ECE/CS 3700 Digital System Design

Lecture Slides for Chapter 2: Formal Procedures for SOP minimization and Karnaugh Maps

Priyank Kalla Professor
Electrical \& Computer Engineering

With more variables, Logic simplification

 becomes infeasible using algebraic/symbolic manipulation. We need formal techniques ...

Figure 8.18 Representation of function f_{3} from Figure 2.54

A 4-dimensional cube

(a) Truth table

(b) Karnaugh map

Figure 2.49. Location of two-variable minterms.

Figure 2.50. The function of Figure 2.19.

x_{1}	x_{2}	x_{3}	
0	0	0	m_{0}
0	0	1	m_{1}
0	1	0	m_{2}
0	1	1	m_{3}
1	0	0	m_{4}
1	0	1	m_{5}
1	1	0	m_{6}
1	1	1	m_{7}

(b) Karnaugh map
(a) Truth table

Figure 2.51. Location of three-variable minterms.

(a) The function of Figure 2.23

(b) The function of Figure 2.48

Figure 2.52. Examples of three-variable Karnaugh maps.

Figure 2.53. A four-variable Karnaugh map.

$$
\begin{gathered}
x_{1} x_{2} x_{3} x_{4} \\
\hline 000 \\
\vdots \\
\vdots \\
1111
\end{gathered}
$$

Terminology

- Binary Variable $=$ symbol. Represents a co-ordinate of Boolean space spanned by n-variables (called B^{n}), where $n=$ the number of variables of the function
- Literal: Boolean variable, or its complement
- $f=a+a^{\prime} b$ has how many literals? 3 literals: a, a^{\prime} are different literals.
- Minterm: a point in the Boolean space
- A product of all n literals
- Cube: a point, or a set of points in B^{n}
- A product of literals, may contain fewer than n literals
- $f(a, b, c)=a^{\prime} b c+a b c: 2$ cubes. But $f=b c$ is a larger cube containing both.
- Implementation Cost: Number of literals in expression, rough estimate of area. 1 literals $=2$ CMOS transistors.

Figure 2.54. Examples of four-variable Karnaugh maps.

More terminology

Implicants of a Function

- Implicant: Same thing as an ON-SET cube; "implies" the value of the function (=1)
- Prime Implicant: Not contained in any other implicant
- Prime implicant cannot be expanded
- Prime implicant is a largest cube
- One solution for logic minimization: $F=$ all prime implicants
- Problem: Redundancy! Too many $\left(\leq 3^{n} / n\right)$ primes
- Still have to make choices...
- Greedy strategy does not always work
- Quine-McCluskey gave a systematic solution to find a minimum cost cover of a function

Figure 2.54. Examples of four-variable Karnaugh maps.

Exact Logic Minimization

- Prime Cover: A Cover containing only prime implicants
- Quine's Theorem:
- There exists a minimum cover that is prime!
- Thats why, analyze only prime implicants
- Quickly generate all prime implicants: Expand all ON-set cubes as much as possible!
- Identify all essential primes
- Now select a minimum number of primes from the remaining ones.
- "Minimum number of primes" versus "A minimum number of primes with minimum cost". See Fig. 2.57.
- A Minimum Cost cover is NOT unique, see Fig. 2.54 (iv)

So, the strongest problem formulation is: Find a minimum cost cover from among the prime implicants that also comprises a minimum number of primes!

Figure 2.57. Four-variable function $f\left(x_{1}, \ldots, x_{4}\right)=$ $\Sigma \mathrm{m}(2,3,5,6,7,10,11,13,14)$.

Figure 2.55. A five-variable Karnaugh map.

Figure 2.58. The function $\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{4}\right)=$

$$
\Sigma \mathrm{m}(0,4,8,10,11,12,13,15)
$$

Figure 2.59. The function $\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{4}\right)=$ $\Sigma \mathrm{m}(0,2,4,5,10,11,13,15)$.

Don't care conditions (DC)

" Sometimes, a circuit may not receive all possible input assignments
» Then, the output value for that assignment does not matter, or we don't care about the output
» That input assignment is called a don't care condition
» Such functions are called "incompletely specified" Boolean functions
» $f: \mathbb{B}^{n} \rightarrow\{0,1, *\}$ instead of $f: \mathbb{B}^{n} \rightarrow \mathbb{B}$

Don't care condition $=$ input minterm
Don't care value $=$ output could be assigned 0 or 1 , depending on what leads to better simplification

Suppose $a=b=c=0$ never arrives?

a	b	c	f
0	0	0	$*$
0	0	1	1
0	1	0	0
	\vdots	\vdots	
	\vdots		

$$
\begin{aligned}
& f(a, b, c)=0 \\
& \text { or } 1
\end{aligned}
$$

Where do Cs come from?

$g_{0}=a^{\prime} b c+a b^{\prime} c+a b c^{\prime}$ and $g_{1}=a^{\prime} b^{\prime} c+a b c$
$h\left(2, e, g_{0}, g_{1}\right)$
$g_{0}=g_{1}=1$ not possible.

い ハ \rightarrow *

(a) SOP implementation

Figure 2.62. Two implementations of the function $f\left(x_{1}, \ldots, x_{4}\right)=$ $\sum m(2,4,5,6,10)+D(12,13,14,15)$.

(a) Determination of the SOP expression

(b) Determination of the POS expression

