Logic Synthesis \& Optimization

Spring 2019, Solutions to Homework \# 3
 Ashenhurst-Curtis Decomp

Solution to Q6, Simple disjunctive decomp:

The support set of f is w, x, y, z. We are asked to partition the variables in such a way that the bound set size is two. The possibilities are: $(w, x ; y, z),(w, y ; x, z),(w, z ; x, y),(x, y ; w, z),(x, z ; w, y),(y, z ; w, x)$. When you draw the corresponding Karnaugh-maps and look for column multiplicity ≤ 2 (for feasible simple decompositions), only three partitions lead to a possible decomposition. These are: $(w, x ; y, z),(w, y ; x, z)$ and $(x, y ; w, z)$.

Let us consider the one with w, x as the bound set variables.

Fig. 1. Functional Decomposition Chart.

Notice that the function can be decomposed simple-disjunctively, and encoded with $\phi(w, x)=w^{\prime} x^{\prime}+$ $w^{\prime} x+w x$ and $\bar{\phi}=w x^{\prime}$ or vice-versa. The entries in the ϕ column that have ones correspond to the free-set terms: $\phi \cdot y^{\prime} z+\phi \cdot y z$. Similarly, free-set terms corresponding to $\bar{\phi}$ are $y^{\prime} z^{\prime}+y z$. Hence, F is decomposed as: $\phi \cdot y^{\prime} z+\phi \cdot y z+\bar{\phi} y^{\prime} z^{\prime}+\bar{\phi} y z$.

If you transpose the above matrix - you'll have w, x as the free set and y, z as the bound set. But this won't work as column multiplicity is 4 (with one column of all 0 s). This would require Ashenhurst-Curtis Decomp..... but thats another story.

You can also see that x, y as bound set (and w, z as free set) does also give column multiplicity $=2$; which means that the \# of cut-set nodes in the BDD should be equal to 2 . And you can confirm that by looking at the following BDD.

Fig. 2. Simple Decomposition on BDD

Q 7 For Ashenhurst-Curtis Decomp: you can draw the BDD with the given order and see that a simple disjunctive decomp is not possible. In order to perform the decomposition, we will have to encode the bound-set cubes corresponding to each cut-node. The BDD for f is shown below:

Fig. 3. Ashenhurst-Curtis Decomposition on BDD

Now comes the tricky part. You are supposed to encode ALL THE CUBES of the bound set. Please follow this basic procedure:

- Starting from the root, traverse ALL paths and "pierce the cut". These paths correspond to the cubes in the bound set.
- The first node that you hit across the cut represents the subfunction that will be implemented in the free-set part.
- In the above BDD, you will find that the path corresponding to cube $a \cdot b^{\prime}$ hits terminal node $\mathbf{0}$ -
this is the first node after the cut on this particular path $\left(a b^{\prime}\right)$. Which means that corresponding to bound-set cubes $a b^{\prime}$, the subfunction implemented in the free-set part will be $a \cdot b^{\prime} \cdot 0$.
- This does not mean that you can ignore to encode the terminal node. If you ignore this terminal node, you will get an incorrect answer: i.e., f will not compute zero when $a b^{\prime}$ is applied.

Let us encode the 4 cut-set nodes W, X, Y, Z with two bits g_{0}, g_{1}. Let $Z=11$ correspond to the encoding of the terminal $\mathbf{0}$ node. $g_{0}=1$ for node Z and node Y.

Again, note the following: For node Z, only the incoming path $a b^{\prime}$ is to be considered for g_{0}. Why not the other ones? Because, the bound-set cubes corresponding to the other paths will be encoded by the remaining cut-set nodes. This is because the remaining paths hit cut-nodes W, X, Y.

$$
\begin{align*}
g_{0} & =a \cdot b^{\prime}(\text { node } Z)+a^{\prime} \cdot b(\text { node } Y) \tag{1}\\
g_{1} & =a \cdot b^{\prime}(\text { node } Z)+a^{\prime} \cdot b^{\prime}(\text { node } X) \tag{2}\\
H & =g_{0}^{\prime} g_{1}^{\prime} d+g_{0}^{\prime} g_{1} c+g_{0} g_{1}^{\prime} c^{\prime}+g_{0} g_{1} 0 \tag{3}\\
& =g_{0}^{\prime} g_{1}^{\prime} d+g_{0}^{\prime} g_{1} c+g_{0} g_{1}^{\prime} c^{\prime} \tag{4}
\end{align*}
$$

You may try any other encoding, but traverse the bound-set (paths) cubes properly! In the above, apply $a b^{\prime}$ as the input to the bound set function, and notice that the output of the overall function F also results in 0 .

Don't cares: Notice, in this case there are NO DON'T CARES! All four value combinations of $g_{0} g_{1}$ will be produced.

