
ECE/CS 3700 
Digital System Design

Lecture Slides for Chapters 1 & 2

Priyank Kalla 
Professor


Electrical & Computer Engineering



From Circuit to Logic and 
System Design

December 31, 2012 09:08 vra80547_ch01 Sheet number 9 Page number 9 magenta black

1.4 Logic Circuit Design in This Book 9

Integrated circuits,
connectors, and
components

Printed circuit boards

Power supply

Computer

Motherboard

Motherboard

Figure 1.4 A digital hardware system (Part a).

December 31, 2012 09:08 vra80547_ch01 Sheet number 10 Page number 10 magenta black

10 C H A P T E R 1 • Introduction

Transistor circuit

Logic gates

Subcircuits

Transistor

in a chip

on a chip

Figure 1.4 A digital hardware system (Part b).

the software tools and tutorials that explain their use can be downloaded and installed onto
any personal computer.

To facilitate experimentation with logic circuits, some FPGA manufacturers provide
special PCBs that include one or more FPGA chips and an interface to a personal computer.



Learn Logic Design Fundamentals, as well 
as Modern Computer-Aided Design

• Logic Design with Boolean 
Algebra


• Hardware Description 
Languages (HDL)


• We will study Verilog-
HDL


• Other HDLs exist: VHDL, 
others extensions


• Use of CAD tools

December 31, 2012 09:08 vra80547_ch01 Sheet number 7 Page number 7 magenta black

1.2 The Design Process 7

Required product

Define specifications

Initial design

Simulation

Design correct?

Redesign

Prototype implementation

Testing

Meets specifications?

Finished product

Minor errors?

Make corrections

No

Yes

No

Yes

Yes

No

Figure 1.3 The development process.



Field Programmable Gate 
Array (FPGA)

• Learn how to design logic 
circuits


• Design in Verilog, Simulate, 
validate correctness


• Synthesize the circuit and 
implement on an FPGA


• FPGA = reconfigurable 
hardware, excellent for 
prototyping


• 6 or 7 Lab assignments
 

Digital System Design Lab Manual- 3700 
COMPREHENSIVE TUTORIAL FOR SETTING UP DE10-LITE HW/SW 

PLATFORM 

Instructor – Chris Myers 
Document Author - Vikas Rao 

 
DE10-Lite reference manual - https://www.terasic.com.tw/DE10-lite-user-manual   



Chapter 2: Intro to Logic 
Circuits

• Boolean Algebra fundamentals


• Boolean functions and logical operations


• Boolean logic gates and circuits


• Logic Synthesis: Describe Boolean functions in the form 
of truth tables, and synthesize a logic circuit from it


• Perform logic optimization to reduce “cost of circuit 
implementation” — area, speed/delay, power, etc.



Boolean Algebra and 
Functions

• Algebra = set and 
operations on the 
elements of the set


• �  is the 
Boolean domain


• Boolean function: 
� 


• Logic circuits implement 
Boolean functions

𝔹 = {0,1}

𝔹n → 𝔹



Boolean functions: Truth Tables
• Simple Boolean functions: AND and OR functions


• Set complement: NOT function


• � 


• � 


• NOT: �

AND : f = x1 ⋅ x2 = x1 ∧ x2

OR : f = x1 + x2 = x1 ∨ x2

f = ¬x1 = x′�1 = x1

December 31, 2012 09:08 vra80547_ch02 Sheet number 6 Page number 26 magenta black

26 C H A P T E R 2 • Introduction to Logic Circuits

The value of this function is the inverse of the value of the input variable. Instead of
using the word inverse, it is more common to use the term complement. Thus we say that
L(x) is a complement of x in this example. Another frequently used term for the same
operation is the NOT operation. There are several commonly used notations for indicating
the complementation. In the preceding expression we placed an overbar on top of x. This
notation is probably the best from the visual point of view. However, when complements
are needed in expressions that are typed using a computer keyboard, which is often done
when using CAD tools, it is impractical to use overbars. Instead, either an apostrophe is
placed after the variable, or an exclamation mark (!), the tilde character (∼), or the word
NOT is placed in front of the variable to denote the complementation. Thus the following
are equivalent:

x = x′ = !x = ∼x = NOT x

The complement operation can be applied to a single variable or to more complex
operations. For example, if

f (x1, x2) = x1 + x2

then the complement of f is

f (x1, x2) = x1 + x2

This expression yields the logic value 1 only when neither x1 nor x2 is equal to 1, that is,
when x1 = x2 = 0. Again, the following notations are equivalent:

x1 + x2 = (x1 + x2)
′ = !(x1 + x2) = ∼(x1 + x2) = NOT (x1 + x2)

2.3 Truth Tables

We have introduced the three most basic logic operations—AND, OR, and complement—by
relating them to simple circuits built with switches. This approach gives these operations a
certain “physical meaning.” The same operations can also be defined in the form of a table,
called a truth table, as shown in Figure 2.6. The first two columns (to the left of the double
vertical line) give all four possible combinations of logic values that the variables x1 and x2

x1 x2 x1 x2 x1 + x2

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

AND OR

·

Figure 2.6 A truth table for the AND and OR operations.



