Lecture 2

- Introduction to Sets, Relations, Functions & Graphs
- Boolean logic as Sets and their Graph Representations
- Set = collection of objects; Cardinality of S = |S|
- $S = \{a, b, c\}, |S| = 3$
- Notation: $\in, \subset, \supset, \cup, \cap$
- Complement of a set X is \overline{X}
- Universe $U = \{1, 2, 3, 4\}, X = \{1, 3\}, \overline{X} = \{2, 4\}$
- $\bullet \ |A\cup B| = |A| + |B| |A\cap B|$
- Set Difference: $A B = A \cap \overline{B}$

Relations

- Cartesian product $X \times Y$, set of ALL ordered pairs (x, y)
- $X = \{x_1, x_2\}, Y = \{y_1, y_2\}, X \times Y = \{(x_1, y_1), (x_1, y_2), (x_2, y_1), (x_2, y_2)\}$
- Relation R between sets A and B is a mapping between them
 - $R \subset A \times B$, written $aRb, a \in A, b \in B, (a, b) \in R$.
 - Reflexive: $(a, a) \in R$
 - Symmetric: $(a, b) \in R \Rightarrow (b, a) \in R$
 - Transitive: $(a, b) \in R, (b, c) \in R \Rightarrow (a, c) \in R$

Functions

- Function f: mapping between sets $A, B, f : A \to B$
- A is the domain of f, B is the co-domain
- $y = f(x), x \in A, y \in B$ then f(x) is codomain or range?
- Image of a function
 - $y = f(x) : A \to B, x \in A, y \in B$
 - -y is the image of x under f
 - Let $C \subseteq A$, then $IMG(f, C) = \{f(x) | \forall x \in C\}$

Graph Theory

- Graph G(V, E) is a pair (V, E) where V, E are sets of vertices and edges.
- Edge $e_{ij} = (v_i, v_j) \in R; v_i, v_j \in V; e_{ij} \in E$
- When Edge e meets Vertex v: e is **incident** on v
- **Degree** of v = number of incident edges.

Traversing a Graph

- Walk: Sequence of v and e
- Path: Walk with distinct vertices (no repetition of v)
- **Connected Graph**: From each vertex, there is a path to all vertices

• Directions on edges == directed graph or **digraph**

Circuits as Graphs

- Represent gates as vertices (nodes), wires as **directed** edges
- Inputs and outputs are also represented as vertices
- A path from input-to-output has no duplicated vertices (gates)
- Delay of a circuit == **longest path** from input to output
- Directed graph with no cycles = Directed Acyclic Graph!
- What if there are directed cycles in a graph corresponding to a circuit?

Trees as Graphs

- Tree = Connected acyclic graph
- Binary Tree = Tree with only one vertex of degree 2, and all other vertices of degree 3 or 1
- Truth Table versus Binary Tree

Boolean Algebra - "Basics"

- Algebra is defined over a **set** along with operations on it
- Boolean Algebra: set = $\mathbf{B} \equiv \{0, 1\}$, OPS: + and ·
- Complement: $a \subset B$, denoted by a' or \overline{a}
- Boolean Function is a mapping between domain and co-domain
 - Completely specified Boolean function $f:B^n\to B$
 - -n = number of variables of the system
 - $-B^n$ = Boolean space spanned by *n* variables: *n*-D **cube**
- Multi-output Boolean $f: B^n \to B^m$
- Incompletely specified Boolean function: input space is $\subset B^n$

Terminology

- **Binary Variable**= symbol. Represents a co-ordinate of B^n
- Literal: Boolean variable OR its complement
- f = a + a'b has how many literals?
- Objective of Logic Optimization: Minimization of literals
- Cube: a point, or a set of points in B^n
- Terminology comes from n-D cube
- a'bc + abc: 2 cubes. bc is a smaller or larger cube?
- **Support** variables of a function....

Co-Factors of a Boolean Function

- $f(x_1, \ldots, x_i, \ldots, x_n)$ be a function
- $f_{x_i} = f(x_1, \dots, x_i = 1, \dots, x_n)$ is positive cofactor of f
- $f_{\overline{x_i}} = f(x_1, \dots, x_i = 0, \dots, x_n)$ is negative cofactor of f

•
$$f = ac + bc + ab$$

- $f_a = f_{a=1} =$ $f_{\overline{a}} = f_{a=0} =$
- Co-factor of f has more or few or equal number of literals?
- Cofactors of f w.r.t. x DO NOT contain x
- Shannon's (Boole's) Theorem:

$$-f = x \cdot f_x + x' \cdot f_{x'}$$

•
$$f_a = f_{a=1} = b + c$$

•
$$f_{\overline{a}} = f_{a=0} = bc$$

•
$$f = af_a + a'f_{a'} = a(b+c) + a'(bc)$$

Monotonicity of Boolean Functions

- $f(x_1, \ldots, x_i, \ldots, x_n)$ is positive unate in variable x_i if $f_{x_i} \supseteq f_{\overline{x_i}}$
- $f(x_1, \ldots, x_i, \ldots, x_n)$ is negative unate in variable x_i if $f_{x_i} \subseteq f_{\overline{x_i}}$
- f = a + b + c'
- $f_a = 1 + b + c = 1 \equiv$
- $f_{a'} = b + c' = \equiv$
- The minterms of f_a contain the minterms of $f_{a'}$
- If $f_a \supseteq f_{a'}$ then
 - $-f = af_a + f_{a'}$
 - What if $f_a \subseteq f_{a'}$?