then $H=\left\{h_{1}, \ldots, h_{t}\right\}$ is a unique, minimal, reduced GB.

Reduce this minimal GB

$$
\begin{aligned}
& f_{1}=x^{2}+y^{2}+1 \\
& f_{2}=x y+3 x+2 y^{3}+2 y \\
& f_{3}=y^{5}+2 y^{4}+4 y^{2}+4 y+2
\end{aligned}
$$

Reduce this minimal GB

$$
\begin{aligned}
& f_{1}=x^{2}+y^{2}+1 \\
& f_{2}=x y+3 x+2 y^{3}+2 y \\
& f_{3}=y^{5}+2 y^{4}+4 y^{2}+4 y+2
\end{aligned}
$$

It is already reduced!

Example: Non-uniqueness of minimal GB

DEGLEX $y>x$ in $\mathbb{Q}[x, y]$:

$$
\begin{aligned}
& f_{1}=y^{2}+y x+x^{2} \\
& f_{2}=y+x \\
& f_{3}=y \\
& f_{4}=x^{2} \\
& f_{5}=x
\end{aligned}
$$

Example: Non-uniqueness of minimal GB

DEGLEX $y>x$ in $\mathbb{Q}[x, y]$:

$$
\begin{aligned}
f_{1} & =y^{2}+y x+x^{2} \\
f_{2} & =y+x \\
f_{3} & =y \\
f_{4} & =x^{2} \\
f_{5} & =x
\end{aligned}
$$

$\left\{f_{3}, f_{5}\right\}$ and $\left\{f_{2}, f_{5}\right\}$ are minimal GBs (non-unique)

Example: Non-uniqueness of minimal GB

DEGLEX $y>x$ in $\mathbb{Q}[x, y]$:

$$
\begin{aligned}
& f_{1}=y^{2}+y x+x^{2} \\
& f_{2}=y+x \\
& f_{3}=y \\
& f_{4}=x^{2} \\
& f_{5}=x
\end{aligned}
$$

$\left\{f_{3}, f_{5}\right\}$ and $\left\{f_{2}, f_{5}\right\}$ are minimal GBs (non-unique) $\left\{f_{3}, f_{5}\right\}$ is a reduced GB

One (last) more definition of GB

Gröbner bases as ideals of leading terms

- Let $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ be an ideal
- Denote by LT(I) the set of leading terms of all elements of I.
- $\operatorname{LT}(I)=\left\{c x^{\alpha}: \exists f \in I\right.$ with $\left.\operatorname{LT}(f)=c x^{\alpha}\right\}$
- $\langle L T(I)\rangle$ denotes the (monomial) ideal generated by elements of LT(I).

Contrast $\langle L T(I)\rangle$ with:

- $\left\langle\operatorname{lt}\left(f_{1}\right), \operatorname{lt}\left(f_{2}\right), \ldots, \operatorname{lt}\left(f_{s}\right)\right\rangle$
- Is $\langle L T(I)\rangle=\left\langle I t\left(f_{1}\right), I t\left(f_{2}\right), \ldots, I t\left(f_{s}\right)\right\rangle$?
- Not always. Equality holds only when the set $\left\{f_{1}, \ldots, f_{s}\right\}$ is a Gröbner basis!

See this example....

- Let $f_{1}=x^{3}-2 x y ; \quad f_{2}=x^{2} y-2 y^{2}+x$ DEGLEX $x>y$
- Note: $F=\left\{f_{1}, f_{2}\right\}$ is not a GB!
- $I=\left\langle f_{1}, f_{2}\right\rangle$, and $x^{2}=x \cdot f_{2}-y f_{1} \in I$
- $x^{2}=I t\left(x^{2}\right) \in L T(I)$
- But, is $x^{2} \in\left\langle I t\left(f_{1}\right), I t\left(f_{2}\right)\right\rangle$?
- Aside: BTW, what is a GB of a set of monomials?
- Compute $G B\left(f_{1}, f_{2}\right)=\left\{g_{1}: 2 y^{2}-x, \quad g_{2}: x y, g_{3}: x^{2}\right\}$
- Note that $\langle L T(I)\rangle=\left\{I t\left(g_{1}\right)=2 y^{2}, I t\left(g_{2}\right)=x y, I t\left(g_{3}\right)=x^{2}\right\}$

Definition

$G=\left\{g_{1}, \ldots, g_{t}\right\} \Longleftrightarrow\langle I t(I)\rangle=\left\langle I t\left(g_{1}\right), \ldots, I t\left(g_{t}\right)\right\rangle$

Finally, to recap...

