ECE/CS 3700 Digital System Design

Lecture Slides for Chapters 1 & 2

Priyank Kalla Professor Electrical & Computer Engineering

From Circuit to Logic and System Design

Learn Logic Design Fundamentals, as well as Modern Computer-Aided Design

- Logic Design with Boolean Algebra
- Hardware Description
 Languages (HDL)
 - We will study Verilog-HDL
 - Other HDLs exist: VHDL, others extensions
- Use of CAD tools

Field Programmable Gate Array (FPGA)

- Learn how to design logic circuits
- Design in Verilog, Simulate, validate correctness
- Synthesize the circuit and implement on an FPGA
- FPGA = reconfigurable hardware, excellent for prototyping
- 6 or 7 Lab assignments

Chapter 2: Intro to Logic Circuits

- Boolean Algebra fundamentals
- Boolean functions and logical operations
- Boolean logic gates and circuits
- Logic Synthesis: Describe Boolean functions in the form of truth tables, and synthesize a logic circuit from it
- Perform logic optimization to reduce "cost of circuit implementation" area, speed/delay, power, etc.

Boolean Algebra and Functions

- Algebra = set and operations on the elements of the set
- $\mathbb{B} = \{0,1\}$ is the Boolean domain
- Boolean function: $\mathbb{B}^n \to \mathbb{B}$
- Logic circuits implement Boolean functions

Boolean functions: Truth Tables

- Simple Boolean functions: AND and OR functions
- Set complement: NOT function
- AND : $f = x_1 \cdot x_2 = x_1 \wedge x_2$

•
$$OR: f = x_1 + x_2 = x_1 \lor x_2$$

• NOT: $f = \neg x_1 = x'_1 = \overline{x_1}$

x_1	<i>x</i> ₂	$x_1 \cdot x_2$	$x_1 + x_2$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

AND

OR

Boolean functions

- Boolean functions: can have arbitrary inputs
- $AND: f = x_1 \cdot x_2 \cdot x_3$ $n-inputs = 2^n input$ $OR: <math>f = x_1 + x_2 + x_3$ possibilities
- OR: $f = x_1 + x_2 + x_3$

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$x_1 \cdot x_2 \cdot x_3$	$x_1 + x_2 + x_3$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Three-input AND and OR operations. Figure 2.7

(a) AND gates

(b) OR gates

(c) NOT gate

Figure 2.8 The basic gates.

NAND and NOR Functions

- We saw AND and OR functions
- Invert them, and you get NAND and NOR functions

			And	OR	1 Nand	NOR
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$x_1 \cdot x_2 \cdot x_3$	$x_1 + x_2 + x_3$	×1.×2.×3	x, +X2+X3
0 0	0 0	0 1	0 0	0 1	1	0
0 0	1 1	0 1	000	1 1		0
1 1 1	0 0 1	0 1 0		1 1 1		0
1	1	1	0	1		0

Figure 2.7 Three-input AND and OR operations.

Exclusive-OR (XOR) and XNOR functions

- XOR and XNOR functions in two variables
- XOR: the function is true when the inputs are mutually exclusive: denoted $f = x_1 \oplus x_2$

Boolean Algebra Axioms

6

= 0

1.X

J. X.

1a. $0 \cdot 0 = 0$ 1b. 1 + 1 = 12a. $1 \cdot 1 = 1$ 2b. 0 + 0 = 03a. $0 \cdot 1 = 1 \cdot 0 = 0$ 3b. 1 + 0 = 0 + 1 = 14a. If x = 0, then $\overline{x} = 1$ 4b. If x = 1, then $\overline{x} = 0$

NOT operators

 $\chi \cdot \chi = 0$ $\chi + \chi = 1$

"redundancies in Logic design"

Design Problem: Going from a Specification to a circuit implementation

- Design a circuit with three inputs a, b, c and one output f
- Function f = TRUE when majority of inputs are TRUE, FALSE otherwise
- First job = write a truth table
- Collect the product terms (input product) that evaluates f
 = 1
- SUM (OR) of all these product terms

Truth Table £ abC 6 \mathcal{O} \bigcirc (\bigcirc F \bigcirc X \bigcirc X R

a.b.c q.b.C

a.b.C a.b.c

Boolean Algebra Properties

Boolean Algebra Properties

12a. $x \cdot (y+z) = x \cdot y + x \cdot z$

Distributive

Boolean Algebra Properties

13a.
$$x + x \cdot y = x$$
 Absorption
 $\times \cdot (+ \times \cdot y) = \chi (+ + y) = \chi \cdot | = \chi$

$$13b. \quad x \cdot (x+y) = x$$

$$= \chi \cdot \chi + \chi \cdot \gamma$$
$$= \chi + \chi \gamma$$
$$= \chi + \chi \gamma$$

DeMorgan's Law

 $X + Y = \mathcal{X} - J$

- Break the line and change the sign
- Make the line and change the sign

x	у	$x \cdot y$	$\overline{x \cdot y}$	\overline{x}	\overline{y}	$\overline{x} + \overline{y}$
0 0	0 1	0	1 1	1	1 0	1 1
1	0	0	1	0	1	1
1	1		HS		RH	

Logic Simplification

• Simplify $(x \cdot y + x \cdot y')$ and (x + y)(x + y')

 $= 2\ell (1 + angthing)$

Looking at Algebraic Simplification more Formally

- Consider an *n*-dimensional Boolean space
- Boolean variable: co-ordinate of the space
- Literal: occurrence of a variable: x or x'
- Minterm: product of all literals, denotes a point in the Boolean space
 - ON-set minterm = minterm where f = 1
 - OFF-set minterm = minterm where f = 0
- Cube is a product of literals that represents a point or a set of points in the design space
 - Hamming distance: how many bits are changing between any 2 points?

