Two-Level Logic Optimization

Heuristic Minimization using the Unate Recursive Paradigm

Priyank Kalla

UNIVERSITY
 ${ }^{0} \mathrm{~F}$ UTAH

Associate Professor
Electrical and Computer Engineering, University of Utah
kalla@ece.utah.edu
http://www.ece.utah.edu/~kalla

Two-Level Heuristic Minimization: Basic Ideas

- Generation of all primes can be infeasible
- Exact minimization might require a lot of work, large table covering problems, particularly for multi-output functions
- Heuristic minimization: Solve large problems quickly, maybe sub-optimally, but the solutions are quite close to optimal
- Espresso: a two-level logic minimizer
- Espresso: The quintessential case-study of CAD heuristics
- Think Primality \& Irredundancy
- Not every prime and irredundant cover is minimum, but the converse is true.
- Search for prime and irredundant covers, with lower cost
- Search should be fast, should hill climb, and be intelligent

The Basic Espresso Loop

Input: $F=$ ON-SET cover, $D=\mathrm{DC}-\mathrm{SET}$ cover
$F=\operatorname{Expand}(F, D)$;
$F=\operatorname{Irredundant}(F, D)$;
repeat

$$
\begin{aligned}
& \text { cost }=|F| ; \\
& F=\operatorname{Reduce}(F, D) ; \\
& F=\operatorname{Expand}(F, D) ; \\
& F=\operatorname{Irredundant}(F, D) ;
\end{aligned}
$$

until $|F|<$ cost;
$F=$ Make_Sparse (F);

The Actual Espresso Algorithm

Input: $F=$ ON-SET cover, $D=\mathrm{DC}-\mathrm{SET}$ cover
$F=\operatorname{Expand}(F, D)$;
$F=\operatorname{Irredundant}(F, D)$;
$E=\operatorname{Essentials}(F, D)$;
$F=F-E$;
repeat
$\operatorname{cost}_{1}=|F| ;$
repeat

$$
\begin{aligned}
& \operatorname{cost}_{2}=|F| \\
& F=\operatorname{Reduce}(F, D) ; \\
& F=\operatorname{Expand}(F, D) ; \\
& F=\operatorname{Irredundant}(F, D) ;
\end{aligned}
$$

until $|F|<\operatorname{cost}_{2}$;
$F=$ last_gasp (F, D);
until $|F|<\operatorname{cost}_{1}$;
$F=$ Make_Sparse(F);

Implementation Issues

The Expand operator

- Increase the size of each implicant, such that the smaller ones can be covered and droppped
- Maximally expanded implicants = primes
- IOW, Expand makes a cover prime and minimal w.r.t. SCC

Approach:

- Take a cube (e.g. abc), drop a literal (e.g. ab)
- Check if the expansion is valid. If valid, continue expansion.
- If invalid, Expand in another direction (e.g. $a b c \rightarrow a c$)

How to Check if Expanded Cube is Valid?

Two ways:

- Is the Expanded cube $\alpha \subseteq(F \cup D)$? This is "containment check"!
- Containment: $\alpha \in f \Longleftrightarrow f_{\alpha}$ is Tautology
- Another approach: containment: $\alpha \in f \Longleftrightarrow(\bar{\alpha}+f)$ is TAUTOLOGY
- Does the Expanded cube intersect with the OFF-set?
- Requires OFF-set computation: $f^{\prime}=x \cdot\left(f_{x}\right)^{\prime}+x^{\prime} \cdot\left(f_{x^{\prime}}\right)^{\prime}$
- Once again: use recursive paradigm for complement computation

Containment as Tautology Check: Implementation

Tautology Check using Shannon's Expansion: $f=x f_{x}+x^{\prime} f_{x^{\prime}}$

- A cover f is tautology iff both cofactors are taUtology
- Use the Unate Recursive Paradigm
- Choice of splitting variable: pick the highest binate variable for expansion
- Terminal cases of recursion?
- When the cover of f is a single cube, $f \neq 1$
- When the cover of f is unate in (at least) one variable
- Exploit unateness: $A+$ ve unate f is Tautology iff $f_{x^{\prime}}=1$
- Exploit unateness: A -ve unate f is Tautology iff $f_{x}=1$
- Exploit unateness: A unate f is TAUTOLOGY iff the contained cofactor is Tautology
Example: $f=a b+a c+a b^{\prime} c^{\prime}+a^{\prime}$, is $f==1$?
Example: $f=a b+a c+a^{\prime}$, apply $\operatorname{Expand}(f)$ operator.

Detect Essential Primes

Theorem

Let $F=G \cup \alpha$, where α is a prime disjoint from G. Then α is an essential prime iff $\mathcal{C O N S E N S U S}(G, \alpha)$ does not cover α.

- $G=$ Remove from F the minterms covered by α
- α is NOT essential if it can be covered by other primes
- Some cubes in G should be expandable to cover α
- Analyze those cubes in G that are distance 1 from α
- Example: $f=a^{\prime} b^{\prime}+b^{\prime} c+a c+a b$, is $\alpha=a^{\prime} b^{\prime}$ essential?

What is the Reduce Operator?

- Decrease the size of each implicant, so that successive expansion may lead to another cover of smaller cardinality
- Reduced implicant's validity - function should still be covered
- Cardinality of F should not increase
- A redundant implicant be reduced to void!
- To reduce α, remove from F those minterms that are covered by $F-\{\alpha\}$
- Can be done by $\alpha \cap \overline{(F-\{\alpha\})}$?
- However, ensure that the result yields a single implicant, otherwise the cardinality of F may increase!
- Need to analyze the "supercube" of $\overline{(F-\{\alpha\})}$
- Supercube of $(\alpha, \beta)=$ smallest single cube containing both.

More on the Reduce Operation....

Example: $f=c^{\prime}+a^{\prime} b^{\prime}$. Draw the cover on a 3-D cube.

- Reduce $\alpha=c^{\prime}$, so $F-\alpha=\beta=a^{\prime} b^{\prime}$
- $\overline{F-\alpha}=a+b$
- Intersect: $\alpha \cap(a+b)=a c^{\prime}+b c^{\prime}$. Supercube of $a c^{\prime}, b c^{\prime}=1$. So $c^{\prime} \cap 1=c^{\prime}$ implies no valid reduction!
- Now reduce $\alpha=a^{\prime} b^{\prime}$. So, $F-\alpha=\beta=c^{\prime}$
- Compute $\overline{F-\alpha}=c$, and supercube of $c=c$ itself!
- $\alpha \cap c=a^{\prime} b^{\prime} c$, so the cube $a^{\prime} b^{\prime}$ reduces to $a^{\prime} b^{\prime} c$ without reducing the cardinality of F. Reduced $F=\left\{c^{\prime}, a^{\prime} b^{\prime} c\right\}$
- Now this cover can be expanded in other directions for hill-climbing

