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Logic Synthesis

Timing Analysis
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Timing Analysis - Delay Models
• Simple model 1:

 Ak = arrival time = max(A1,A2,A3) + Dk 
 Dk is the delay at node k, parameterized according to function fk and 

fanout node k 

• Simple model 2:
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• Can also have different times for rise time and fall time

≡
Ak = max{A1+Dk1, 
A2+Dk2,A3+Dk3}
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Static delay analysis

// level of PI nodes initialized to 0,  
// the others are set to -1.  
// Invoke LEVEL from PO  
Algorithm LEVEL(k) { // levelize nodes 
  if( k.level != -1)  
    return(k.level) 
  else 
    k.level = 1+max{LEVEL(ki)|ki ∈ fanin(k)} 
  return(k.level)  
} 

// Compute arrival times: 
// Given arrival times on PI’s  
Algorithm ARRIVAL() { 
  for L = 0 to MAXLEVEL 
    for {k|k.level = L} 
      Ak = MAX{Aki} + Dk 
}
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Required Times

Required times:  

 given required times on primary outputs 

• Traverse in reverse topological order (i.e. from primary outputs 
to primary inputs) 

• if (ki , k ) is an edge between ki and k, Rki ,k = Rk - Dk      

  (this is the edge required time) 
• Hence, the required time of output of node k is  
  Rk = min ( Rk,kj 

| kj ∈ fanout(k) )
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Propagating Slacks

Slacks: slack at the output node k is Sk = Rk-Ak 

Since Rki,k=Rk-Dk 

      Ski,k =Rki,k - Aki 

      Ski,k + Aki  = Rk-Dk = Sk + Ak - Dk 

Since Ak = max {Akj } + Dk 

      Ski,k = Sk + max {Akj } - Aki     kj , ki ∈ fanin (k ) 
      Ski =  min{Ski,j}               j ∈ fanout (ki )  

Notes:  
• Each edge is the graph has a slack and a required time 
• Negative slack is bad.
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Sequential networks

• Arrival times known at l1 and l2 

• Required times known at l3, l4, and l5 

• Delay analysis gives arrival and required times (hence slacks) for 
C1, C2, C3, C4
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Static critical paths

Min-Max problem: minimize max{-Si , 0} 

A static critical path of a Boolean network is a path P = {i1,i2,…,ip } 
where Sik

, ik+1
 < 0 

Note: if a node k is on a static critical path, then at least one of the 
fanin edges of k is critical. Hence, all critical paths reach from an 
input to an output. 

Note: There may be several critical paths
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Example: Static critical paths
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A1=6 R1=5 
A2=5 R2=5 

S1=-1 R3=3 
S2=0 R7=1 
S3,1=-1 R9=-1 
S4,1 = -1 
S4,2 = 0 
S5,2 = 1 
S6,3 = 0 
S7,3 = -1 
S7,4 = -1 
S7,5 = 1 
S8,6 = 0 
S9,7 = -1 

critical path edges
Ski,k = Sk + max{Akj } - Aki , kj,ki ∈ fanin(k) 

Sk = min{Sk,kj }, kj ∈ fanout(k) 
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Timing analysis problems

We want to determine the true critical paths of a circuit in order to: 
– determine the minimum cycle time that the circuit will function 
– identify critical paths from performance optimization - don’t want to 

try to optimize the wrong (non-critical) paths 
Implications:  

– Don’t want false paths (produced by static delay analysis) 
– Delay model is worst case model. Need to ensure correctness for 

case where ith gate delay ≤ Di
M
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Functional Timing Analysis

What is Timing Analysis?  
 Estimate when the output of a given circuit gets stable

clock

Combinational 
block

0

0
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Why Timing Analysis?

Timing verification 
– Verifies whether a design meets a given timing constraint 

• Example: cycle-time constraint 
Timing optimization 

– Needs to identify critical portion of a design for further 
optimization 

• Critical path identification 
In both applications, the more accurate, the better
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Timing Analysis - Basics
Naïve approach - Simulate all input vectors with SPICE 

– Accurate, but too expensive 
Gate-level timing analysis   
 Focus of this lecture 

– Less accurate than SPICE due to the level of abstraction, but 
much more efficient 

– Scenario: 
• Gate/wire delays are pre-characterized (accuracy loss) 
• Perform timing analysis of a gate-level circuit assuming 

the gate/wire delays



Gate-level Timing Analysis

A naive approach is topological analysis 
– Easy longest-path problem 
– Linear in the size of a network 

Not all paths can propagate signal events 
– False paths 
– If all longest paths are false, topological 

analysis gives delay overestimate 
Functional timing analysis = false-path-

aware timing analysis 
– Compute false-path-aware arrival time

arr(x1)=0    arr(x2)=0

False 
path 
aware 
arr(z)?

z

x1 x2

1

1



Example: 2-bit Carry-skip Adder
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False Path Analysis - Basics

Is a path responsible for delay? 
– If the answer is no, can ignore the path for delay computation 

Check the falsity of long paths until we find the longest true path 
– How can we determine whether a path is false? 

Delay underestimation is unacceptable 
– Can lead to overlooking a timing violation 

Delay overestimation is not desirable, but acceptable 
– Topological analysis can give overestimate, but never give 

underestimate
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Controlling/Non-Controlling Values

0 0 1

Controlling value of AND

Controlled value of AND

1 1

Controlling value of OR

Controlled value of OR

Non-Controlling value of AND

0

Non-Controlling value of OR

1 1 0
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Static Sensitization

A path is statically-sensitizable if there exists an input vector such 
that all the side inputs to the path are set to non-controlling 
values 
– This is independent of gate delays

1
0

Controlling value!

