ECE/CS 3700 Digital System Design

Lecture Slides for Chapter 2: Universal Logic

Priyank Kalla
Professor
Electrical & Computer Engineering

Universal Logic

- A set of logical operators that can implement any arbitrary Boolean function
 - {*AND*, *OR*, *NOT*}: collectively implement any Boolean function: universal logic
 - ANDs and NOTs implement on-set minterms
 - OR of on-set minterms = function
 - Example: Majority function f = a'bc + ab'c + abc' + abc'
- Only NAND gates = universal logic [important, PLAs]
- Only NOR gates = universal logic [important, PLAs]
- Only MUXes = universal logic [important FPGAs]
- {*AND*, *XOR*} is also universal logic [important, to show off your mathematical reasoning prowess!]

Boolean functions implemented with only NAND gates

• Relies on DeMorgan's laws: $\overline{x \cdot y} = \overline{x} + \overline{y}$

 $\int_{a}^{b} \int_{a}^{b} \int_{a$

• f = ab + ac + bc

Do Do

Maxterms and product of sum (POS) form

Row number	x_1	x_2	x_3	Minterm	Maxterm
0 1 2 3 4 5 6	0 0 0 0 1 1 1	0 0 1 1 0 0	0 1 0 1 0 1	$m_{0} = \bar{x}_{1}\bar{x}_{2}\bar{x}_{3}$ $m_{1} = \bar{x}_{1}\bar{x}_{2}x_{3}$ $m_{2} = \bar{x}_{1}x_{2}\bar{x}_{3}$ $m_{3} = \bar{x}_{1}x_{2}x_{3}$ $m_{4} = x_{1}\bar{x}_{2}\bar{x}_{3}$ $m_{5} = x_{1}\bar{x}_{2}x_{3}$ $m_{6} = x_{1}x_{2}\bar{x}_{3}$	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \bar{x}_3$ $M_2 = x_1 + \bar{x}_2 + x_3$ $M_3 = x_1 + \bar{x}_2 + \bar{x}_3$ $M_4 = \bar{x}_1 + x_2 + x_3$ $M_5 = \bar{x}_1 + x_2 + \bar{x}_3$ $M_6 = \bar{x}_1 + \bar{x}_2 + x_3$
7	1	1	1	$m_7 = x_1 x_2 x_3$	$M_7 = \bar{x}_1 + \bar{x}_2 + \bar{x}_3$

Figure 2.22 Three-variable minterms and maxterms.

N=X

Maxterms and POS forms

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$$\overline{f}(x_1, x_2, x_3) = m_0 + m_2 + m_3 + m_7$$

Then f can be expressed as

$$f = \overline{m_0 + m_2 + m_3 + m_7}$$

$$= \overline{m_0} \cdot \overline{m_2} \cdot \overline{m_3} \cdot \overline{m_7}$$

$$= M_0 \cdot M_2 \cdot M_3 \cdot M_7$$

$$= (x_1 + x_2 + x_3)(x_1 + \overline{x_2} + x_3)(x_1 + \overline{x_2} + \overline{x_3})(\overline{x_1} + \overline{x_2} + \overline{x_3})$$

$$f(x_1, x_2, x_3) = \Pi(M_0, M_2, M_3, M_7)$$

$$f = \mathcal{L}(m_1, m_4, m_5, m_6)$$

MUXes as Universal logic

Truth Tables as Decision Trees

		~ Diago!	
Truth Table versus	Binary Decision Tree	or)' ()	

0	b	0	f
$\frac{a}{a}$		C	
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
			1

Each node in the BDD (graph) is a Mux

From a truth-table to a BDD to only MUXes: universal logic!
This is what FPGAs are like....

AND-XOR is universal logic

•
$$f = a + b = a \oplus b \oplus (a \cdot b)$$

•
$$f = \overline{a} = 1 \oplus a$$

$$xy + xy$$

$$= x \cdot 1 + 0 = x$$

$$x \cdot 0 + x \cdot 1 = x$$