Lecture 2

- Introduction to Sets, Relations, Functions \& Graphs
- Boolean logic as Sets and their Graph Representations
- Set $=$ collection of objects; Cardinality of $S=|S|$
- $S=\{a, b, c\},|S|=3$
- Notation: $\in, \subset, \supset, \cup, \cap$
- Complement of a set X is \bar{X}
- Universe $U=\{1,2,3,4\}, X=\{1,3\}, \bar{X}=\{2,4\}$
- $|A \cup B|=|A|+|B|-|A \cap B|$
- Set Difference: $A-B=A \cap \bar{B}$

Relations

- Cartesian product $X \times Y$, set of ALL ordered pairs (x, y)
- $X=\left\{x_{1}, x_{2}\right\}, Y=\left\{y_{1}, y_{2}\right\}, X \times Y=$ $\left\{\left(x_{1}, y_{1}\right),\left(x_{1}, y_{2}\right),\left(x_{2}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\}$
- Relation R between sets A and B is a mapping between them
$-R \subset A \times B$, written $a R b, a \in A, b \in B,(a, b) \in R$.
- Reflexive: $(a, a) \in R$
- Symmetric: $(a, b) \in R \Rightarrow(b, a) \in R$
- Transitive $(a, b) \in R,(b, c) \in R \Rightarrow(a, c) \in R$

(R1, R) (R2, R)

(R1, R2)

Functions

- Function f : mapping between sets $A, B, f: A \rightarrow B$
- A is the domain of f, B is the co-domain
- $y=f(x), x \in A, y \in B$ then $f(x)$ is codomain or range?
- Image of a function
$-y=f(x): A \rightarrow B, x \in A, y \in B$
- y is the image of x under f
- Let $C \subseteq A$, then $\operatorname{IMG}(f, C)=\{f(x) \mid \forall x \in C\}$

Graph Theory

- Graph $G(V, E)$ is a pair (V, E) where V, E are sets of vertices and edges.
- Edge $e_{i j}=\left(v_{i}, v_{j}\right) \in R ; v_{i}, v_{j} \in V ; e_{i j} \in E$
- When Edge e meets Vertex $v: e$ is incident on v
- Degree of $v=$ number of incident edges.

Traversing a Graph

- Walk: Sequence of v and e
- Path: Walk with distinct vertices (no repetition of v)
- Connected Graph: From each vertex, there is a path to all vertices

- Directions on edges $==$ directed graph or digraph

Circuits as Graphs

- Represent gates as vertices (nodes), wires as directed edges
- Inputs and outputs are also represented as vertices
- A path from input-to-output has no duplicated vertices (gates)
- Delay of a circuit $==$ longest path from input to output
- Directed graph with no cycles $=$ Directed Acyclic Graph!
- What if there are directed cycles in a graph corresponding to a circuit?

Trees as Graphs

- Tree $=$ Connected acyclic graph
- Binary Tree $=$ Tree with only one vertex of degree 2, and all other vertices of degree 3 or 1
- Truth Table versus Binary Tree

a	b	c	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Boolean Algebra - "Basics"

- Algebra is defined over a set along with operations on it
- Boolean Algebra: set $=\mathbf{B} \equiv\{0,1\}$, OPS: + and .
- Complement: $a \subset B$, denoted by a^{\prime} or \bar{a}
- Boolean Function is a mapping between domain and co-domain
- Completely specified Boolean function $f: B^{n} \rightarrow B$
$-n=$ number of variables of the system
- $B^{n}=$ Boolean space spanned by n variables: n-D cube
- Multi-output Boolean $f: B^{n} \rightarrow B^{m}$
- Incompletely specified Boolean function: input space is $\subset B^{n}$

n-Dimensional Cube

$$
\begin{aligned}
& \mathrm{f}=\mathrm{a}^{\prime} \mathrm{bc}+\mathrm{ab}{ }^{\prime} \mathrm{c}+\mathrm{abc} c^{\prime}+\mathrm{abc} \\
& \mathrm{f}=\mathrm{ab}+\mathrm{bc}+\mathrm{ac}
\end{aligned}
$$

Terminology

- Binary Variable= symbol. Represents a co-ordinate of B^{n}
- Literal: Boolean variable OR its complement
- $f=a+a^{\prime} b$ has how many literals?
- Objective of Logic Optimization: Minimization of literals
- Cube: a point, or a set of points in B^{n}
- Terminology comes from n-D cube
- $a^{\prime} b c+a b c: 2$ cubes. $b c$ is a smaller or larger cube?
- Support variables of a function....

Co-Factors of a Boolean Function

- $f\left(x_{1}, \ldots x_{i}, \ldots x_{n}\right)$ be a function
- $f_{x_{i}}=f\left(x_{1}, \ldots x_{i}=1, \ldots, x_{n}\right)$ is positive cofactor of f
- $f_{\overline{x_{i}}}=f\left(x_{1}, \ldots x_{i}=0, \ldots, x_{n}\right)$ is negative cofactor of f
- $f=a c+b c+a b$
- $f_{a}=f_{a=1}=$
- $f_{\bar{a}}=f_{a=0}=$
- Co-factor of f has more or few or equal number of literals?
- Cofactors of f w.r.t. x DO NOT contain x
- Shannon's (Boole's) Theorem:
$-f=x \cdot f_{x}+x^{\prime} \cdot f_{x^{\prime}}$

Further Co-factoring...

- $f_{a}=f_{a=1}=b+c$
- $f_{\bar{a}}=f_{a=0}=b c$
- $f=a f_{a}+a^{\prime} f_{a^{\prime}}=a(b+c)+a^{\prime}(b c)$

Monotonicity of Boolean Functions

- $f\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)$ is positive unate in variable x_{i} if $f_{x_{i}} \supseteq f_{\bar{x}_{i}}$
- $f\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)$ is negative unate in variable x_{i} if $f_{x_{i}} \subseteq f_{\bar{x}_{i}}$
- $f=a+b+c^{\prime}$
- $f_{a}=1+b+c=1 \equiv$
- $f_{a^{\prime}}=b+c^{\prime}=\equiv$
- The minterms of f_{a} contain the minterms of $f_{a^{\prime}}$
- If $f_{a} \supseteq f_{a^{\prime}}$ then
$-f=a f_{a}+f_{a^{\prime}}$
- What if $f_{a} \subseteq f_{a^{\prime}}$?

