ECE/CS 3700
 Digital System Design

Lecture Slides for Chapters 1 \& 2

Priyank Kalla
Professor
Electrical \& Computer Engineering

From Circuit to Logic and System Design

Learn Logic Design Fundamentals, as well as Modern Computer-Aided Design

- Logic Design with Boolean Algebra
- Hardware Description Languages (HDL)
- We will study VerilogHDL
- Other HDLs exist: VHDL, others extensions
- Use of CAD tools

Field Programmable Gate Array (FPGA)

- Learn how to design logic circuits
- Design in Verilog, Simulate, validate correctness
- Synthesize the circuit and implement on an FPGA
- FPGA = reconfigurable hardware, excellent for prototyping

- 6 or 7 Lab assignments

Chapter 2: Intro to Logic Circuits

- Boolean Algebra fundamentals
- Boolean functions and logical operations
- Boolean logic gates and circuits
- Logic Synthesis: Describe Boolean functions in the form of truth tables, and synthesize a logic circuit from it
- Perform logic optimization to reduce "cost of circuit implementation" - area, speed/delay, power, etc.

Boolean Algebra and

Functions

- Algebra = set and operations on the elements of the set
- $\mathbb{B}=\{0,1\}$ is the Boolean domain

- Boolean function: $\mathbb{B}^{n} \rightarrow \mathbb{B}$
- Logic circuits implement Boolean functions

Boolean functions: Truth Tables

- Simple Boolean functions: AND and OR functions
- Set complement: NOT function
- $A N D: f=x_{1} \cdot x_{2}=x_{1} \wedge x_{2}$

- $O R: f=x_{1}+x_{2}=x_{1} \vee x_{2}$
- NOT: $f=\neg x_{1}=x_{1}^{\prime}=\overline{x_{1}}$

x_{1}	x_{2}	$x_{1} \cdot x_{2}$	$x_{1}+x_{2}$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1
AND			

Boolean functions

- Boolean functions: can have arbitrary inputs
- $A N D: f=x_{1} \cdot x_{2} \cdot x_{3}$
n-inputs $=2^{n}$
- OR: $f=x_{1}+x_{2}+x_{3}$

x_{1}	x_{2}	x_{3}	$x_{1} \cdot x_{2} \cdot x_{3}$	$x_{1}+x_{2}+x_{3}$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Figure 2.7 Three-input AND and OR operations.

(a) AND gates
$x_{1} \longrightarrow \quad x_{1}+x_{2}, \square$
x_{2}

(b) OR gates

(c) NOT gate

Figure 2.8 The basic gates.

NAND and NOR Functions

- We saw AND and OR functions

- Invert them, and you get NAND and NOR functions

				And	$O R$	Nand	NOR
				$x_{1} \cdot x_{2} \cdot x_{3}$	$x_{1}+x_{2}+x_{3}$	$x_{1} \cdot x_{2} \cdot x_{3}$	$x_{1}+x_{2}+x_{3}$
				0	0	1	1
				0	1	1	0
				0	1	1	0
				0	1	,	0
				0	1	,	0
				0	1	,	0
				0	1	1	0
				1	1	1	-

Figure 2.7 Three-input AND and OR operations.

Exclusive-OR (XOR) and XNOR functions

- XOR and XNOR functions in two variables
- XOR: the function is true when the inputs are mutually exclusive: denoted $f=x_{1} \oplus x_{2}$
- XNOR: $f=\overline{x_{1} \oplus x_{2}}=x_{1} \bar{\oplus} x_{2}$

Boolean Algebra Axioms

-1. $0 \cdot 0=0$
1b. $\quad 1+1=1$
2a. $1 \cdot 1=1$
2b. $0+0=0$
3a. $0 \cdot 1=1 \cdot 0=0$
3b. $1+0=0+1=1$
4a. If $x=0$, then $\bar{x}=1$
$4 b$. If $x=1$, then $\bar{x}=0$

$0 \cdot x=0$

1. $x=x$

NOT operators

$$
x \cdot x=x
$$

$$
x+x=x
$$

$x \cdot \bar{x}=0$
$x+\bar{x}=1$
redundancies in Logic design"