Boolean functions
• Boolean functions: can have arbitrary inputs


• � 


• OR: �

AND : f = x1 ⋅ x2 ⋅ x3

f = x1 + x2 + x3

December 31, 2012 09:08 vra80547_ch02 Sheet number 7 Page number 27 magenta black

2.4 Logic Gates and Networks 27

x1 x2 x3 x1 x2 x3 x1 + x2 + x3

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1
1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

· ·

Figure 2.7 Three-input AND and OR operations.

can have. The next column defines the AND operation for each combination of values of x1

and x2, and the last column defines the OR operation. Because we will frequently need to
refer to “combinations of logic values” applied to some variables, we will adopt a shorter
term, valuation, to denote such a combination of logic values.

The truth table is a useful aid for depicting information involving logic functions. We
will use it in this book to define specific functions and to show the validity of certain func-
tional relations. Small truth tables are easy to deal with. However, they grow exponentially
in size with the number of variables. A truth table for three input variables has eight rows
because there are eight possible valuations of these variables. Such a table is given in
Figure 2.7, which defines three-input AND and OR functions. For four input variables the
truth table has 16 rows, and so on. In general, for n input variables the truth table has 2n

rows.
The AND and OR operations can be extended to n variables. An AND function of

variables x1, x2, . . . , xn has the value 1 only if all n variables are equal to 1. An OR function
of variables x1, x2, . . . , xn has the value 1 if one or more of the variables is equal to 1.

2.4 Logic Gates and Networks

The three basic logic operations introduced in the previous sections can be used to implement
logic functions of any complexity. A complex function may require many of these basic
operations for its implementation. Each logic operation can be implemented electronically
with transistors, resulting in a circuit element called a logic gate. A logic gate has one or
more inputs and one output that is a function of its inputs. It is often convenient to describe
a logic circuit by drawing a circuit diagram, or schematic, consisting of graphical symbols
representing the logic gates. The graphical symbols for the AND, OR, and NOT gates are
shown in Figure 2.8. The figure indicates on the left side how the AND and OR gates are
drawn when there are only a few inputs. On the right side it shows how the symbols are



December 31, 2012 09:08 vra80547_ch02 Sheet number 8 Page number 28 magenta black

28 C H A P T E R 2 • Introduction to Logic Circuits

x1

x2

xn

x1 x2
… xn+ + +

x1

x2
x1 x2+

x1

x2

xn

x1

x2
x1 x x1 x2

… xn⋅ ⋅

(a) AND gates

(b) OR gates

x x

(c) NOT gate

· ·

Figure 2.8 The basic gates.

x

x
1

2

x3
f x1 x2+( ) x3⋅=

Figure 2.9 The function from Figure 2.4.

augmented to accommodate a greater number of inputs. We show how logic gates are built
using transistors in Appendix B.

A larger circuit is implemented by a network of gates. For example, the logic function
from Figure 2.4 can be implemented by the network in Figure 2.9. The complexity of a
given network has a direct impact on its cost. Because it is always desirable to reduce
the cost of any manufactured product, it is important to find ways for implementing logic
circuits as inexpensively as possible. We will see shortly that a given logic function can



NAND and NOR Functions
• We saw AND and OR functions


• Invert them, and you get NAND and NOR functions

December 31, 2012 09:08 vra80547_ch02 Sheet number 7 Page number 27 magenta black

2.4 Logic Gates and Networks 27

x1 x2 x3 x1 x2 x3 x1 + x2 + x3

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1
1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

· ·

Figure 2.7 Three-input AND and OR operations.

can have. The next column defines the AND operation for each combination of values of x1

and x2, and the last column defines the OR operation. Because we will frequently need to
refer to “combinations of logic values” applied to some variables, we will adopt a shorter
term, valuation, to denote such a combination of logic values.

The truth table is a useful aid for depicting information involving logic functions. We
will use it in this book to define specific functions and to show the validity of certain func-
tional relations. Small truth tables are easy to deal with. However, they grow exponentially
in size with the number of variables. A truth table for three input variables has eight rows
because there are eight possible valuations of these variables. Such a table is given in
Figure 2.7, which defines three-input AND and OR functions. For four input variables the
truth table has 16 rows, and so on. In general, for n input variables the truth table has 2n

rows.
The AND and OR operations can be extended to n variables. An AND function of

variables x1, x2, . . . , xn has the value 1 only if all n variables are equal to 1. An OR function
of variables x1, x2, . . . , xn has the value 1 if one or more of the variables is equal to 1.