These paths are not 
statically-sensitizable

The longest true path 
is of length 2?

 t=0
 t=0

 t=0

1
0
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Static Sensitization

• The (dashed) path is responsible for delay! 
• Delay underestimation by static sensitization (delay = 2 when 

true delay = 3) 
– incorrect condition
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What is Wrong with Static Sensitization?

The idea of forcing non-controlling values to side inputs 
is okay, but timing was ignored 
– The same signal can have a controlling value at one time and 

a non-controlling value at another time. 

How about timing simulation as a correct method?
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Timing Simulation
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Implies that delay = 4 with the same set of  
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What is Wrong with Timing Simulation?

If gate delays are reduced, delay estimates can increase 

Not acceptable since 
– Gate delays are just upper-bounds, actual delay is in [0,d] 

• Delay uncertainty due to manufacturing 
– We are implicitly analyzing a family of circuits where gate 

delays are within the upper-bounds
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Monotone Speedup Property

Definition: For any circuit C, if  
– C’ is obtained from C by reducing some gate delays, and 
– delay_estimate(C’) ≤ delay_estimate(C),  

then delay_estimate has Monotone Speedup property 

Timing simulation does not have this property
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Timing Simulation Revisited
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Timing Simulation Revisited

Timed 3-valued (0,1,X) simulation 
– called X-valued simulation 

Monotone speedup property is satisfied. 

Underlying model of  
• floating mode condition  [Chen, Du] 

– Applies to “simple gate” networks only  

• viability   [McGeer, Brayton] 
– Applies to general Boolean networks



False Path Analysis Algorithms
Checking the falsity of every path explicitly is too expensive - exponential # of 

paths 
State-of-the-art approach: 

1. Start: set L = Ltop- ! = topological longest path delay - !    
Lold = 0 

2. Binary search:  
If (Delay(L)) (*) 

     ! L = |L-Lold|/2, Lold = L, L = L + ! L
   Else, ! L = |L-Lold|/2, Lold = L, L = L - ! L 

If (L > Ltop or ! L < threshold), L = Lold , done  

(*) Delay(L) = 1 if there an input vector under which an output gets stable only at time t 
where L ≤ t ?  
Can be reduced to 
– a SAT problem [McGeer, Saldanha, Brayton, ASV] or  
– a timed-ATPG   [Devadas, Keutzer, Malik]
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SAT-based False Path Analysis

Decision problem: 
Is there an input vector under which the output gets stable only after t = T ? 

Idea: 
1. characterize the set of all input vectors S(T) that make the output 

stable no later than t = T 
2. check if S(T) contains S = all possible input vectors  

This check is solved as a SAT problem: 
Is S \ S(T) empty? - set difference + emptiness check 
• Let F and F(T) be the characteristic functions of S and S(T) 
• Is F !F(T) satisfiable?
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Example

Assume all the PIs arrive at t = 0,  all gate delays = 1 
Is the output stable time t > 2? 

a

b

c

d

e f

g



!29

Example
 g(1,t=2) : the set of input vectors under which 
                 g gets stable to value = 1 no later than t =2 

a

b

c

d

e f

g

 g(1,t=2) = d(1,t=1) ∩ f(1,t=1)

 g(1,t=∞) = onset = !a!bc = g(1,t=2) = S1

Onset: 
stabilized by t=2?

= (a(0,t=0) ∩ b(0,t=0)) ∩ (c(1,t=0) ∪ e(1,t=0))
= !a!b(c ∪ ∅) = !a!bc = S1(t=2)
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Example
 g(0,t=2) : the set of input vectors under which 
                 g gets stable to value = 0 no later than t=2 

a

b

c

d

e f

g

 g(0,t=2) = d(0,t=1) ∪  f(0,t=1) 
               = (a(1,t=0) ∪ b(1,t=0)) ∪  (c(0,t=0) ∩ e(0,t=0)) 
               = (a+b) + (!c ∩  ∅) = a+b = S0(t=2)
 g(0,t=∞) = offset = a+b+!c = S0
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Example
 g(0,t=2) : the set of input vectors under which 
                 g gets stable to 0 no later than t=2 

a

b

c

d

e f

g

 g(0,t=2) = a+b
 g(0,t=∞) = offset = a+b+!c

Offset: 
NOTstabilized by t=2 
under abc=000

 g(0,t=∞) \ g(0,t=2) = (a+b+!c) !(a+b) = !a !b !c = satisfiable 
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Summary

False-path-aware arrival time analysis is well-understood 
– Practical algorithms exist 

• Can handle industrial circuits easily 
Remaining problems 

– Incremental analysis (make it so that a small change in the 
circuit does not make the analysis start all over) 

– Integration with logic optimization 
– DSM issues such as cross-talk-aware false path analysis
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Timed ATPG

Yet another way to solve the same decision problem 

A generalization of regular ATPG: 
– regular ATPG 

• find an input vector that differentiates a fault-free circuit and a 
faulty circuit in terms of functionality 

– Timed ATPG 
• find an input vector that exhibits a given timed behavior 
• Timed extension of PODEM


