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What is Boolean Satisfiability (SAT)?

Given a Boolean formula f (x1, . . . , xn), find an assignment to
x1, . . . , xn s.t. f = 1

Otherwise, prove that such an assignment does not exist: problem is
infeasible!

There may be many SAT assignments: find an assignment, or
enumerate all assignments (ALL-SAT)

The formula f is given in conjunctive normal form (CNF), SAT
solvers operate CNF representation of f

Any decidable decision problem can be formulated and solved as SAT

SAT is fundamental, has wide applications in many areas: hardware &
software verification, graph theory, combinatorial optimization,
artificial intelligence, VLSI design automation,
cryptography/cryptanalysis, planning, scheduling, many more....
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SAT in Hardware Verification

Simulation vector generation: Given the circuit below, find an
assignment to primary inputs s.t. u = 1, v = 1,w = 0, or prove that
one does not exits

Translate the circuit into CNF, and solve SAT
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SAT in Equivalence checking

Prove infeasibility of the miter!

Find an assignment to the inputs s.t. (F 6= G) = 1 (bug)
If no assignment (infeasible), circuits are equivalent

Model checking: find an assignment s.t. a property is
satisfied/falsified

Model

A

B

F

G

Is (F!= G) ever TRUE?

Specification

Implementation
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SAT formulation

A Boolean formula f (x1, . . . , xn) over propositional variables
x1, . . . , xn ∈ {0, 1}, using propositional connectives ¬,∨,∧,
parenthesis, and implications =⇒ , ⇐⇒

Example: f = ((¬x1 ∧ x2) ∨ x3) ∧ (¬x2 ∨ x3)

A CNF formula representation of f is:

a conjunction of clauses
each clause is a disjunction of literals
each literal is a variable or its negation (complement)

Example: f = (¬x1 ∨ x2)(¬x2 ∨ x3 ∨ ¬x4)(x1 ∨ x2 ∨ x3 ∨ ¬x4)

Alternate notation f = (x ′1 + x2)(x
′

2 + x3 + x ′4)(x1 + x2 + x3 + x ′4)

Any Boolean formula (circuit) can be encoded into CNF
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Encode a Circuit to CNF
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f = a ∨ b

f ⇐⇒ a ∨ b (equality is a double-implication)

CNF : (f =⇒ (a ∨ b)) ∧ ((a ∨ b) =⇒ f )

(¬f ∨ (a ∨ b)) ∧ (¬(a ∨ b) ∨ f )

(¬f ∨ (a ∨ b)) ∧ ((¬a ∧ ¬b) ∨ f )) (CNF?)

(¬f ∨ (a ∨ b)) ∧ (¬a ∨ f )(¬b ∨ f )
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Encode Circuit to CNF

Circuit to CNF: Implication to Clauses

In general, if f = OP(a, b), the CNF representation is:

f ⇐⇒ OP(a, b), further simplified as:

(f =⇒ OP(a, b)) ∧ (OP(a, b) =⇒ f )

Translate implication to Boolean formula: a =⇒ b means (a′ + b) is
tautology.

For f = a ∧ b, CNF: (¬f + a)(¬f + b)(¬a + ¬b + f )
For f = a ⊕ b, CNF:
(¬f + a + b)(f + ¬a+ b)(f + a + ¬b)(¬f + ¬a + ¬b)
For the previous circuit, we need to further constrain
u = 1, v = 1,w = 0 to solve the simulation vector generation
problem. Encode constraints u = 1, v = 1,w = 0 into CNF as
(u)(v)(w ′)
Conjunct ALL clauses (constraints) and invoke a SAT solver to find a
solution
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SAT Solving Complexity

In general, SAT is NP-complete. No polynomial-time algorithm exists
to solve SAT (in theory).

The restricted 2-SAT problem, where every clause contains only 2
literals, can be solved in polynomial time.

Circuit-to-CNF: Recall, 2-input AND/OR gates need a 3-literal clause
for modeling the constraint.

Circuit-SAT is therefore also NP-complete.

However, modern SAT solvers are a success story in Computer
Science and Engineering. Efficient heuristics and implementation
tricks make SAT solvers very efficient.

EDA gave a big impetus to SAT solving

Many large problems can be solved very quickly by SAT solvers.