- Every ideal over $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is finitely generated
- $J=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subset \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$
- Every such ideal J has a Gröbner basis $G=\left\{g_{1}, \ldots, g_{t}\right\}$ which can always be computed
- $J=\left\langle f_{1}, \ldots, f_{s}\right\rangle=\left\langle g_{1}, \ldots, g_{t}\right\rangle$

Definition

$G=\left\{g_{1}, \ldots, g_{t}\right\}=G B(J) \Longleftrightarrow \forall f \in J, \exists g_{i}$ s.t. $\operatorname{Im}\left(g_{i}\right) \mid \operatorname{Im}(f)$

Definition

$G=G B(J) \Longleftrightarrow \forall f \in J, f \xrightarrow{g_{1}, g_{2}, \cdots, g_{t}}+0$

Definition

$$
G=\left\{g_{1}, \ldots, g_{t}\right\}=G B(J) \Longleftrightarrow\langle I t(J)\rangle=\left\langle I t\left(g_{1}\right), \ldots, I t\left(g_{t}\right)\right\rangle
$$

Recap some more

- Buchberger's algorithm computes Gröbner basis
- Spoly $(f, g) \xrightarrow{G} r$ cancels the leading terms of f, g and gives a polynomial with a new leading term
- A GB is computed when $\operatorname{ALL} \operatorname{Spoly}(f, g) \xrightarrow{G}+0$
- GB should be made minimal and then reduced
- Reduced $\mathrm{GB}=$ unique, canonical form (subject to the term order)
- GB as a decision procedure for ideal membership testing
- Compute $G=G B(J)$, reduce $f{ }^{G}{ }_{+} r$, and check if $r=0$

Definition (Ideal Membership Testing Algorithm)

$f \in J \Longleftrightarrow f \xrightarrow{G}+0$ where $G=\left\{g_{1}, \ldots, g_{t}\right\}$

Some more GB results

Remainder modulo a Gröbner basis is unique, w.r.t. a given monomial order

- Fix a term order $>$, and let $G=\left\{g_{1}, \ldots, g_{t}\right\}=G B(J)$ be a Gröbner basis
- If $f \xrightarrow{G} r_{1}$ and $f \xrightarrow{G} r_{2}$, then $r_{1}=r_{2}=r$
- Then r is called the normal form of f modulo $G: r=\overline{N F(f)}^{G}$
- Then r is a unique canonical signature modulo a Gröbner basis

Extended Gröbner Basis

Let $F=\left\{f_{1}, \ldots, f_{s}\right\}, J=\langle F\rangle$ and compute $G=G B(J)=\left\{g_{1}, \ldots, g_{t}\right\}$ using Buchberger's algorithm. Then it is possible to extend Buchberger's algorithm to output not just G, but also a $t \times s$ matrix M with polynomial entries such that:

$$
\left[\begin{array}{c}
g_{1} \tag{1}\\
g_{2} \\
\vdots \\
g_{t}
\end{array}\right]=M \cdot\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{s}
\end{array}\right]
$$

Entries of M can be found by recording the "quotients of division" in Buchberger's algorithm. The "lift" command in Singular can solve that.

Extended Ideal Membership

- Let $F=\left\{f_{1}, \ldots, f_{s}\right\}, J=\langle F\rangle$ and compute $G=G B(J)=\left\{g_{1}, \ldots, g_{t}\right\}$
- Let $f \in J$, then we know that $f \xrightarrow{G}+r=0$
- Then $f=h_{1} g_{1}+h_{2} g_{2}+\cdots+h_{t} g_{t}$
- From Eqn. (1) each g_{i} is some combination of f_{1}, \ldots, f_{s}
- Substitute g_{i} 's: $f=u_{1} f_{1}+u_{2} f_{2}+\cdots+u_{s} f_{s}$
[1] B. Buchberger, "Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal," Ph.D. dissertation, University of Innsbruck, 1965.
[2] W. W. Adams and P. Loustaunau, An Introduction to Gröbner Bases. American Mathematical Society, 1994.
[3] T. W. Dube, "The Structure of Polynomial Ideals and Gröbner bases," SIAM Journal of Computing, vol. 19, no. 4, pp. 750-773, 1990.

