
And-Invert-Graphs (AIGs) for Equivalence Verification,

SAT Modulo Theory (SMT) Solvers, and the Motivation
for Algebraic Reasoning

Priyank Kalla

Associate Professor
Electrical and Computer Engineering, University of Utah

kalla@ece.utah.edu
http://www.ece.utah.edu/~kalla

August 28, 2017

http://www.ece.utah.edu/~kalla

CDCL Solvers: Panacea?

Where does SAT fail?

For hard UNSAT instances, such as equivalence verification

A Specification ckt

Implementation ckt

F

G

F == G
1

B

Figure: Miter the circuits F, G

Prove UNSAT, or find a counter-example

Limitations: No internal structural equivalences

EDA-techniques: Circuit-SAT, AIG-reductions, constraint-learning

Key idea: identify internal structural equivalences

P. Kalla (Univ. of Utah) AIGs, SMT, Algebra August 28, 2017 2 / 13

Combinational Equivalence Checking (CEC)

Direct application of SAT to CEC is inefficient

Bug-catching (UNSAT) is easier, proof of correctness is harder

Datapath-dominated circuits are particularly harder to verify

How to use the power of SAT, along with logic design, synthesis, and
optimization concepts, to efficiently solve the CEC problem?

How was CEC solved prior to SAT and BDDs?

Techniques borrowed heavily from circuit synthesis, testing and
simulation
Logic Synthesis = sequence of transformations
Verification = reverse these transformations? Kind of...

P. Kalla (Univ. of Utah) AIGs, SMT, Algebra August 28, 2017 3 / 13

Circuit-SAT solvers & AIGs

CSAT: SAT solvers, specifically tuned to operate on circuits

And-Invert-Graphs (AIGs): An engine to enable circuit-SAT

The origins of AIGs are in logic synthesis and technology
decompositions

AIGs are a versatile data-structure to represent Boolean functions and
circuits

AIGs can be functionally reduced (FRAIGs)

FRAIGs are semi-canonical, help to identify sub-circuit equivalences

The tool ABC from UC Berkeley (URL on class website): AIG based
logic synthesis and verification

P. Kalla (Univ. of Utah) AIGs, SMT, Algebra August 28, 2017 4 / 13

AIGs

AIGs are Boolean networks composed of 2-input AND gates and
Inverters

Construction time proportional to circuit size (unlike BDDs)

Enhanced with Simulation, SAT & BDDs: very powerful for synthesis
and verification

Build AIGs from circuits, FRAIG-sweep, solve SAT, CEC, Synthesis,
etc.

P. Kalla (Univ. of Utah) AIGs, SMT, Algebra August 28, 2017 5 / 13

AIGs - Examples

P. Kalla (Univ. of Utah) AIGs, SMT, Algebra August 28, 2017 6 / 13

FRAIG: AIG re-write rules

Simple rules, non canonical, but very quick AIG rewriting
Swap inputs, merge nodes, look-up sub-structures

f = abc

a b c

a b c

a b a c

====>

a b a c a b a c

f = abc

Figure: AIG rewrite examples

P. Kalla (Univ. of Utah) AIGs, SMT, Algebra August 28, 2017 7 / 13

AIG-based CEC

Construct FRAIGs, merge equivalent nodes

Simulate for a few (say l = 216) inputs

If nodes n1, n2 evaluate the same for l inputs

Miter sub-circuits at n1 and n2, solve sub-circuit CEC
If n1 = n2, simplify original miter: make n1 = n2 a primary input;
continue until CEC solved.

Very simple, yet very successful approach, used in industry

AIGs can solve CEC for bit-level and synthesized designs

P. Kalla (Univ. of Utah) AIGs, SMT, Algebra August 28, 2017 8 / 13

Word-Level Verification

Imagine a Bit-Vector RTL description

P. Kalla (Univ. of Utah) AIGs, SMT, Algebra August 28, 2017 9 / 13

Word-Level Verification

Imagine a Bit-Vector RTL description

(x 6= y) ∧ ((2 ∗ x < z) ∨ ¬((x − y ≥ z) ∧ (z ≤ y)))

P. Kalla (Univ. of Utah) AIGs, SMT, Algebra August 28, 2017 9 / 13

Word-Level Verification

Imagine a Bit-Vector RTL description

(x 6= y) ∧ ((2 ∗ x < z) ∨ ¬((x − y ≥ z) ∧ (z ≤ y)))

How will you solve SAT on this formula?

P. Kalla (Univ. of Utah) AIGs, SMT, Algebra August 28, 2017 9 / 13

Word-Level Verification

Imagine a Bit-Vector RTL description

(x 6= y) ∧ ((2 ∗ x < z) ∨ ¬((x − y ≥ z) ∧ (z ≤ y)))

How will you solve SAT on this formula?

Also, x , y , z are bit-vectors: [31 : 0]

P. Kalla (Univ. of Utah) AIGs, SMT, Algebra August 28, 2017 9 / 13

Word-Level Verification

Imagine a Bit-Vector RTL description

(x 6= y) ∧ ((2 ∗ x < z) ∨ ¬((x − y ≥ z) ∧ (z ≤ y)))

How will you solve SAT on this formula?