So, how is a CNF SAT formula solved?
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SAT Solving Basics

An assignment can make a clause satisfied or unsatisfied

Since f = C1 ∧ C2 ∧ · · · ∧ Cn, try to satisfy each clause Ci

The first approach by Davis & Putnam [DP 1960]: based on unit
clause, pure literal and resolution rules

Later Davis, Logemann, Loveland [DLL 1962] proposed an alternative
backtrack-based search algorithm

These algorithms are now known as DPLL algorithms

Modern solvers are highly sophisticated: conclict-driven clause
learning (CDCL) and search-space pruning, among many efficient
heuristics
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Basic Processing for SAT solving

Satisfy a clause

A clause is satisfied if any literal is assigned to 1. E.g. for x2 = 0, clause
(x1 ∨ ¬x2 ∨ ¬x3) = 1.

Satisfy a clause

A clause is unsatisfied if all literals are assigned to 0. E.g. the assignment
of x1 = 0, x2 = x3 = 1, makes clause (x1 ∨ ¬x2 ∨ ¬x3) unsatisfied.

Unit clause

A clause containing a single unassigned literal, and all other literals
assigned to 0. E.g., the assignment x1 = 0, x3 = 1, makes
(x1 ∨ ¬x2 ∨ ¬x3) = (0 ∨ ¬x2 ∨ 0) a unit clause. Unit clause forces a
necessary assignment (x2 = 0) for the formula to be true.

Formula f is satisfied, if all clauses are satisfied; f is unsatisfied, if at
least one clause is unsatisfied.
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Pure Literals

A literal is pure if it appears only as a positive literal, or only as a
negative literal.

f = (¬x1 ∨ x2) ∧ (x3 ∨ ¬x2) ∧ (x4 ∨ ¬x5) ∧ (x5 ∨ ¬x4)
x1, x3 are pure literals.

Clauses containing pure literals can be easily satisfied.

Assign pure literals to the values that satisfy the clauses
Pure literals do not cause inconsistent value assignments (or conflicts)
to variables.

Iteratively apply unit clause propagation and pure literal simplifcation
on the CNF formula
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Resolution

Resolution Rule: Given clauses (x ∨ α) and (¬x ∨ β), infer (α ∨ β)

RES(x ∨ α,¬x ∨ β) = (α ∨ β)

The DP algorithm was resolution-based
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Resolution-based SAT

Given CNF formula f, deduce if it is SAT or UNSAT
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Resolution-based SAT

Given CNF formula f, deduce if it is SAT or UNSAT

Complete algorithm: Iterate the following steps
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Resolution-based SAT

Given CNF formula f, deduce if it is SAT or UNSAT

Complete algorithm: Iterate the following steps

Select variable x that is not pure (both x ,¬x exist)
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Resolution-based SAT

Given CNF formula f, deduce if it is SAT or UNSAT

Complete algorithm: Iterate the following steps

Select variable x that is not pure (both x ,¬x exist)
Apply resolution rules between every pair of clauses (x ∨ α) and
(¬x ∨ β); simplify f
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Resolution-based SAT

Given CNF formula f, deduce if it is SAT or UNSAT

Complete algorithm: Iterate the following steps

Select variable x that is not pure (both x ,¬x exist)
Apply resolution rules between every pair of clauses (x ∨ α) and
(¬x ∨ β); simplify f

Remove clauses with pure literals x or ¬x
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Resolution-based SAT

Given CNF formula f, deduce if it is SAT or UNSAT

Complete algorithm: Iterate the following steps

Select variable x that is not pure (both x ,¬x exist)
Apply resolution rules between every pair of clauses (x ∨ α) and
(¬x ∨ β); simplify f

Remove clauses with pure literals x or ¬x
Apply pure literal rules and unit propagation
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Resolution-based SAT

Given CNF formula f, deduce if it is SAT or UNSAT

Complete algorithm: Iterate the following steps

Select variable x that is not pure (both x ,¬x exist)
Apply resolution rules between every pair of clauses (x ∨ α) and
(¬x ∨ β); simplify f

Remove clauses with pure literals x or ¬x
Apply pure literal rules and unit propagation

Terminate when empty clause (UNSAT) or empty formula (SAT)
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Deduce SAT/UNSAT by Resolution: Example

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4)
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Deduce SAT/UNSAT by Resolution: Example

