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Two-Level Logic Simplification

Why minimize two-level logic?

Simpler implementation, also helps with multi-level logic optimization

Representations: SOP, POS, tabular forms

Implementations: PLAs

Two level minimization improves: Area, Delay and Testability

Limitation: Circuits can become large and slow
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Algorithmic Issues

Recall: Variable, literal, minterms and cubes (ON-set), implicants

Without loss of generality, we will deal with implicants

Cover of a function: a list of implicants that covers the function

Hence the term: “minimum(al) cover of a function”

We want large cubes: prime implicants

We want fewest prime implicants that cover the function – cost issues

In general: Cost of a two level implementation can be counted as the
total number of SOP literals
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What do we mean by Logic “Simplification”?

Ideally, we want a minimum cover with minimum cost
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What do we mean by Logic “Simplification”?

Ideally, we want a minimum cover with minimum cost

Minimal Cover: Irredundant cover, not contained in any other cover

No implicant contained in any subset of implicants of the cover

Minimal cover w.r.t. single implicant containment

Weaker property, where no single cube contained in any other cube
Also called single cube containment (SCC)
Ex: SCC (a + ab) = a

Minimum cover: a cover of minimum cardinality (of implicants)

Minimum covers also with minimum cost (strongest condition!)

Prime implicants play an important role: There exists a minimum

cover consisting of only prime implicants.
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Example

f1 = a′b′c ′ + a′b′c + ab′c + abc + abc ′ and f2 = ab′c + a′b′c

Single output cover f1:

Multi-Output Cover: F :

a

b

c

a

b

c
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Primality and Irredundancy

Making a cover prime and irredundant is good, but may not have
minimum cost

However, primality and irredundancy is still very important

For testability of two-level logic
Also applicable to heuristic minimization – i.e. when very large
problems cannot be exactly minimized

See example given in class on the effect of primality and irredundancy

Prime and irredundant = 2-level logic fully testable! No “redundancy”

Also see these examples:

f (x1, . . . , x4) =
∑

m(0, 4, 8, 10, 11, 12, 13, 15)
f = x ′3x

′

4 + x1, x2, x
′

3 + x1x3x4 + x1x
′

2x3 and f = x ′3x
′

4 + x1x2x4 + x1x
′

2x3
Are both implementations prime & irredundant?
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Minimum Covers and Minimum Cost Covers

Generate primes, and find minimum (cost) covers
f =

∑
m(0, 3, 4, 5, 7, 9, 11) +D(8, 12, 13, 14)

One solution:
p1 = (0, 4, 8, 12), p2 = (4, 5, 12, 13), p3 = (3, 7), p4 = (9, 11). Cost =
4 primes, 10 literals

Another solution:
p1 = (0, 4, 8, 12), p2 = (5, 7), p3 = (3, 11), p4 = (9, 11). Cost = 4
primes, 11 literals

So, the strongest problem formulation is: Find a minimum cost cover from
among the prime implicants that contains a minimum number of primes!
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Prime Implicant Generation

For a n variable Boolean function, can have 3n/n primes, and 2n

minterms in the worst case

Generation of primes is a challenge

One approach: Prime implicant table generation, see any undergrad
digital logic textbook, also shown in class

A more interesting way to generate primes using Shannon’s
expansion: f = xfx + x ′f ′

x

Prime of f can be:

A prime of xfx ;
Or, a prime of x ′fx′ ;
Or, the “consensus of two implicants”, one in xfx and one in x ′fx′

What is the “consensus of two implicants”?
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Consensus of two Implicants

Given two implicants α, β, CONSENSUS(α, β) is the single largest
cube contained in their union, but not contained in either of them.

If Hamming distance between α, β ≥ 2, CONSENSUS(α, β) is void.

Given a variable x and two cubes A,B ,
CONSENSUS(xA, x ′B) = AB

P. Kalla (Univ. of Utah) Two-Level Logic Optimization 9 / 11



Recursive Approach to Prime Computation

P(f ) = SCC[x ·P(fx) ∪ x ′ ·P(f
x
′) ∪ CONSENSUS(x ·P(fx), x

′ ·P(f
x
′))]

Notation: P(f ) denotes the set of primes of f

Pick a variable x for branching, x should be the highest binate variable

Compute primes in x · P(fx), x
′ · P(fx ′) and then in their consensus.

SCC operator is needed because primes in x · P(fx) or x ′ · P(fx ′) may
be contained in their consensus

When does recursion bottom out?

When a (cofactor) cover f is a single implicant, P(f ) = f

When a (cofactor) cover f is strongly unate in all variables,
P(f ) = SCC(f ) (Can you prove it?)

Original cover of f may not be unate, but cofactors generally tend to
be unate, so exploit unateness.
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Unate Covers versus Unate Functions

Recall, f = a′bc + ab′c + abc ′ + abc is a unate function (majority
function) w.r.t. all variables

When f is minimized, f = ab + ac + bc , this cover is unate

Unate covers imply unate functions

Unate functions do not always have unate covers

Checking for unate covers is easier: just check the polarity of each
variable for (+ve or -ve) unateness

Unate cover: Every variable x appears either in only positive polarity, or
only in negative polarity

Checking for unate functions: fx ⊇ fx ′ or vice-versa; this containment
check is harder

So, for unate recursive paradigm, we operate mostly on unate covers

In general, to avoid confusion, use f for function and F for its cover

f = ab + ac + ac , F = {ab, ac , bc}
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Now read Chapter 4 from the textbook... for solving the table covering
problem
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