= Y + X - X + Y

Looking at Algebraic Simplification more Formally

- Consider the XOR function
- $f = x \oplus y = xy' + x'y$
- No simplification?

Apply DeMorgan's Laws: XOR/XNOR

- Consider the XOR function
- $f = x \oplus y = xy' + x'y$ $\overline{f} = \overline{xy' + x'y}$ $= \overline{xy'} \cdot \overline{x'y}$ = (x' + y)(x + y')
- = x'x + x'y' + xy + yy' $= x'y' + xy = x \overline{\bigoplus} y$

"Sum-of-product" form Boolean Function Product = And gotes Sum = OR-gotes

Interesting 3-variable Boolean functions

()

()

1

()

0

1

- 3-variable XOR, Majority Function, Multiplexors
- We've already seen the majority function

()

1

()

1

()

1

0

1

()

()

()

()

1

1

• 3-var XOR: $(x \oplus y) \oplus z$

()

0

1

1

()

()

()

 \mathbf{O}

 \mathbf{O}

 \mathbf{O}

1

1

1

1

= ズ· ヘ + メ

Interesting 3-variable Boolean functions

- Multiplexors = MUX(x, y, z) $= \frac{\pi}{2} + \frac{\pi}{2}$
- When x=0, f = y
- When x = 1, f = z

Use of Multiplexors

- MUX: multiplexer, multiplexor = multiple xor
- MUXes are everywhere

Mux= if-then-else

Use of Multiplexors

- One-bit control, 2 data inputs
- 2-bit control, 4 data inputs
- N-bit control, 2^N data inputs

Logic Optimization: One more example

Sum of Product (SOP) form of Boolean functions

- $F(x_1, ..., x_n) = \text{sum of ON-set minterms}$
- Simplify ON-set minterms into "larger cubes": combine minterms that are one hamming distance apart, and keep on combining them as much as possible
 - Algebraically: factorize and simplify
- Identify a minimum number of largest cubes that cover all the ON-set minterms. [Often called a "minimum cover" of *F*]
- "Smallest" cover exists, find it!
- Larger cubes = smaller AND gates = fewer transistors = fewer literals
- Minimum number of cubes = smallest OR gate
- Smaller area, faster circuit (less *RC* to charge/discharge)
- SOP form = two-level logic: one-level of AND gates, and one-level of (possibly big!) OR-gate. [Ignore the level corresponding to inverters)

SOP-form, contd.

- Given $F(x_1, x_2, x_3, ...)$, with variable order $x_1, x_2, x_3, ...$
- *F* can be specified as a sum of ON-set minterms
- E.g., majority function:

•
$$F(x_1, x_2, x_3) = \sum (m_3, m_5, m_6, m_7)$$

• Self-study assignment for you: Sec 2.6.1, product of sum forms, and Maxterms

Row number	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	Minterm
0 1 2 3 4 5 6	0 0 0 1 1 1	0 0 1 1 0 0 1	0 1 0 1 0 1 0	$m_{0} = \bar{x}_{1}\bar{x}_{2}\bar{x}_{3}$ $m_{1} = \bar{x}_{1}\bar{x}_{2}x_{3}$ $m_{2} = \bar{x}_{1}x_{2}\bar{x}_{3}$ $m_{3} = \bar{x}_{1}x_{2}x_{3}$ $m_{4} = x_{1}\bar{x}_{2}\bar{x}_{3}$ $m_{5} = x_{1}\bar{x}_{2}x_{3}$ $m_{6} = x_{1}x_{2}\bar{x}_{3}$
7	1	1	1	$m_7 = x_1 x_2 x_3$

Two-level logic versus multi-level logic

- f = ab + ac + bc = SOP form = 2-level
 - Objective: minimum number of largest cubes = minimum cover
- Factorize: f = ab + c(a+b) = factored form \neq SOP form
 - Multi-level logic: minimize the number of "literals"
- Some technologies are suitable for 2-level logic (such as PLAs), whereas others are suitable for multi-level logic (contemporary CMOS technologies)
 - We'll study this a little later, in appendix B, in the textbook!
- Multi-level logic optimization often utilizes 2-level optimization techniques, so study of 2level SOP form minimization is a must!

With more variables, Logic simplification becomes infeasible using algebraic/symbolic manipulation. We need algorithmic techniques, which we'll study a bit later...

Figure 8.18 Representation of function f_3 from Figure 2.54

A 4-dimensional cube