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4)

(¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4)
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Deduce SAT/UNSAT by Resolution: Example
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Deduce SAT/UNSAT by Resolution: Example

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4)

(¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4)

(¬x3 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4)

(x3)
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Deduce SAT/UNSAT by Resolution: Example

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4)

(¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4)

(¬x3 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4)

(x3)

Satisfiable!
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Resolution Proofs of UNSAT Problems

(a1 + a2’)(a1’+a3’)(a2)(a2’+a3)(a2+a4)(a4’) 

(a2’ + a3’)

(a3’)

(a3 + a4)

(a3)

() = UNSAT

Resolution Proof

A resolution proof is a directed acyclic graph (DAG) with vertices
corresponding to clauses and edges corresponding to resolution operations.
Root vertices are original clauses, intermediate vertices are resolvent
clauses, and the leaf vertex is an empty clause.
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Backtrack Binary Search for SAT

The [DP 1960] approach using resolution was inefficient

Then the [DLL 1962] was introduced:

Select a variable x , assign either x = 0 or x = 1 [decision assignment]
Simplify formula with unit propagation, pure literal rules [deduce]
If conflict, then backtrack [diagnose]

If cannot backtrack further, return UNSAT

If formula satisfied, return SAT
Otherwise, proceed with another decision
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DPLL Example

f = (a + b′ + d)(a + b′ + e)(b′ + d ′ + e′)(a + b + c + d)(a + b + c +
d ′)(a + b + c ′ + e)(a + b + c ′ + e′)
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DPLL Example

f = (a + b′ + d)(a + b′ + e)(b′ + d ′ + e′)(a + b + c + d)(a + b + c +
d ′)(a + b + c ′ + e)(a + b + c ′ + e′)

a = 0
a
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DPLL Example

f = (a + b′ + d)(a + b′ + e)(b′ + d ′ + e′)(a + b + c + d)(a + b + c +
d ′)(a + b + c ′ + e)(a + b + c ′ + e′)

a = 0, b = 1, conflict,
backtrack, change last
decision!

conflict

a

b
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DPLL Example

f = (a + b′ + d)(a + b′ + e)(b′ + d ′ + e′)(a + b + c + d)(a + b + c +
d ′)(a + b + c ′ + e)(a + b + c ′ + e′)

a = 0, b = 0

conflict

a

b
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DPLL Example

f = (a + b′ + d)(a + b′ + e)(b′ + d ′ + e′)(a + b + c + d)(a + b + c +
d ′)(a + b + c ′ + e)(a + b + c ′ + e′)

a = 0, b = 0, c = 0,
conflict, backtrack!

c

a

b

conflict
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DPLL Example

f = (a + b′ + d)(a + b′ + e)(b′ + d ′ + e′)(a + b + c + d)(a + b + c +
d ′)(a + b + c ′ + e)(a + b + c ′ + e′)

a = 1, b = 0
SAT

a

b

conflict c

b
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Non-chronological Backtracking via CDCL

Previous example shows a chronological backtrack based binary search

Modern SAT solvers analyze decisions and conflicts to dynamically
learn clauses

Conflict Driven Clause Learning (CDCL)
Solver learns more clauses, and appends them to the original CNF
More constraints help to prune the search
Results in a non-chronological backtrack-based search
The approach is still complete: Will find SAT, or will prove UNSAT

There are also “incomplete” solvers, that rely on local search

Heuristics to guide the search, but search not exhaustive
May find a SAT solution if one exists, but cannot prove UNSAT

There are also SAT pre-processors

Input CNF F1, output CNF F2, size(F1) > size(F2)
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Conflict-Driven Clause Learning (CDCL) solvers

Modern CDCL-solvers: based on DPLL, but do quite a bit more

Learn new constraints while encountering conflicts
Enable non-chronological backtracking, thus pruning search-space
Branching heuristics: which variable to branch on (xi = 0? or xi = 1?)
Heuristics for search re-starts
Efficient management of clause-database: minimize learnt clauses,
discard unused learnt clauses

Concept of CDCL from [GRASP, Joao Marques-Silva and Karem
Sakallah]

Read GRASP report on class website
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CDCL & Non-Chronological Backtracking [From GRASP]

