Two-Level Logic Optimization: Fundamentals

Priyank Kalla

THE U) UNIVERSITY ${ }^{0} \mathrm{~F}$ UTAH

Associate Professor
Electrical and Computer Engineering, University of Utah
kalla@ece.utah.edu
http://www.ece.utah.edu/~kalla

Two-Level Logic Simplification

- Why minimize two-level logic?
- Simpler implementation, also helps with multi-level logic optimization
- Representations: SOP, POS, tabular forms
- Implementations: PLAs
- Two level minimization improves: Area, Delay and Testability
- Limitation: Circuits can become large and slow

Algorithmic Issues

- Recall: Variable, literal, minterms and cubes (ON-set), implicants
- Without loss of generality, we will deal with implicants
- Cover of a function: a list of implicants that covers the function
- Hence the term: "minimum(al) cover of a function"
- We want large cubes: prime implicants
- We want fewest prime implicants that cover the function - cost issues
- In general: Cost of a two level implementation can be counted as the total number of SOP literals

What do we mean by Logic "Simplification"?

- Ideally, we want a minimum cover with minimum cost

What do we mean by Logic "Simplification"?

- Ideally, we want a minimum cover with minimum cost
- Minimal Cover: Irredundant cover, not contained in any other cover
- No implicant contained in any subset of implicants of the cover

What do we mean by Logic "Simplification"?

- Ideally, we want a minimum cover with minimum cost
- Minimal Cover: Irredundant cover, not contained in any other cover
- No implicant contained in any subset of implicants of the cover
- Minimal cover w.r.t. single implicant containment
- Weaker property, where no single cube contained in any other cube
- Also called single cube containment (SCC)
- Ex: $\operatorname{SCC}(a+a b)=a$

What do we mean by Logic "Simplification"?

- Ideally, we want a minimum cover with minimum cost
- Minimal Cover: Irredundant cover, not contained in any other cover
- No implicant contained in any subset of implicants of the cover
- Minimal cover w.r.t. single implicant containment
- Weaker property, where no single cube contained in any other cube
- Also called single cube containment (SCC)
- Ex: $\operatorname{SCC}(a+a b)=a$
- Minimum cover: a cover of minimum cardinality (of implicants)

What do we mean by Logic "Simplification"?

- Ideally, we want a minimum cover with minimum cost
- Minimal Cover: Irredundant cover, not contained in any other cover
- No implicant contained in any subset of implicants of the cover
- Minimal cover w.r.t. single implicant containment
- Weaker property, where no single cube contained in any other cube
- Also called single cube containment (SCC)
- Ex: $\operatorname{SCC}(a+a b)=a$
- Minimum cover: a cover of minimum cardinality (of implicants)
- Minimum covers also with minimum cost (strongest condition!)

What do we mean by Logic "Simplification"?

- Ideally, we want a minimum cover with minimum cost
- Minimal Cover: Irredundant cover, not contained in any other cover
- No implicant contained in any subset of implicants of the cover
- Minimal cover w.r.t. single implicant containment
- Weaker property, where no single cube contained in any other cube
- Also called single cube containment (SCC)
- Ex: $\operatorname{SCC}(a+a b)=a$
- Minimum cover: a cover of minimum cardinality (of implicants)
- Minimum covers also with minimum cost (strongest condition!)
- Prime implicants play an important role: There exists a minimum cover consisting of only prime implicants.

Example

- $f_{1}=a^{\prime} b^{\prime} c^{\prime}+a^{\prime} b^{\prime} c+a b^{\prime} c+a b c+a b c^{\prime}$ and $f_{2}=a b^{\prime} c+a^{\prime} b^{\prime} c$
- Single output cover f_{1} :
- Multi-Output Cover: F:

Primality and Irredundancy

- Making a cover prime and irredundant is good, but may not have minimum cost
- However, primality and irredundancy is still very important
- For testability of two-level logic
- Also applicable to heuristic minimization - i.e. when very large problems cannot be exactly minimized
- See example given in class on the effect of primality and irredundancy
- Prime and irredundant $=2$-level logic fully testable! No "redundancy"
- Also see these examples:
- $f\left(x_{1}, \ldots, x_{4}\right)=\sum m(0,4,8,10,11,12,13,15)$
- $f=x_{3}^{\prime} x_{4}^{\prime}+x_{1}, x_{2}, x_{3}^{\prime}+x_{1} x_{3} x_{4}+x_{1} x_{2}^{\prime} x_{3}$ and $f=x_{3}^{\prime} x_{4}^{\prime}+x_{1} x_{2} x_{4}+x_{1} x_{2}^{\prime} x_{3}$
- Are both implementations prime \& irredundant?