2.4 Logic Gates and Networks

The three basic logic operations introduced in the previous sections can be used to implement
logic functions of any complexity. A complex function may require many of these basic
operations for its implementation. Each logic operation can be implemented electronically
with transistors, resulting in a circuit element called a logic gate. A logic gate has one or
more inputs and one output that is a function of its inputs. It is often convenient to describe
a logic circuit by drawing a circuit diagram, or schematic, consisting of graphical symbols
representing the logic gates. The graphical symbols for the AND, OR, and NOT gates are
shown in Figure 2.8. The figure indicates on the left side how the AND and OR gates are
drawn when there are only a few inputs. On the right side it shows how the symbols are



Exclusive-OR (XOR) and 
XNOR functions

• XOR and XNOR functions in two variables


• XOR: the function is true when the inputs are mutually exclusive: denoted 
� 


• XNOR:  �

f = x1 ⊕ x2

f = x1 ⊕ x2 = x1 ⊕ x2



Boolean Algebra Axioms

December 31, 2012 09:08 vra80547_ch02 Sheet number 13 Page number 33 magenta black

2.5 Boolean Algebra 33

s0s1

s1

(a) Evaluation of S = a + b

0

0

0

1

a b

0

0

1

1

0

1

0

1

(b) Truth table

a

b

(c) Logic network 

s0

s1

s0

0

1

1

0

0
0+

0
1+

1000

1
0+

10

1
1+

01

a
b+

Figure 2.12 Addition of binary numbers.

2.5 Boolean Algebra

In 1849 George Boole published a scheme for the algebraic description of processes involved
in logical thought and reasoning [1]. Subsequently, this scheme and its further refinements
became known as Boolean algebra. It was almost 100 years later that this algebra found
application in the engineering sense. In the late 1930s Claude Shannon showed that Boolean
algebra provides an effective means of describing circuits built with switches [2]. The
algebra can, therefore, be used to describe logic circuits. We will show that this algebra
is a powerful tool that can be used for designing and analyzing logic circuits. The reader
will come to appreciate that it provides the foundation for much of our modern digital
technology.

Axioms of Boolean Algebra
Like any algebra, Boolean algebra is based on a set of rules that are derived from a

small number of basic assumptions. These assumptions are called axioms. Let us assume
that Boolean algebra involves elements that take on one of two values, 0 and 1. Assume
that the following axioms are true:

1a. 0 · 0 = 0
1b. 1 + 1 = 1
2a. 1 · 1 = 1

December 31, 2012 09:08 vra80547_ch02 Sheet number 14 Page number 34 magenta black

34 C H A P T E R 2 • Introduction to Logic Circuits

2b. 0 + 0 = 0
3a. 0 · 1 = 1 · 0 = 0
3b. 1 + 0 = 0 + 1 = 1
4a. If x = 0, then x = 1
4b. If x = 1, then x = 0

Single-Variable Theorems
From the axioms we can define some rules for dealing with single variables. These

rules are often called theorems. If x is a Boolean variable, then the following theorems
hold:

5a. x · 0 = 0
5b. x + 1 = 1
6a. x · 1 = x
6b. x + 0 = x
7a. x · x = x
7b. x + x = x
8a. x · x = 0
8b. x + x = 1

9. x = x

It is easy to prove the validity of these theorems by perfect induction, that is, by substituting
the values x = 0 and x = 1 into the expressions and using the axioms given above. For
example, in theorem 5a, if x = 0, then the theorem states that 0 · 0 = 0, which is true
according to axiom 1a. Similarly, if x = 1, then theorem 5a states that 1 · 0 = 0, which
is also true according to axiom 3a. The reader should verify that theorems 5a to 9 can be
proven in this way.

Duality
Notice that we have listed the axioms and the single-variable theorems in pairs. This

is done to reflect the important principle of duality. Given a logic expression, its dual is
obtained by replacing all + operators with · operators, and vice versa, and by replacing
all 0s with 1s, and vice versa. The dual of any true statement (axiom or theorem) in
Boolean algebra is also a true statement. At this point in the discussion, the reader might
not appreciate why duality is a useful concept. However, this concept will become clear
later in the chapter, when we will show that duality implies that at least two different ways
exist to express every logic function with Boolean algebra. Often, one expression leads to
a simpler physical implementation than the other and is thus preferable.

