
1

Logic Synthesis & Optimization

Spring 2019, Solutions to Homework # 3

Ashenhurst-Curtis Decomp

Solution to Q6, Simple disjunctive decomp:

The support set of f is w, x, y, z. We are asked to partition the variables in such a way that the bound set

size is two. The possibilities are: (w, x; y, z), (w, y; x, z), (w, z; x, y), (x, y;w, z), (x, z;w, y), (y, z;w, x).

When you draw the corresponding Karnaugh-maps and look for column multiplicity ≤ 2 (for feasible sim-

ple decompositions), only three partitions lead to a possible decomposition. These are: (w, x; y, z), (w, y; x, z)

and (x, y;w, z).

Let us consider the one with w, x as the bound set variables.

wx

yz
00 01 10 11

00

01

10

11

1

1

1

1

1

0 0 0

0

0 0

1

1 1

0 0

identical entries

10

00
+01
+11
0 1

1 0

0 0

1 1

Fig. 1. Functional Decomposition Chart.

Notice that the function can be decomposed simple-disjunctively, and encoded with φ(w, x) = w′x′ +

w′x+wx and φ = wx′ or vice-versa. The entries in the φ column that have ones correspond to the free-set

terms: φ · y′z+φ · yz. Similarly, free-set terms corresponding to φ are y′z′ + yz. Hence, F is decomposed

as: φ · y′z + φ · yz + φy′z′ + φyz.

If you transpose the above matrix - you’ll have w, x as the free set and y, z as the bound set. But this

won’t work as column multiplicity is 4 (with one column of all 0s). This would require Ashenhurst-Curtis

Decomp..... but thats another story.

You can also see that x, y as bound set (and w, z as free set) does also give column multiplicity = 2;

which means that the # of cut-set nodes in the BDD should be equal to 2. And you can confirm that by

looking at the following BDD.

2

x

y

w

z

cut

z

1001

| cut−set nodes | = 2

Fig. 2. Simple Decomposition on BDD

Q 7 For Ashenhurst-Curtis Decomp: you can draw the BDD with the given order and see that a

simple disjunctive decomp is not possible. In order to perform the decomposition, we will have to encode

the bound-set cubes corresponding to each cut-node. The BDD for f is shown below:

a

b b

c c

d

0 1

cut−node

cut−node
cut−node

This is also
a cut node

Z=11

W=00 X=01 Y=10

Fig. 3. Ashenhurst-Curtis Decomposition on BDD

Now comes the tricky part. You are supposed to encode ALL THE CUBES of the bound set. Please

follow this basic procedure:

• Starting from the root, traverse ALL paths and “pierce the cut”. These paths correspond to the cubes

in the bound set.

• The first node that you hit across the cut represents the subfunction that will be implemented in

the free-set part.

• In the above BDD, you will find that the path corresponding to cube a · b′ hits terminal node 0 -

3

this is the first node after the cut on this particular path (ab′). Which means that corresponding to

bound-set cubes ab′, the subfunction implemented in the free-set part will be a · b′ · 0.

• This does not mean that you can ignore to encode the terminal node. If you ignore this terminal

node, you will get an incorrect answer: i.e., f will not compute zero when ab′ is applied.

Let us encode the 4 cut-set nodes W,X, Y, Z with two bits g0, g1. Let Z = 11 correspond to the

encoding of the terminal 0 node. g0 = 1 for node Z and node Y .

Again, note the following: For node Z, only the incoming path ab′ is to be considered for g0. Why

not the other ones? Because, the bound-set cubes corresponding to the other paths will be encoded by

the remaining cut-set nodes. This is because the remaining paths hit cut-nodes W,X, Y .

g0 = a · b′(nodeZ) + a′ · b(nodeY) (1)

g1 = a · b′(nodeZ) + a′ · b′(nodeX) (2)

H = g′
0
g′
1
d+ g′

0
g1c + g0g

′

1
c′ + g0g10 (3)

= g′
0
g′
1
d+ g′

0
g1c + g0g

′

1
c′ (4)

You may try any other encoding, but traverse the bound-set (paths) cubes properly! In the above, apply

ab′ as the input to the bound set function, and notice that the output of the overall function F also results

in 0.

Don’t cares: Notice, in this case there are NO DON’T CARES! All four value combinations of g0g1

will be produced.

