ECE/CS 3700
 Digital System Design

Lecture Slides for Chapter 2: Universal Logic

Priyank Kalla
Professor
Electrical \& Computer Engineering

Universal Logic

- A set of logical operators that can implement any arbitrary Boolean function
- $\{A N D, O R, N O T\}$: collectively implement any Boolean function: universal logic
- ANDs and NOTs implement on-set minterms
- OR of on-set minterms = function
- Example: Majority function $f=a^{\prime} b c+a b^{\prime} c+a b c^{\prime}+a b c$
- Only NAND gates = universal logic [important, PLAs]
- Only NOR gates = universal logic [important, PLAs]
- Only MUXes = universal logic [important FPGAs]
- $\{A N D, X O R\}$ is also universal logic [important, to show off your mathematical reasoning prowess!]

Boolean functions implemented with only NAND gates

- Relies on DeMorgan's laws: $\overline{x \cdot y}=\bar{x}+\bar{y}$

- $f=a b+a c+b c$

Maxterms and product of sum (POS) form

Row number	x_{1}	x_{2}	x_{3}	Minterm	Maxterm
0	0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{0}=x_{1}+x_{2}+x_{3}$
1	0	0	1	$m_{1}=\bar{x}_{1} \bar{x}_{2} x_{3}$	$M_{1}=x_{1}+x_{2}+\bar{x}_{3}$
2	0	1	0	$m_{2}=\bar{x}_{1} x_{2} \bar{x}_{3}$	$M_{2}=x_{1}+\bar{x}_{2}+x_{3}$
3	0	1	1	$m_{3}=\bar{x}_{1} x_{2} x_{3}$	$M_{3}=x_{1}+\bar{x}_{2}+\bar{x}_{3}$
4	1	0	0	$m_{4}=x_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{4}=\bar{x}_{1}+x_{2}+x_{3}$
5	1	0	1	$m_{5}=x_{1} \bar{x}_{2} x_{3}$	$M_{5}=\bar{x}_{1}+x_{2}+\bar{x}_{3}$
6	1	1	0	$m_{6}=x_{1} x_{2} \bar{x}_{3}$	$M_{6}=\bar{x}_{1}+\bar{x}_{2}+x_{3}$
7	1	1	1	$m_{7}=x_{1} x_{2} x_{3}$	$M_{7}=\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}$

Figure 2.22 Three-variable minterms and maxterms.

Maxterms and POS forms

Row number	x_{1}	x_{2}	x_{3}	$f\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$$
\bar{f}\left(x_{1}, x_{2}, x_{3}\right)=m_{0}+m_{2}+m_{3}+m_{7}
$$

Then f can be expressed as

$$
\begin{aligned}
f & =\overline{m_{0}+m_{2}+m_{3}+m_{7}} \\
& =\bar{m}_{0} \cdot \bar{m}_{2} \cdot \bar{m}_{3} \cdot \bar{m}_{7} \\
& =M_{0} \cdot M_{2} \cdot M_{3} \cdot M_{7} \\
& =\left(x_{1}+x_{2}+x_{3}\right)\left(x_{1}+\bar{x}_{2}+x_{3}\right)\left(x_{1}+\bar{x}_{2}+\bar{x}_{3}\right)\left(\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}\right) \\
f\left(x_{1},\right. & \left.x_{2}, x_{3}\right)=\Pi\left(M_{0}, M_{2}, M_{3}, M_{7}\right)
\end{aligned}
$$

$f=\varepsilon_{i}\left(m_{1}, N_{5}, n_{5}, N_{6}\right)$

MUXes as Universal logic

Truth Tables as Decision Trees

Truth Table versus Binary Decision Tree or Diagram

a	b	c	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Each node in the BDD

(graph) is a Mux

From a truth-table to a BDD to only MUXes: universal logic! This is what FPGAs are like....

AND-XOR is universal logic

- $f=a+b=a \oplus b \oplus(a \cdot b)$
- $f=\bar{a}=1 \oplus a$

$$
=1
$$