Two- and Three-Variable Properties
To enable us to deal with a number of variables, it is useful to define some two- and

three-variable algebraic identities. For each identity, its dual version is also given. These
identities are often referred to as properties. They are known by the names indicated below.
If x, y, and z are Boolean variables, then the following properties hold:



NOT operators



Design Problem: Going from a 
Specification to a circuit implementation

• Design a circuit with three inputs a, b, c and one output f


• Function f = TRUE when majority of inputs are TRUE, 
FALSE otherwise


• First job = write a truth table


• Collect the product terms (input product) that evaluates f 
= 1


• SUM (OR) of all these product terms







Boolean Algebra Properties

December 31, 2012 09:08 vra80547_ch02 Sheet number 15 Page number 35 magenta black

2.5 Boolean Algebra 35

10a. x · y = y · x Commutative

10b. x + y = y + x

11a. x · ( y · z) = (x · y) · z Associative

11b. x + ( y + z) = (x + y) + z

12a. x · ( y + z) = x · y + x · z Distributive

12b. x + y · z = (x + y) · (x + z)

13a. x + x · y = x Absorption

13b. x · (x + y) = x

14a. x · y + x · y = x Combining

14b. (x + y) · (x + y) = x

15a. x · y = x + y DeMorgan’s theorem

15b. x + y = x · y

16a. x + x · y = x + y

16b. x · (x + y) = x · y

17a. x · y + y · z + x · z = x · y + x · z Consensus

17b. (x + y) · (y + z) · (x + z) = (x + y) · (x + z)

Again, we can prove the validity of these properties either by perfect induction or by
performing algebraic manipulation. Figure 2.13 illustrates how perfect induction can be
used to prove DeMorgan’s theorem, using the format of a truth table. The evaluation of
left-hand and right-hand sides of the identity in 15a gives the same result.

We have listed a number of axioms, theorems, and properties. Not all of these are
necessary to define Boolean algebra. For example, assuming that the + and · operations
are defined, it is sufficient to include theorems 5 and 8 and properties 10 and 12. These
are sometimes referred to as Huntington’s basic postulates [3]. The other identities can be
derived from these postulates.

The preceding axioms, theorems, and properties provide the information necessary for
performing algebraic manipulation of more complex expressions.

x y x y x y x y x + y

0 0 0 1 1 1 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 0 0 0

LHS RHS

· ·

Figure 2.13 Proof of DeMorgan’s theorem in 15 a.

December 31, 2012 09:08 vra80547_ch02 Sheet number 15 Page number 35 magenta black

2.5 Boolean Algebra 35

10a. x · y = y · x Commutative

10b. x + y = y + x

11a. x · ( y · z) = (x · y) · z Associative

11b. x + ( y + z) = (x + y) + z

12a. x · ( y + z) = x · y + x · z Distributive

12b. x + y · z = (x + y) · (x + z)

13a. x + x · y = x Absorption

13b. x · (x + y) = x

14a. x · y + x · y = x Combining

14b. (x + y) · (x + y) = x

15a. x · y = x + y DeMorgan’s theorem

15b. x + y = x · y

16a. x + x · y = x + y

16b. x · (x + y) = x · y

17a. x · y + y · z + x · z = x · y + x · z Consensus

17b. (x + y) · (y + z) · (x + z) = (x + y) · (x + z)

Again, we can prove the validity of these properties either by perfect induction or by
performing algebraic manipulation. Figure 2.13 illustrates how perfect induction can be
used to prove DeMorgan’s theorem, using the format of a truth table. The evaluation of
left-hand and right-hand sides of the identity in 15a gives the same result.

We have listed a number of axioms, theorems, and properties. Not all of these are
necessary to define Boolean algebra. For example, assuming that the + and · operations
are defined, it is sufficient to include theorems 5 and 8 and properties 10 and 12. These
are sometimes referred to as Huntington’s basic postulates [3]. The other identities can be
derived from these postulates.

The preceding axioms, theorems, and properties provide the information necessary for
performing algebraic manipulation of more complex expressions.

x y x y x y x y x + y

0 0 0 1 1 1 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 0 0 0

LHS RHS

· ·

Figure 2.13 Proof of DeMorgan’s theorem in 15 a.

December 31, 2012 09:08 vra80547_ch02 Sheet number 15 Page number 35 magenta black

2.5 Boolean Algebra 35

10a. x · y = y · x Commutative

10b. x + y = y + x

11a. x · ( y · z) = (x · y) · z Associative

11b. x + ( y + z) = (x + y) + z

12a. x · ( y + z) = x · y + x · z Distributive

12b. x + y · z = (x + y) · (x + z)

13a. x + x · y = x Absorption

13b. x · (x + y) = x

14a. x · y + x · y = x Combining

14b. (x + y) · (x + y) = x

15a. x · y = x + y DeMorgan’s theorem

15b. x + y = x · y

16a. x + x · y = x + y

16b. x · (x + y) = x · y

17a. x · y + y · z + x · z = x · y + x · z Consensus

17b. (x + y) · (y + z) · (x + z) = (x + y) · (x + z)

Again, we can prove the validity of these properties either by perfect induction or by
performing algebraic manipulation. Figure 2.13 illustrates how perfect induction can be
used to prove DeMorgan’s theorem, using the format of a truth table. The evaluation of
left-hand and right-hand sides of the identity in 15a gives the same result.