Design Problem: Going from a Specification to a circuit implementation

- Design a circuit with three inputs a, b, c and one output f
- Function $f=$ TRUE when majority of inputs are TRUE, FALSE otherwise
- First job = write a truth table
- Collect the product terms (input product) that evaluates f = 1
- SUM (OR) of all these product terms

Truth Table

a	b	c	f
0	0	0	0
0	0	1	0
0	1	0	0
\times	0	1	1
1	1		
1	0	0	0
$\times 1$	0	1	1
$\times 1$	1	0	1
$\times 1$	1	1	1

$\bar{a} \cdot b \cdot c$
$a \cdot \frac{+}{b} \cdot c$
$+\overrightarrow{b \cdot c}=f$
$a \cdot \vec{b} \cdot c$

later on: $f=a b+a c+b c$

Boolean Algebra Properties

Boolean Algebra Properties

Different structure, same function.

Boolean Algebra Properties

13a. $x+x \cdot y=x$
Absorption

$$
x \cdot 1+x \cdot y=x(1+y)=x \cdot 1=x
$$

$13 b$

$$
\text { b. } \begin{aligned}
& x \cdot(x+y)=x \\
= & x \cdot x+x \cdot y \\
= & x+x y \\
= & x
\end{aligned}
$$

DeMorgan's Law

- Break the line and change the sign
- Make the line and change the sign

$\overline{x \cdot y}=\bar{x}+\bar{y}$

x	y	$x \cdot y$	$\overline{x \cdot y}$	\bar{x}	\bar{y}	$\bar{x}+\bar{y}$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	$\underbrace{}_{\text {LHS }}$	$\underbrace{}_{\text {RUS }}$	0
0						

Logic Simplification

Looking at Algebraic Simplification more Formally

- Consider an n-dimensional Boolean space
- Boolean variable: co-ordinate of the space
- Literal: occurrence of a variable: x or x^{\prime}
- Minterm: product of all literals, denotes a point in the Boolean space
- ON-set minterm = minterm where $f=1$

- OFF-set minterm = minterm where $f=0$
- Cube is a product of literals that represents a point or a set of points in the design space
- Hamming distance: how many bits are changing between any 2 points?

Looking at Algebraic Simplification more Formally

- Consider the OR function
- $f=x y^{\prime}+x^{\prime} y+x y \xrightarrow{? ?} x+y$
- =on-set print
$0=$ of set "

$$
\begin{aligned}
f & =x \bar{y}+\bar{x} y+x y \\
& =\bar{x} y+\underline{x(y+\bar{y})}+x y \\
& =\bar{x} y+x(1)+x y \\
& =y+x=x+y
\end{aligned}
$$

Looking at Algebraic Simplification more Formally

- Consider the XOR function
- $f=x \oplus y=x y^{\prime}+x^{\prime} y$
- No simplification?

$$
\begin{aligned}
x \bar{y}+\bar{x} y= & \text { no combination } \\
& \text { nor factorization }
\end{aligned}
$$

Apply DeMorgan's Laws: XOR/XNOR

"Sum-of-product" form Brolean function.
product $=$ And getes

$$
\text { sum }=O R \text {-gotes }
$$

Interesting 3-variable Boolean functions

- 3-variable XOR, Majority Function, Multiplexors
- We've already seen the majority function

$$
\begin{aligned}
& \text { 3-var XOR: }(x \oplus y) \oplus z \frac{\frac{1}{6}}{6} \\
& \bar{x}(y \oplus z)+ \\
& x(y \bar{\oplus}) \\
& =\bar{X} \cdot A+x \cdot \bar{A} \\
& =x \oplus A \\
& =x \oplus y \oplus Z
\end{aligned}
$$

Simplify the Majority Function

$$
\begin{gathered}
\dot{\cdot}=\frac{a^{\prime} b c c+a b^{\prime} c+a b c^{\prime}+a b c}{-a b} \\
\cdot=a b+b c a c \\
\rightarrow=a c(b+\bar{b}) \\
+ \\
a b(c+\bar{c})=\begin{array}{c}
a b+a c \\
+ \\
b c \\
b c(a+\bar{a})
\end{array}
\end{gathered}
$$

