ECE/CS 3700 Digital System Design

Lecture Slides for Chapter 2: Formal Procedures for SOP minimization and Karnaugh Maps

Priyank Kalla Professor Electrical & Computer Engineering With more variables, Logic simplification becomes infeasible using algebraic/symbolic manipulation. We need formal techniques ...

Figure 8.18 Representation of function f_3 from Figure 2.54

A 4-dimensional cube

Figure 2.49. Location of two-variable minterms.

Figure 2.50. The function of Figure 2.19.

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	
0	0	0	<i>m</i> ₀
0	0	1	m_1
0	1	0	<i>m</i> ₂
0	1	1	<i>m</i> ₃
1	0	0	m_4
1	0	1	<i>m</i> ₅
1	1	0	m_6
1	1	1	<i>m</i> ₇
			1

$x_1^{x_1x_2}$							
~3	00	01	11	10			
0	<i>m</i> ₀	<i>m</i> ₂	<i>m</i> ₆	<i>m</i> ₄			
1	<i>m</i> ₁	<i>m</i> ₃	<i>m</i> ₇	<i>m</i> ₅			

(b) Karnaugh map

(a) Truth table

Figure 2.51. Location of three-variable minterms.

(a) The function of Figure 2.23

(b) The function of Figure 2.48

Figure 2.52. Examples of three-variable Karnaugh maps.

Figure 2.53. A four-variable Karnaugh map.

Terminology

- Binary Variable = symbol. Represents a co-ordinate of Boolean space spanned by *n*-variables (called Bⁿ), where n = the number of variables of the function
- Literal: Boolean variable, or its complement
- f = a + a'b has how many literals? 3 literals: a, a' are different literals.
- Minterm: a point in the Boolean space
 - A product of all *n* literals
- Cube: a point, or a set of points in B^n
 - A product of literals, may contain fewer than n literals
- f(a, b, c) = a'bc + abc: 2 cubes. But f = bc is a larger cube containing both.
- Implementation Cost: Number of literals in expression, rough estimate of area. 1 literals = 2 CMOS transistors.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○

Figure 2.54. Examples of four-variable Karnaugh maps.

More terminology

Implicants of a Function

- Implicant: Same thing as an ON-SET cube; "implies" the value of the function (= 1)
- Prime Implicant: Not contained in any other implicant
- Prime implicant cannot be expanded
- Prime implicant is a largest cube
- One solution for logic minimization: F = all prime implicants
- Problem: Redundancy! Too many $(\leq 3^n/n)$ primes
- Still have to make choices...
- Greedy strategy does not always work
- Quine-McCluskey gave a systematic solution to find a **minimum cost** cover of a function

Figure 2.54. Examples of four-variable Karnaugh maps.

Exact Logic Minimization

- Prime Cover: A Cover containing only prime implicants
- Quine's Theorem:
 - There exists a minimum cover that is prime!
- Thats why, analyze only prime implicants
 - Quickly generate all prime implicants: Expand all ON-set cubes as much as possible!
 - Identify all essential primes
 - Now select a minimum number of primes from the remaining ones.
- "Minimum number of primes" versus "A minimum number of primes with minimum cost". See Fig. 2.57.
- A Minimum Cost cover is NOT unique, see Fig. 2.54 (iv)

So, the strongest problem formulation is: *Find a minimum cost cover from among the prime implicants that also comprises a minimum number of primes!*

Figure 2.57. Four-variable function f ($x_1, ..., x_4$) = $\Sigma m(2, 3, 5, 6, 7, 10, 11, 13, 14).$

Figure 2.55. A five-variable Karnaugh map.

Figure 2.58. The function f $(x_1, ..., x_4) = \Sigma m(0, 4, 8, 10, 11, 12, 13, 15).$

Figure 2.59. The function f ($x_1, ..., x_4$) = $\Sigma m(0, 2, 4, 5, 10, 11, 13, 15).$

Don't care conditions (DC)

- » Sometimes, a circuit may not receive all possible input assignments
- » Then, the output value for that assignment does not matter, or we don't care about the output
- » That input assignment is called a don't care condition
- » Such functions are called "incompletely specified" Boolean functions
- $f: \mathbb{B}^n \to \{0,1,*\}$ instead of $f: \mathbb{B}^n \to \mathbb{B}$

- » Don't care condition = input minterm
- » Don't care value = output could be assigned 0 or 1, depending on what leads to better simplification

Where do DCs come from?

Figure 2.62. Two implementations of the function $f(x_1,...,x_4) = \sum m(2, 4, 5, 6, 10) + D(12, 13, 14, 15).$

(a) Determination of the SOP expression

(b) Determination of the POS expression