We have listed a number of axioms, theorems, and properties. Not all of these are
necessary to define Boolean algebra. For example, assuming that the + and · operations
are defined, it is sufficient to include theorems 5 and 8 and properties 10 and 12. These
are sometimes referred to as Huntington’s basic postulates [3]. The other identities can be
derived from these postulates.

The preceding axioms, theorems, and properties provide the information necessary for
performing algebraic manipulation of more complex expressions.

x y x y x y x y x + y

0 0 0 1 1 1 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 0 0 0

LHS RHS

· ·

Figure 2.13 Proof of DeMorgan’s theorem in 15 a.



Boolean Algebra Properties

December 31, 2012 09:08 vra80547_ch02 Sheet number 15 Page number 35 magenta black

2.5 Boolean Algebra 35

10a. x · y = y · x Commutative

10b. x + y = y + x

11a. x · ( y · z) = (x · y) · z Associative

11b. x + ( y + z) = (x + y) + z

12a. x · ( y + z) = x · y + x · z Distributive

12b. x + y · z = (x + y) · (x + z)

13a. x + x · y = x Absorption

13b. x · (x + y) = x

14a. x · y + x · y = x Combining

14b. (x + y) · (x + y) = x

15a. x · y = x + y DeMorgan’s theorem

15b. x + y = x · y

16a. x + x · y = x + y

16b. x · (x + y) = x · y

17a. x · y + y · z + x · z = x · y + x · z Consensus

17b. (x + y) · (y + z) · (x + z) = (x + y) · (x + z)

Again, we can prove the validity of these properties either by perfect induction or by
performing algebraic manipulation. Figure 2.13 illustrates how perfect induction can be
used to prove DeMorgan’s theorem, using the format of a truth table. The evaluation of
left-hand and right-hand sides of the identity in 15a gives the same result.

We have listed a number of axioms, theorems, and properties. Not all of these are
necessary to define Boolean algebra. For example, assuming that the + and · operations
are defined, it is sufficient to include theorems 5 and 8 and properties 10 and 12. These
are sometimes referred to as Huntington’s basic postulates [3]. The other identities can be
derived from these postulates.

The preceding axioms, theorems, and properties provide the information necessary for
performing algebraic manipulation of more complex expressions.

x y x y x y x y x + y

0 0 0 1 1 1 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 0 0 0

LHS RHS

· ·

Figure 2.13 Proof of DeMorgan’s theorem in 15 a.

December 31, 2012 09:08 vra80547_ch02 Sheet number 15 Page number 35 magenta black

2.5 Boolean Algebra 35

10a. x · y = y · x Commutative

10b. x + y = y + x

11a. x · ( y · z) = (x · y) · z Associative

11b. x + ( y + z) = (x + y) + z

12a. x · ( y + z) = x · y + x · z Distributive

12b. x + y · z = (x + y) · (x + z)

13a. x + x · y = x Absorption

13b. x · (x + y) = x

14a. x · y + x · y = x Combining

14b. (x + y) · (x + y) = x

15a. x · y = x + y DeMorgan’s theorem

15b. x + y = x · y

16a. x + x · y = x + y

16b. x · (x + y) = x · y

17a. x · y + y · z + x · z = x · y + x · z Consensus

17b. (x + y) · (y + z) · (x + z) = (x + y) · (x + z)

Again, we can prove the validity of these properties either by perfect induction or by
performing algebraic manipulation. Figure 2.13 illustrates how perfect induction can be
used to prove DeMorgan’s theorem, using the format of a truth table. The evaluation of
left-hand and right-hand sides of the identity in 15a gives the same result.

We have listed a number of axioms, theorems, and properties. Not all of these are
necessary to define Boolean algebra. For example, assuming that the + and · operations
are defined, it is sufficient to include theorems 5 and 8 and properties 10 and 12. These
are sometimes referred to as Huntington’s basic postulates [3]. The other identities can be
derived from these postulates.

The preceding axioms, theorems, and properties provide the information necessary for
performing algebraic manipulation of more complex expressions.

x y x y x y x y x + y

0 0 0 1 1 1 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 0 0 0

LHS RHS

· ·

Figure 2.13 Proof of DeMorgan’s theorem in 15 a.



Boolean Algebra Properties

December 31, 2012 09:08 vra80547_ch02 Sheet number 15 Page number 35 magenta black

2.5 Boolean Algebra 35

10a. x · y = y · x Commutative

10b. x + y = y + x

11a. x · ( y · z) = (x · y) · z Associative

11b. x + ( y + z) = (x + y) + z

12a. x · ( y + z) = x · y + x · z Distributive

12b. x + y · z = (x + y) · (x + z)

13a. x + x · y = x Absorption

13b. x · (x + y) = x

14a. x · y + x · y = x Combining

14b. (x + y) · (x + y) = x

15a. x · y = x + y DeMorgan’s theorem

15b. x + y = x · y

16a. x + x · y = x + y

16b. x · (x + y) = x · y

17a. x · y + y · z + x · z = x · y + x · z Consensus

17b. (x + y) · (y + z) · (x + z) = (x + y) · (x + z)

Again, we can prove the validity of these properties either by perfect induction or by
performing algebraic manipulation. Figure 2.13 illustrates how perfect induction can be
used to prove DeMorgan’s theorem, using the format of a truth table. The evaluation of
left-hand and right-hand sides of the identity in 15a gives the same result.