Interesting 3-variable Boolean functions

- \quad Multiplexors $=\operatorname{MUX}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\bar{x} y+x z$
- When $\mathrm{x}=0, \mathrm{f}=\mathrm{y}$
- When $x=1, f=z$

Use of Multiplexors

- MUX: multiplexer, multiplexor = multiple xor
- MUXes are everywhere

$$
\begin{aligned}
& x \text { or }=\bar{x} y+x \bar{y} \\
& \text { max } \bar{x} y+x z \\
& x=0 \\
& f=A+B \\
& x=1 \\
& f=A-B \\
& \text { Mu }=\text { if-then-else }
\end{aligned}
$$

Use of Multiplexors

- One-bit control, 2 data inputs
- 2-bit control, 4 data inputs
- N -bit control, 2^{N} data inputs

Logic Optimization: One more example

$$
\begin{aligned}
f= & \bar{a} \bar{b} \bar{c}+\bar{a} \bar{b} \bar{c}+\bar{a} \bar{b} c \\
& +a \bar{b} c+a b c
\end{aligned}
$$

$\begin{aligned}=\quad a c & + \\ \bar{b} c & +\bar{b} \bar{c}\end{aligned}$
$=a c+\bar{b}$

Sum of Product (SOP) form of Boolean functions

- $F\left(x_{1}, \ldots, x_{n}\right)=$ sum of ON-set minterms
- Simplify ON-set minterms into "larger cubes": combine minterms that are one hamming distance apart, and keep on combining them as much as possible
- Algebraically: factorize and simplify
- Identify a minimum number of largest cubes that cover all the ON-set minterms. [Often called a "minimum cover" of F]
- "Smallest" cover exists, find it!
- Larger cubes $=$ smaller AND gates $=$ fewer transistors $=$ fewer literals
- Minimum number of cubes $=$ smallest OR gate
- Smaller area, faster circuit (less $R C$ to charge/discharge)
- SOP form = two-level logic: one-level of AND gates, and one-level of (possibly big!) OR-gate. [lgnore the level corresponding to inverters)

Simplify the Majority Function

SOP-form, contd.

- Given $F\left(x_{1}, x_{2}, x_{3}, \ldots\right)$, with variable order $x_{1}, x_{2}, x_{3} \ldots$
- F can be specified as a sum of ON-set minterms
- E.g., majority function:
- $F\left(x_{1}, x_{2}, x_{3}\right)=\sum\left(m_{3}, m_{5}, m_{6}, m_{7}\right)$

Row number	x_{1}	x_{2}	x_{3}	Minterm
0	0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}$
1	0	0	1	$m_{1}=\bar{x}_{1} \bar{x}_{2} x_{3}$
2	0	1	0	$m_{2}=\bar{x}_{1} x_{2} \bar{x}_{3}$
3	0	1	1	$m_{3}=\bar{x}_{1} x_{2} x_{3}$
4	1	0	0	$m_{4}=x_{1} \bar{x}_{2} \bar{x}_{3}$
5	1	0	1	$m_{5}=x_{1} \bar{x}_{2} x_{3}$
6	1	1	0	$m_{6}=x_{1} x_{2} \bar{x}_{3}$
7	1	1	1	$m_{7}=x_{1} x_{2} x_{3}$

- Self-study assignment for you: Sec 2.6.1, product of sum forms, and Maxterms

Two-level logic versus multi-level logic

- $f=a b+a c+b c=$ SOP form $=2$-level
- Objective: minimum number of largest cubes = minimum cover
- Factorize: $\mathrm{f}=\mathrm{ab}+\mathrm{c}(\mathrm{a}+\mathrm{b})=$ factored form \neq SOP form
- Multi-level logic: minimize the number of "literals"
- Some technologies are suitable for 2-level logic (such as PLAs), whereas others are suitable for multi-level logic (contemporary CMOS technologies)
- We'll study this a little later, in appendix B, in the textbook!
- Multi-level logic optimization often utilizes 2-level optimization techniques, so study of 2level SOP form minimization is a must!

With more variables, Logic simplification becomes infeasible using algebraic/symbolic manipulation. We need algorithmic techniques, which we'll study a bit later...

Figure 8.18 Representation of function f_{3} from Figure 2.54

