Lecture Slides for ATPG: Reducing Test Generation Effort, the Check-Point Theorems and Issues with Multiple Stuck-Faults
Fault Collapsing

• We have to derive s/0, s/1 tests for the entire circuit
 • Each net, including fanout stems and branches
• Primary goal is test detection
• Deriving a test for a fault at each net is too much work
• Thankfully, we can exploit the concept of fault equivalence and fault dominance to reduce the test generation effort
• Analyze fault equivalence and dominance “structurally”
• Equivalent faults cannot be distinguished, so test only one of these from the equivalence class
• Reduce the number of tests required to test the whole circuit
Structural Fault Equivalence

- For an AND gate: \(a/0 = b/0 = c/0\) (equivalent faults)
 - Same test vector, and same fault effect
 - Test only one of these
- NAND gate: \(a/0 = b/0 = c/1\)
- OR gate: \(a/1 = b/1 = c/1\)
- XOR gate:
 - \(a/0\) implies output \(c = b\); \(a/1\) implies \(c = b'\)
 - \(b/0\) implies \(c = a\); \(b/1\) implies \(c = a'\)
 - \(c/0\) implies \(c = 0\); \(c/1\) implies \(c = 1\)
 - No fault equivalence at all
Fault Dominance

- Let T_g be the set of all tests that detect fault g
- Fault f dominates fault g if $Z_f(t) = Z_g(t)$ $\forall t \in T_g$
- Clearly $T_f \supseteq T_g$
- If the goal is fault detection (and not fault distinguishing/diagnosis), then T_f is not needed, T_g suffices to detect fault f
Fault Dominance for NAND/NOR Gates

- Let T_g be the set of all tests that detect fault g
- Fault f dominates fault g if $Z_f(t) = Z_g(t) \ \forall t \in T_g$
- Clearly $T_f \supseteq T_g$.
- If the goal is fault detection (and not fault distinguishing/diagnosis), then T_f is not needed, T_g suffices to detect fault f
Fault Collapsing on a Fanout-Free Circuit

- If a test set T detects all $s/0$ and $s/1$ faults on the primary inputs (PIs) in a fanout-free circuit with AND/OR/INV gates, the T detects all $s/0$ and $s/1$ faults in the circuit!
- Gate output fault is either equivalent to gate input faults, or it dominates gate input faults.
- Tests for gate output faults need not be derived!
But What about Fanouts? The Check Point Theorem!

- Check points of a circuit = PIs + fanout branches!
 - Fanout stems = gate outputs or PIs
 - If T detects all checkpoint faults, T detects all single-stuck faults in the circuit

\[\text{But } e/o = a/o \neq b/o \]
\[v/e \neq b/i \]
\[v/e \neq b/i \]
\[i/o = q/o \checkmark \]
\[i/i > q/i \checkmark \]
\[\times \checkmark \text{ not necessary. } \]
Multiple-Stuck Faults

- Case 1: Let a SSF be undetectable. This implies redundancy. A multi-stuck-fault (MSF) under redundancy becomes detectable!
Multiple-Stuck Faults

- Case 2: Let a SSF f be detectable, and another SSF g be undetectable. Then the MSF (f, g) becomes undetectable.
- This is called “test invalidation” in the presence of redundancies. That’s why we prefer to do SSF tests, under a frequent testing strategy.
ATPG Fault Coverage

- Fault coverage = \(F_{cov} = \frac{\# \text{ of detectable faults}}{\# \text{ of total faults}} \)
- Fault efficiency of an ATPG tool
 \[\frac{\text{total detectable faults} - \text{aborted faults}}{\text{total faults}} \]
- In modern ATPG tools, fault coverage is very high 95+%.
- In the early days, ATPG algorithms D-algorithm, PODEM, FAN. Now a days, SAT solver based ATPG is very efficient.
 - Miter model: Fault free (spec), faulty (with a stuck-line) implementation.