We have listed a number of axioms, theorems, and properties. Not all of these are
necessary to define Boolean algebra. For example, assuming that the + and · operations
are defined, it is sufficient to include theorems 5 and 8 and properties 10 and 12. These
are sometimes referred to as Huntington’s basic postulates [3]. The other identities can be
derived from these postulates.

The preceding axioms, theorems, and properties provide the information necessary for
performing algebraic manipulation of more complex expressions.

x y x y x y x y x + y

0 0 0 1 1 1 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 0 0 0

LHS RHS

· ·

Figure 2.13 Proof of DeMorgan’s theorem in 15 a.

December 31, 2012 09:08 vra80547_ch02 Sheet number 15 Page number 35 magenta black

2.5 Boolean Algebra 35

10a. x · y = y · x Commutative

10b. x + y = y + x

11a. x · ( y · z) = (x · y) · z Associative

11b. x + ( y + z) = (x + y) + z

12a. x · ( y + z) = x · y + x · z Distributive

12b. x + y · z = (x + y) · (x + z)

13a. x + x · y = x Absorption

13b. x · (x + y) = x

14a. x · y + x · y = x Combining

14b. (x + y) · (x + y) = x

15a. x · y = x + y DeMorgan’s theorem

15b. x + y = x · y

16a. x + x · y = x + y

16b. x · (x + y) = x · y

17a. x · y + y · z + x · z = x · y + x · z Consensus

17b. (x + y) · (y + z) · (x + z) = (x + y) · (x + z)

Again, we can prove the validity of these properties either by perfect induction or by
performing algebraic manipulation. Figure 2.13 illustrates how perfect induction can be
used to prove DeMorgan’s theorem, using the format of a truth table. The evaluation of
left-hand and right-hand sides of the identity in 15a gives the same result.

We have listed a number of axioms, theorems, and properties. Not all of these are
necessary to define Boolean algebra. For example, assuming that the + and · operations
are defined, it is sufficient to include theorems 5 and 8 and properties 10 and 12. These
are sometimes referred to as Huntington’s basic postulates [3]. The other identities can be
derived from these postulates.

The preceding axioms, theorems, and properties provide the information necessary for
performing algebraic manipulation of more complex expressions.

x y x y x y x y x + y

0 0 0 1 1 1 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 0 0 0

LHS RHS

· ·

Figure 2.13 Proof of DeMorgan’s theorem in 15 a.



DeMorgan’s Law
• Break the line and change the sign


• Make the line and change the sign

December 31, 2012 09:08 vra80547_ch02 Sheet number 15 Page number 35 magenta black

2.5 Boolean Algebra 35

10a. x · y = y · x Commutative

10b. x + y = y + x

11a. x · ( y · z) = (x · y) · z Associative

11b. x + ( y + z) = (x + y) + z

12a. x · ( y + z) = x · y + x · z Distributive

12b. x + y · z = (x + y) · (x + z)

13a. x + x · y = x Absorption

13b. x · (x + y) = x

14a. x · y + x · y = x Combining

14b. (x + y) · (x + y) = x

15a. x · y = x + y DeMorgan’s theorem

15b. x + y = x · y

16a. x + x · y = x + y

16b. x · (x + y) = x · y

17a. x · y + y · z + x · z = x · y + x · z Consensus

17b. (x + y) · (y + z) · (x + z) = (x + y) · (x + z)

Again, we can prove the validity of these properties either by perfect induction or by
performing algebraic manipulation. Figure 2.13 illustrates how perfect induction can be
used to prove DeMorgan’s theorem, using the format of a truth table. The evaluation of
left-hand and right-hand sides of the identity in 15a gives the same result.

We have listed a number of axioms, theorems, and properties. Not all of these are
necessary to define Boolean algebra. For example, assuming that the + and · operations
are defined, it is sufficient to include theorems 5 and 8 and properties 10 and 12. These
are sometimes referred to as Huntington’s basic postulates [3]. The other identities can be
derived from these postulates.

The preceding axioms, theorems, and properties provide the information necessary for
performing algebraic manipulation of more complex expressions.

x y x y x y x y x + y

0 0 0 1 1 1 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 0 0 0

LHS RHS

· ·

Figure 2.13 Proof of DeMorgan’s theorem in 15 a.