(x ′1 + x2)(x
′

1 + x3 + x9)(x
′

2 + x ′3 + x4)(x
′

4 + x5 + x10)(x
′

4 + x6 + x11)

(x ′5 + x ′6)(x1 + x7 + x ′12)(x1 + x8)(x
′

7 + x ′8 + x ′13)(y1 + z1)(y2 + z2)
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CDCL & Non-Chronological Backtracking [From GRASP]

(x ′1 + x2)(x
′

1 + x3 + x9)(x
′

2 + x ′3 + x4)(x
′

4 + x5 + x10)(x
′

4 + x6 + x11)

(x ′5 + x ′6)(x1 + x7 + x ′12)(x1 + x8)(x
′

7 + x ′8 + x ′13)(y1 + z1)(y2 + z2)

x9 =0

x12 = x13 = 1

=1 =0

x10 = x11 = 0

x1

y2 =1y1 =1

1

2

3

4

5

6

y2=1@5

x2=1@6

x3=1@6

x4=1@6

x10=0@3

x5=1@6

x6=1@6

x11=0@3
x12=1@2

x13=1@2

conflict

x9=0@1

x1=1@6

y1 = 1@4
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CDCL & Non-Chronological Backtracking [From GRASP]

(x ′1 + x2)(x
′

1 + x3 + x9)(x
′

2 + x ′3 + x4)(x
′

4 + x5 + x10)(x
′

4 + x6 + x11)

(x ′5 + x ′6)(x1 + x7 + x ′12)(x1 + x8)(x
′

7 + x ′8 + x ′13)(y1 + z1)(y2 + z2)

x9 =0

x12 = x13 = 1

=1 =0

x10 = x11 = 0

x1

y2 =1y1 =1

1

2

3

4

5

6

y2=1@5

x2=1@6

x3=1@6

x4=1@6

x10=0@3

x5=1@6

x6=1@6

x11=0@3
x12=1@2

x13=1@2

conflict

x9=0@1

x1=1@6

y1 = 1@4
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CDCL & Non-Chronological Backtracking [From GRASP]
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x1=1@6
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CDCL & Non-Chronological Backtracking [From GRASP]

(x ′1 + x2)(x
′

1 + x3 + x9)(x
′

2 + x ′3 + x4)(x
′

4 + x5 + x10)(x
′

4 + x6 + x11)

(x ′5 + x ′6)(x1 + x7 + x ′12)(x1 + x8)(x
′

7 + x ′8 + x ′13)(y1 + z1)(y2 + z2)

x9 =0
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6

y2=1@5

x2=1@6

x3=1@6

x4=1@6

x10=0@3
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CDCL & Non-Chronological Backtracking [From GRASP]

(x ′1 + x2)(x
′

1 + x3 + x9)(x
′

2 + x ′3 + x4)(x
′

4 + x5 + x10)(x
′

4 + x6 + x11)

(x ′5 + x ′6)(x1 + x7 + x ′12)(x1 + x8)(x
′

7 + x ′8 + x ′13)(y1 + z1)(y2 + z2)

Conflict: (x ′9 ∧ x12 ∧ x13 ∧ x ′10 ∧ x ′11 ∧ y1 ∧ y2 ∧ x1) =⇒ false

x9 =0

x12 = x13 = 1

=1 =0

x10 = x11 = 0

x1

y2 =1y1 =1

1

2

3

4

5

6

y2=1@5

x2=1@6

x3=1@6

x4=1@6

x10=0@3

x5=1@6

x6=1@6

x11=0@3
x12=1@2

x13=1@2

conflict

x9=0@1

x1=1@6

y1 = 1@4
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CDCL & Non-Chronological Backtracking [From GRASP]

(x ′1 + x2)(x
′

1 + x3 + x9)(x
′

2 + x ′3 + x4)(x
′

4 + x5 + x10)(x
′

4 + x6 + x11)

(x ′5 + x ′6)(x1 + x7 + x ′12)(x1 + x8)(x
′

7 + x ′8 + x ′13)(y1 + z1)(y2 + z2)

Is the learnt Clause = (x9 ∨ x ′12 ∨ x ′13 ∨ x10 ∨ x11 ∨ y ′1 ∨ y ′2 ∨ x ′1)?