Minimum Covers and Minimum Cost Covers

Generate primes, and find minimum (cost) covers
$f=\sum m(0,3,4,5,7,9,11)+D(8,12,13,14)$

- One solution:
$p_{1}=(0,4,8,12), p_{2}=(4,5,12,13), p_{3}=(3,7), p_{4}=(9,11)$. Cost $=$ 4 primes, 10 literals
- Another solution:

$$
p_{1}=(0,4,8,12), p_{2}=(5,7), p_{3}=(3,11), p_{4}=(9,11) . \text { Cost }=4
$$ primes, 11 literals

So, the strongest problem formulation is: Find a minimum cost cover from among the prime implicants that contains a minimum number of primes!

Prime Implicant Generation

- For a n variable Boolean function, can have $3^{n} / n$ primes, and 2^{n} minterms in the worst case
- Generation of primes is a challenge
- One approach: Prime implicant table generation, see any undergrad digital logic textbook, also shown in class
- A more interesting way to generate primes using Shannon's expansion: $f=x f_{x}+x^{\prime} f_{x}^{\prime}$
- Prime of f can be:
- A prime of $x f_{x}$;
- Or, a prime of $x^{\prime} f_{x^{\prime}}$;
- Or, the "consensus of two implicants", one in $x f_{x}$ and one in $x^{\prime} f_{x^{\prime}}$
- What is the "consensus of two implicants"?

Consensus of two Implicants

- Given two implicants $\alpha, \beta, \mathcal{C O N S E N S U S}(\alpha, \beta)$ is the single largest cube contained in their union, but not contained in either of them.
- If Hamming distance between $\alpha, \beta \geq 2, \mathcal{C O N S E N S U S}(\alpha, \beta)$ is void.
- Given a variable x and two cubes A, B, $\mathcal{C O N S E N S U S}\left(x A, x^{\prime} B\right)=A B$

Recursive Approach to Prime Computation

$$
P(f)=\operatorname{SCC}\left[x \cdot P\left(f_{x}\right) \cup x^{\prime} \cdot P\left(f_{x^{\prime}}\right) \cup \mathcal{C O N S E N S U S}\left(x \cdot P\left(f_{x}\right), x^{\prime} \cdot P\left(f_{x^{\prime}}\right)\right)\right]
$$

- Notation: $P(f)$ denotes the set of primes of f
- Pick a variable x for branching, x should be the highest binate variable
- Compute primes in $x \cdot P\left(f_{x}\right), x^{\prime} \cdot P\left(f_{x^{\prime}}\right)$ and then in their consensus.
- $\mathcal{S C C}$ operator is needed because primes in $x \cdot P\left(f_{x}\right)$ or $x^{\prime} \cdot P\left(f_{x^{\prime}}\right)$ may be contained in their consensus
- When does recursion bottom out?
- When a (cofactor) cover f is a single implicant, $P(f)=f$
- When a (cofactor) cover f is strongly unate in all variables, $P(f)=\mathcal{S C C}(f)$ (Can you prove it?)
- Original cover of f may not be unate, but cofactors generally tend to be unate, so exploit unateness.

Unate Covers versus Unate Functions

- Recall, $f=a^{\prime} b c+a b^{\prime} c+a b c^{\prime}+a b c$ is a unate function (majority function) w.r.t. all variables
- When f is minimized, $f=a b+a c+b c$, this cover is unate
- Unate covers imply unate functions
- Unate functions do not always have unate covers
- Checking for unate covers is easier: just check the polarity of each variable for (+ve or -ve) unateness
- Unate cover: Every variable x appears either in only positive polarity, or only in negative polarity
- Checking for unate functions: $f_{x} \supseteq f_{x^{\prime}}$ or vice-versa; this containment check is harder
- So, for unate recursive paradigm, we operate mostly on unate covers
- In general, to avoid confusion, use f for function and F for its cover
- $f=a b+a c+a c, \quad F=\{a b, a c, b c\}$

Now read Chapter 4 from the textbook... for solving the table covering problem