Logic Simplification
• Simplify �  and �(x ⋅ y + x ⋅ y′ �) (x + y)(x + y′�)



Looking at Algebraic Simplification more Formally

• Consider an n-dimensional Boolean space


• Boolean variable: co-ordinate of the space


• Literal: occurrence of a variable: � 


• Minterm: product of all literals, denotes a 
point in the Boolean space


• ON-set minterm = minterm where 
� 


• OFF-set minterm = minterm where 
� 


• Cube is a product of literals that 
represents a point or a set of points in the 
design space


• Hamming distance: how many bits are 
changing between any 2 points?

x or x′�

f = 1

f = 0



Looking at Algebraic Simplification more Formally

• Consider the OR function


• �f = xy′ � + x′�y + xy ?? x + y



Looking at Algebraic Simplification more Formally

• Consider the XOR function


• � 


• No simplification?

f = x ⊕ y = xy′� + x′ �y



Apply DeMorgan’s Laws: XOR/XNOR

• Consider the XOR function


• � 


•
�

f = x ⊕ y = xy′� + x′�y

f = xy′� + x′ �y
= xy′� ⋅ x′�y
= (x′ � + y)(x + y′ �)
= x′�x + x′�y′ � + xy + yy′�
= x′�y′� + xy = x ⊕ y



Interesting 3-variable Boolean functions
• 3-variable XOR, Majority Function, Multiplexors


• We’ve already seen the majority function


• 3-var XOR: �(x ⊕ y) ⊕ z

December 31, 2012 09:12 vra80547_ch03 Sheet number 7 Page number 127 magenta black

3.2 Addition of Unsigned Numbers 127

0
0
0
1
0
1
1
1

ci 1+

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

ci xi yi

00 01 11 10

0

1

xi yi
ci

1

1

1

1

si xi yi ci⊕ ⊕=

00 01 11 10

0

1

xi yi
ci

1

1 1 1

ci 1+ xi yi xici yici+ +=

ci

xi

yi si

ci 1+

(a) Truth table

(b) Karnaugh maps

(c) Circuit

0
1
1
0
1
0
0
1

si

Figure 3.3 Full-adder.



Simplify the Majority Function
• � 


• �

f = a′�bc + ab′ �c + abc′� + abc

= ab + bc + ac



Interesting 3-variable Boolean functions
•  Multiplexors = MUX(x, y, z)


• When x=0, f = y


• When x = 1, f = z

December 31, 2012 09:12 vra80547_ch03 Sheet number 7 Page number 127 magenta black

3.2 Addition of Unsigned Numbers 127

0
0
0
1
0
1
1
1

ci 1+

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

ci xi yi

00 01 11 10

0

1

xi yi
ci

1

1

1

1

si xi yi ci⊕ ⊕=

00 01 11 10

0

1

xi yi
ci

1

1 1 1

ci 1+ xi yi xici yici+ +=

ci

xi

yi si

ci 1+

(a) Truth table

(b) Karnaugh maps

(c) Circuit

0
1
1
0
1
0
0
1

si

Figure 3.3 Full-adder.



Use of Multiplexors
• MUX: multiplexer, multiplexor = multiple xor


• MUXes are everywhere



Use of Multiplexors
• One-bit control, 2 data inputs


• 2-bit control, 4 data inputs


• N-bit control, �  data inputs2N



Logic Optimization: One more example



Sum of Product (SOP) form of Boolean functions

• � sum of ON-set minterms


• Simplify ON-set minterms into “larger cubes”: combine minterms that are one 
hamming distance apart, and keep on combining them as much as possible


• Algebraically: factorize and simplify


• Identify a minimum number of largest cubes that cover all the ON-set minterms. 
[Often called a “minimum cover” of � ]


• “Smallest” cover exists, find it!


• Larger cubes = smaller AND gates = fewer transistors = fewer literals


• Minimum number of cubes = smallest OR gate


• Smaller area, faster circuit (less RC to charge/discharge)


• SOP form = two-level logic: one-level of AND gates, and one-level of (possibly 
big!) OR-gate. [Ignore the level corresponding to inverters)

F(x1, …, xn) =

F



Simplify the Majority Function
• � 


• �

f = a′�bc + ab′ �c + abc′� + abc

= ab + bc + ac



SOP-form, contd.

December 31, 2012 09:08 vra80547_ch02 Sheet number 28 Page number 48 magenta black

48 C H A P T E R 2 • Introduction to Logic Circuits

As illustrated by Examples 2.7 to 2.9, there are multiple ways in which a logic expres-
sion can be minimized by using Boolean algebra. This process can be daunting, because it
is not obvious which rules, identities, and properties should be applied, and in what order.
Later in this chapter, in Section 2.11, we will introduce a graphical technique, called the
Karnaugh map, that clarifies this process by providing a systematic way of generating a
minimal-cost logic expression for a function.