x9 =0

x12 = x13 = 1

=1 =0

x10 = x11 = 0

x1

y2 =1y1 =1

1

2

3

4

5

6

y2=1@5

x2=1@6

x3=1@6

x4=1@6

x10=0@3

x5=1@6

x6=1@6

x11=0@3
x12=1@2

x13=1@2

conflict

x9=0@1

x1=1@6

y1 = 1@4
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CDCL: Analyze the cause of conflict

From the conflict-node in the implication graph, traverse back to
antecedents (or root nodes x1, x9, x10, x11)
Note than x12, x13, y1, y2 are unreachable
Conflict clause can be simplified:

From (x9 ∨ x ′12 ∨ x ′13 ∨ x10 ∨ x11 ∨ y ′

1 ∨ y ′

2 ∨ x ′1)
To (x9 ∨ x10 ∨ x11 ∨ x ′1)

x9 =0

x12 = x13 = 1

=1 =0

x10 = x11 = 0

x1

y2 =1y1 =1

1

2

3

4

5

6

y2=1@5

x2=1@6

x3=1@6

x4=1@6

x10=0@3

x5=1@6

x6=1@6

x11=0@3
x12=1@2

x13=1@2

conflict

x9=0@1

x1=1@6

y1 = 1@4
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Conflict-Driven Clause Learning (CDCL) solvers

Add learnt clause to original CNF

Chronological backtrack: revert last assignment from x1 = 1 to x1 = 0

(x ′1 + x2)(x
′

1 + x3 + x9)(x
′

2 + x ′3 + x4)(x
′

4 + x5 + x10)(x
′

4 + x6 + x11)

(x ′5 + x ′6)(x1 + x7 + x ′12)(x1 + x8)(x
′

7 + x ′8 + x ′13)(y1 + z1)(y2 + z2)

Assignment on Learnt Clause: (x9 ∨ x10 ∨ x11 ∨ x ′1)

x9=0@1

x10=0@3

x11=0@3

x12=1@2

x1=0@6

x8=1@6

x7=1@6

x13=1@2
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Conflict-Driven Clause Learning (CDCL) solvers

Add learnt clause to original CNF

Chronological backtrack: revert last assignment from x1 = 1 to x1 = 0

(x ′1 + x2)(x
′

1 + x3 + x9)(x
′

2 + x ′3 + x4)(x
′

4 + x5 + x10)(x
′

4 + x6 + x11)

(x ′5 + x ′6)(x1 + x7 + x ′12)(x1 + x8)(x
′

7 + x ′8 + x ′13)(y1 + z1)(y2 + z2)

Assignment on Learnt Clause: (x9 ∨ x10 ∨ x11 ∨ x ′1)

x9=0@1

x10=0@3

x11=0@3

x12=1@2

x1=0@6

x8=1@6

x7=1@6

x13=1@2

x1 = 0 also leads to a conflict. Learn new clause?
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Conflict-Driven Clause Learning (CDCL) solvers

(x ′1 + x2)(x
′

1 + x3 + x9)(x
′

2 + x ′3 + x4)(x
′

4 + x5 + x10)(x
′

4 + x6 + x11)

(x ′5 + x ′6)(x1 + x7 + x ′12)(x1 + x8)(x
′

7 + x ′8 + x ′13)(y1 + z1)(y2 + z2)

First learnt/conflict clause CC1: (x9 ∨ x10 ∨ x11 ∨ x ′1)

New conflict clause also derived from implication graph

CC2: (x9 ∨ x ′12 ∨ x ′13 ∨ x10 ∨ x11)

Decision on x1, y1, y2 does not affect the CNF SAT!

Non-Chronological backtrack:

To the MAX decision-level in the conflict clause!
Backtrack to Decision-Level 3, undo x10 or x11
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CDCL search space pruning

CC2: (x9 ∨ x ′12 ∨ x ′13 ∨ x10 ∨ x11)

x9 =0

x12 = x13 = 1

=1 =0

x10 = x11 = 0

x1

y2 =1y1 =1

1

2

3

4

5

6

x9=0@1

x10=0@3

x11=0@3

x12=1@2

x1=0@6

x8=1@6

x7=1@6

x13=1@2
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Conflict-Driven Clause Learning (CDCL) solvers

Recent techniques can identify more conflict clauses

Identify unique implication points (UIPs)

Decision heuristics: Branch on high-activity literals [GRASP]