Also, x , y , z are bit-vectors: [31 : 0]

(x > y)
︸ ︷︷ ︸

a

∨ (x < y)
︸ ︷︷ ︸

b

∧((2 ∗ x < z)
︸ ︷︷ ︸

c

∨¬((x − y ≥ z)
︸ ︷︷ ︸

d

∧ (z ≤ y)
︸ ︷︷ ︸

e

))

P. Kalla (Univ. of Utah) AIGs, SMT, Algebra August 28, 2017 9 / 13

Word-Level Verification

Imagine a Bit-Vector RTL description

(x 6= y) ∧ ((2 ∗ x < z) ∨ ¬((x − y ≥ z) ∧ (z ≤ y)))

How will you solve SAT on this formula?

Also, x , y , z are bit-vectors: [31 : 0]

(x > y)
︸ ︷︷ ︸

a

∨ (x < y)
︸ ︷︷ ︸

b

∧((2 ∗ x < z)
︸ ︷︷ ︸

c

∨¬((x − y ≥ z)
︸ ︷︷ ︸

d

∧ (z ≤ y)
︸ ︷︷ ︸

e

))

Solve SAT: (a ∨ b) ∧ (c ∨ ¬(d ∧ e))

P. Kalla (Univ. of Utah) AIGs, SMT, Algebra August 28, 2017 9 / 13

Word-Level Verification

Imagine a Bit-Vector RTL description

(x 6= y) ∧ ((2 ∗ x < z) ∨ ¬((x − y ≥ z) ∧ (z ≤ y)))

How will you solve SAT on this formula?

Also, x , y , z are bit-vectors: [31 : 0]

(x > y)
︸ ︷︷ ︸

a

∨ (x < y)
︸ ︷︷ ︸

b

∧((2 ∗ x < z)
︸ ︷︷ ︸

c

∨¬((x − y ≥ z)
︸ ︷︷ ︸

d

∧ (z ≤ y)
︸ ︷︷ ︸

e

))

Solve SAT: (a ∨ b) ∧ (c ∨ ¬(d ∧ e))

Solution: a = b = c = d = e = 1

P. Kalla (Univ. of Utah) AIGs, SMT, Algebra August 28, 2017 9 / 13

Word-Level Verification

Imagine a Bit-Vector RTL description

(x 6= y) ∧ ((2 ∗ x < z) ∨ ¬((x − y ≥ z) ∧ (z ≤ y)))

How will you solve SAT on this formula?

Also, x , y , z are bit-vectors: [31 : 0]

(x > y)
︸ ︷︷ ︸

a

∨ (x < y)
︸ ︷︷ ︸

b

∧((2 ∗ x < z)
︸ ︷︷ ︸

c

∨¬((x − y ≥ z)
︸ ︷︷ ︸

d

∧ (z ≤ y)
︸ ︷︷ ︸

e

))

Solve SAT: (a ∨ b) ∧ (c ∨ ¬(d ∧ e))

Solution: a = b = c = d = e = 1

Combine “solvers” for different theories!

P. Kalla (Univ. of Utah) AIGs, SMT, Algebra August 28, 2017 9 / 13

SAT Modulo Theories (SMT)

A mechanism to combine many “theories” and solvers together

Theory of difference constraints and logic
Equality and uninterpreted functions
Quantifier-free bit-vector formulas
All combined with First order logic

Approach: Use SAT as a base-solver, and propagate solutions to
theory solvers

Spurious solutions (ones disproved with theory solvers) are added as
“lemma”, and SAT is re-solved

See example on next slide

P. Kalla (Univ. of Utah) AIGs, SMT, Algebra August 28, 2017 10 / 13

SMT Solving Strategies

(x 6= y) ∧ ((2 ∗ x < z) ∨ ¬((x − y ≥ z) ∧ (z ≤ y)))

(x > y)
︸ ︷︷ ︸

a

∨ (x < y)
︸ ︷︷ ︸

b

∧((2 ∗ x < z)
︸ ︷︷ ︸

c

∨¬((x − y ≥ z)
︸ ︷︷ ︸

d

∧ (z ≤ y)
︸ ︷︷ ︸

e

))

Solve SAT (a ∨ b) ∧ (c ∨ ¬(d ∧ e))

Solution: a = b = c = d = e = 1 creates a linear program

If linear program infeasible, add ¬(a ∧ b ∧ c ∧ d ∧ e) to the CNF,
resolve SAT

P. Kalla (Univ. of Utah) AIGs, SMT, Algebra August 28, 2017 11 / 13

Word-Level RTL CEC is still Challenging

Multiplication is hard to solve (no one knows how to solve it!)

SMT relies on “bit-blasting”, and gives a huge problem to SAT

t2[1:0]
G[2:0]

*+

x[1:0]

1

x[1:0] t1[1:0]
F[2:0]

+*

== 1 ?

! =(a)

(b)

t2[1:0]
G[2:0]

*+

x[1:0]

1

x[1:0] t1[1:0]
F[2:0]

+*

(c)

Figure: x2 + x ≡ x(x + 1)

P. Kalla (Univ. of Utah) AIGs, SMT, Algebra August 28, 2017 12 / 13

Motivation for Algebraic Computation

Modeling for bit-precise algebraic computation

Arithmetic RTLs: functions over k-bit-vectors
k-bit-vector 7→ integers (mod 2k) = Z2k

k-bit-vector 7→ Galois (Finite) field F2k

For many of these applications SAT/SMT fail miserably!

Computer Algebra and Algebraic Geometry + SAT/SMT

Model: Circuits as polynomial functions f : Z2k → Z2k , f : F2k → F2k

Apply symbolic and algebraic computing concepts for verification
And this topic is the core focus of this course

P. Kalla (Univ. of Utah) AIGs, SMT, Algebra August 28, 2017 13 / 13