2.6.1 Sum-of-Products and Product-of-Sums Forms

Having introduced the synthesis process by means of simple examples, we will now present
it in more formal terms using the terminology that is encountered in the technical literature.
We will also show how the principle of duality, which was introduced in Section 2.5, applies
broadly in the synthesis process.

If a function f is specified in the form of a truth table, then an expression that realizes
f can be obtained by considering either the rows in the table for which f = 1, as we have
already done, or by considering the rows for which f = 0, as we will explain shortly.

Minterms
For a function of n variables, a product term in which each of the n variables appears

once is called a minterm. The variables may appear in a minterm either in uncomplemented
or complemented form. For a given row of the truth table, the minterm is formed by
including xi if xi = 1 and by including xi if xi = 0.

To illustrate this concept, consider the truth table in Figure 2.22. We have numbered the
rows of the table from 0 to 7, so that we can refer to them easily. From the discussion of the
binary number representation in Section 1.5, we can observe that the row numbers chosen
are just the numbers represented by the bit patterns of variables x1, x2, and x3. The figure
shows all minterms for the three-variable table. For example, in the first row the variables

Row
number x1 x2 x3 Minterm Maxterm

0 0 0 0 m0 = x1x2x3 M0 = x1 + x2 + x3
1 0 0 1 m1 = x1x2x3 M1 = x1 + x2 + x3
2 0 1 0 m2 = x1x2x3 M2 = x1 + x2 + x3
3 0 1 1 m3 = x1x2x3 M3 = x1 + x2 + x3
4 1 0 0 m4 = x1x2x3 M4 = x1 + x2 + x3
5 1 0 1 m5 = x1x2x3 M5 = x1 + x2 + x3
6 1 1 0 m6 = x1x2x3 M6 = x1 + x2 + x3
7 1 1 1 m7 = x1x2x3 M7 = x1 + x2 + x3

Figure 2.22 Three-variable minterms and maxterms.

• Given � , with variable order 
� 


• �  can be specified as a sum of ON-set 
minterms


• E.g., majority function:


• � 


• Self-study assignment for you: Sec 2.6.1, 
product of sum forms, and Maxterms

F(x1, x2, x3, . . . )
x1, x2, x3 . . . .

F

F(x1, x2, x3) = ∑ (m3, m5, m6, m7)



Two-level logic versus multi-level logic
• �  = SOP form = 2-level


• Objective: minimum number of largest cubes = minimum cover


• Factorize: f = ab + c(a+b) = factored form �  SOP form


• Multi-level logic: minimize the number of “literals”


• Some technologies are suitable for 2-level logic (such as PLAs), whereas others are suitable 
for multi-level logic (contemporary CMOS technologies)


• We’ll study this a little later, in appendix B, in the textbook!


• Multi-level logic optimization often utilizes 2-level optimization techniques, so study of 2-
level SOP form minimization is a must!

f = ab + ac + bc

≠



With more variables, Logic simplification becomes 
infeasible using algebraic/symbolic manipulation. We 
need algorithmic techniques, which we’ll study a bit 

later…

December 31, 2012 09:14 vra80547_ch08 Sheet number 23 Page number 513 magenta black

8.3 Alternative Representations of Logic Functions 513

0000 1000

1010

0110

0011

0010

0111 1111

0x1x

x0x0

x111

Figure 8.18 Representation of function f3 from Figure 2.54

is not difficult to extend the ideas introduced above to a general n-variable case. Because
visual interpretation is not possible and because we normally use the word cube only for
a three-dimensional structure, many people use the word hypercube to refer to structures
with more than three dimensions. We will continue to use the word cube in our discussion.

It is convenient to refer to a cube as being of a certain size that reflects the number of
vertices in the cube. Vertices have the smallest size. Each variable has a value of 0 or 1 in
a vertex. A cube that has an x in one variable position is larger because it consists of two
vertices. For example, the cube 1x01 consists of vertices 1001 and 1101. A cube that has
two x’s consists of four vertices, and so on. A cube that has k x’s consists of 2k vertices.

An n-dimensional cube has 2n vertices. Two vertices are adjacent if they differ in the
value of only one coordinate. Because there are n coordinates (axes in the n-dimensional
cube), each vertex is adjacent to n other vertices. The n-dimensional cube contains cubes of
lower dimensionality. Cubes of the lowest dimension are vertices. Because their dimension
is zero, we will call them 0-cubes. Edges are cubes of dimension 1; hence we will call them
1-cubes. A side of a three-dimensional cube is a 2-cube. An entire three-dimensional cube
is a 3-cube, and so on. In general, we will refer to a set of 2k adjacent vertices as a k-cube.

From the examples in Figures 8.17 and 8.18, it is apparent that the largest possible
k-cubes that exist for a given function are equivalent to its prime implicants. In Section 8.4
we will discuss minimization techniques that use the cubical representation of functions.

A 4-dimensional cube