Activity: A score for every literal
The number of occurrences of a literal in the formula

As conflict clauses are added, activity changes

After n conflicts, multiply activity by f < 1, or rescore

VSIDS heuristic: Variable State Independent Decaying Sum [CHAFF]
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A List of CDCL SAT solvers

GRASP, circa 1996, from Silva and Sakallah

zCHAFF 2001, from Princeton, Prof. Sharad Malik

BerkMin 2002

MiniSAT, 2004 (?) from Cadence Berkeley Labs

PicoSAT and Lingeling, from Prof. Armin Biere, Univ. Linz

Please visit www.satisfiability.org

P. Kalla (Univ. of Utah) Boolean Satisfiability
Slides updated: August 30, 2021 26 /

33

www.satisfiability.org


Extract UNSAT Cores from UNSAT CNF

CNF: F = (a′ + b′)(a′ + b)(a + b′)(a + b)(x + y)(y + z)

Note that F is UNSAT
Identify a minimum number of clauses that make F UNSAT
This subset of clauses is the UNSAT Core, or MIN-UNSAT
Helps to identify the causes for UNSAT

(a′ + b′)(a′ + b)(a + b′)(a + b) is the UNSAT core in F

UNSAT core may not be unique

UNSAT cores have many applications in verification

Study of UNSAT cores and applications: Potential class project
option!
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The Concept of Craig Interpolants

Craig Interlants: A concept of “abstraction”, for UNSAT problems

Definition

Let f (XA,XB ,XC ) be a Boolean function in variables X = {x1, . . . , xn}
such that X is partitioned into disjoint subsets XA,XB ,XC . Let
f = fA(XA,XC ) ∧ fB(XB ,XC ) = ∅. Then there exists another Boolean
function fI such that:

fA =⇒ fI ; or fA ⊆ fI

fI ∧ fB = ∅

fI (XC ) only contains XC variables, i.e. the common variables of
fA, fB : Vars(fI ) ⊆ Vars(fA) ∩ Vars(fB)

P. Kalla (Univ. of Utah) Boolean Satisfiability
Slides updated: August 30, 2021 28 /

33



Craig Interpolants

Bff

Bn

Another f

fA
I

I

The ABC tool with MiniSAT solver can return an fI , provided
fA, fB ,XA,XB ,XC is given.

Interpolant computed through a resolution proof

P. Kalla (Univ. of Utah) Boolean Satisfiability
Slides updated: August 30, 2021 29 /

33



Craig Interpolants: Examples

There may be more than one interpolants:

f = fA · fB

fA = (a1 + a′2)(a
′

1 + a′3)(a2) = a1a2a
′

3

fB = (a′2 + a3)(a2 + a4)(a′4) = a2a3a
′

4

XA = {a1},XB = {a4},XC = {a2, a3}

One interpolant fI1 = a′3a2

Another interpolant fI2 = a′3

The set of all interpolants forms a lattice, the smallest interpolant at
the bottom, and the largest at the top

Smallest interpolant: f smallest
I = ∃XA

fA(XA,XC )

Largest interpolant: f largestI = ∃XB
fB(XB ,XC )
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Craig Interpolant: Examples

From the previous slide:

fA = a1a2a
′

3 and fB = a2a3a
′

4

XA = {a1},XB = {a4},XC = {a2, a3}

Smallest interpolant: f smallest
I = ∃XA

fA(XA,XC ) = a2a
′

3

Largest interpolant: f largestI = ∃XB
fB(XB ,XC )

Largest interpolant = ∃XB
a2a3a

′

4 = a2a3 = a′2 + a′3

Let fI be any interpolant, then f smallest
I ⊆ fI ⊆ f

largest
I

Question in the exam: How many interpolants exist for a given
(fA, fB) pair? Can you find all of them?
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CDCL Solvers: Panacea?

Where does SAT fail?

For hard UNSAT instances, such as equivalence verification

A Specification ckt

Implementation ckt

F

G

F  ==  G
1

B

Figure: Miter the circuits F, G

Prove UNSAT, or find a counter-example

Limitations: No internal structural equivalences

EDA-techniques: Circuit-SAT, AIG-reductions, constraint-learning
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What Next?

How to improve SAT for Circuit Equivalence Verification?

AND-INVERT-GRAPH (AIG) based Reductions!
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