Two-Level Logic Optimization Heuristic Minimization using the Unate Recursive Paradigm

Priyank Kalla

Associate Professor Electrical and Computer Engineering, University of Utah kalla@ece.utah.edu http://www.ece.utah.edu/~kalla

(日) (四) (보) (보) (보)

- Generation of all primes can be infeasible
- Exact minimization might require a lot of work, large table covering problems, particularly for multi-output functions
- Heuristic minimization: Solve large problems quickly, maybe sub-optimally, but the solutions are quite close to optimal
- Espresso: a two-level logic minimizer
- Espresso: The quintessential case-study of CAD heuristics
- Think Primality & Irredundancy
 - Not every prime and irredundant cover is minimum, but the converse is true.
 - Search for prime and irredundant covers, with lower cost
 - Search should be fast, should hill climb, and be intelligent

Input:
$$F = ON-SET$$
 cover, $D = DC-SET$ cover
 $F = Expand(F, D);$
 $F = Irredundant(F, D);$
repeat
 $cost = |F|;$
 $F = Reduce(F, D);$
 $F = Expand(F, D);$
 $F = Irredundant(F, D);$
until $|F| < cost;$
 $F = Make_Sparse(F);$

Э

< 回 ト < 三 ト < 三 ト

The Actual Espresso Algorithm

Input: F = ON-SET cover, D = DC-SET cover

- F = Expand(F, D);
- F = Irredundant(F, D);
- E = Essentials(F, D);
- F = F E;

repeat

```
cost_1 = |F|;
   repeat
       cost_2 = |F|;
    F = \text{Reduce}(F, D);
    F = \text{Expand}(F, D);
       F = Irredundant(F, D);
   until |F| < cost_2;
   F = \text{last}_gasp(F, D);
until |F| < cost_1;
F = Make_Sparse(F);
```

・伺 ト ・ ヨ ト ・ ヨ ト

The EXPAND operator

- Increase the size of each implicant, such that the smaller ones can be covered and droppped
- Maximally expanded implicants = primes
- \bullet IOW, Expand makes a cover prime and minimal w.r.t. \mathcal{SCC}

Approach:

- Take a cube (e.g. *abc*), drop a literal (e.g. *ab*)
- Check if the expansion is valid. If valid, continue expansion.
- If invalid, EXPAND in another direction (e.g. $abc \rightarrow ac$)

Two ways:

- Is the Expanded cube $\alpha \subseteq (F \cup D)$? This is "containment check"!
 - Containment: $\alpha \in f \iff f_{\alpha}$ is TAUTOLOGY
 - Another approach: containment: $\alpha \in f \iff (\overline{\alpha} + f)$ is TAUTOLOGY
- Does the Expanded cube intersect with the OFF-set?
 - Requires OFF-set computation: $f' = x \cdot (f_x)' + x' \cdot (f_{x'})'$
 - Once again: use recursive paradigm for complement computation

Tautology Check using Shannon's Expansion: $f = xf_x + x'f_{x'}$

- A cover *f* is TAUTOLOGY *iff* both cofactors are TAUTOLOGY
- Use the Unate Recursive Paradigm
 - Choice of splitting variable: pick the highest binate variable for expansion
 - Terminal cases of recursion?
 - When the cover of f is a single cube, $f \neq 1$
 - When the cover of f is unate in (at least) one variable
 - Exploit unateness: A +ve unate f is TAUTOLOGY iff $f_{x'} = 1$
 - Exploit unateness: A -ve unate f is TAUTOLOGY iff $f_x = 1$
 - Exploit unateness: A unate *f* is TAUTOLOGY *iff* the contained cofactor is TAUTOLOGY

Example: f = ab + ac + ab'c' + a', is f == 1? Example: f = ab + ac + a', apply Expand(f) operator.

Theorem

Let $F = G \cup \alpha$, where α is a prime disjoint from G. Then α is an essential prime **iff** $CONSENSUS(G, \alpha)$ does not cover α .

- G = Remove from F the *minterms* covered by α
- α is NOT essential if it can be covered by other primes
- Some cubes in G should be expandable to cover α
- Analyze those cubes in G that are distance 1 from α
- Example: f = a'b' + b'c + ac + ab, is $\alpha = a'b'$ essential?

- Decrease the size of each implicant, so that successive expansion may lead to another cover of smaller cardinality
- Reduced implicant's validity function should still be covered
- Cardinality of F should not increase
- A redundant implicant be reduced to void!
- To reduce α , remove from F those minterms that are covered by $F \{\alpha\}$
- Can be done by $\alpha \cap \overline{(F \{\alpha\})}$?
- However, ensure that the result yields a single implicant, otherwise the cardinality of *F* may increase!
 - Need to analyze the "supercube" of $\overline{(F \{\alpha\})}$
 - Supercube of (α, β) = smallest single cube containing both.

- **- - - - - - - - - - - - -**

Example: f = c' + a'b'. Draw the cover on a 3-D cube.

- Reduce $\alpha = c'$, so $F \alpha = \beta = a'b'$
- $\overline{F-\alpha} = \mathbf{a} + \mathbf{b}$
- Intersect: α ∩ (a + b) = ac' + bc'. Supercube of ac', bc' = 1. So c' ∩ 1 = c' implies no valid reduction!
- Now reduce $\alpha = a'b'$. So, $F \alpha = \beta = c'$
- Compute $\overline{F \alpha} = c$, and supercube of c = c itself!
- α ∩ c = a'b'c, so the cube a'b' reduces to a'b'c without reducing the cardinality of F. Reduced F = {c', a'b'c}
- Now this cover can be expanded in other directions for hill-climbing