
Logic Synthesis for Large Pass Transistor Circuits

Premal Buch Amit Narayan A. Richard Newton A. Sangiovanni-Vincentelli

Department of Electrical Engineering & Computer Sciences
University of California, Berkeley, CA 94720

Abstract
Pass transistor logic (PTL) can be a promising alternative to static

CMOS for deep sub-micron design. In this work, we motivate the need for
CAD algorithms for PTL circuit design and propose decomposed BDDs
as a suitable logic level representation for synthesis of PTL networks.
Decomposed BDDs can represent large, arbitrary functions as a multi-
stage circuit and can exploit the natural, efficient mapping of a BDD to
PTL.

A comprehensive synthesis flow based on decomposed BDDs is out-
lined for PTL design. We show that the proposed approach allows us to
make logic-level optimizations similar to the traditional multi-level net-
work based synthesis flow for static CMOS, and also makes possible opti-
mizations with a direct impact on area, delay and power of the final
circuit implementation which do not have any equivalent in the traditional
approach. We also present a set of heuristical algorithms to synthesize
PTL circuits optimized for area, delay and power which are key to the
proposed synthesis flow.

Experimental results on ISCAS benchmark circuits show that our
technique yields PTL circuits with substantial improvements over static
CMOS designs. In addition, to the best of our knowledge this is the first
time PTL circuits have been synthesized for the entire ISCAS benchmark
set.

1 Introduction
Static CMOS has long been the design style of choice for IC
designers due to the ease of designing safe, scalable circuits.
However, switching capacitances in a static CMOS circuit can be
fairly large. With the shrinking feature sizes and increasing tran-
sistor counts on chips, the push for higher speed and lower power
makes it necessary to look for alternative design styles which can
offer better performance characteristics to static CMOS. These
include pass-transistor-based logic families, domino-like
dynamic logic styles etc.

Among these, pass transistor logic (PTL) circuits offer great
promise. Compared to domino circuits, they are less susceptible
to crosstalk problems, which is a major issue in deep sub-micron
technology. Several case studies ([4][21]) have shown that PTL
can implement most functions with fewer transistors than static
CMOS. This reduces the overall capacitance, resulting in faster
switching times and lower power. It was reported in [21] that a
complementary PTL multiplier was twice as fast as conventional
CMOS due to lower input capacitance and higher logic function-
ality. At a supply voltage of 4V, PTL designs typically consume
30% less power than static CMOS designs ([5]). To illustrate this
point, we take a function F = A’+BC’. Fig. 1(a) shows our imple-
mentation of this function in PTL and Fig. 1(b) shows the corre-
sponding static CMOS implementation. Clearly, the PTL design
style can yield a circuit which can be much more compact than
static CMOS. It was reported in [22] that the PTL yielded a 32%
improvement in area, 29% improvement in delay and a 47%
improvement in power over a static CMOS OR/NAND-based
implementation of this function.

The circuit in Fig. 1(b) can in fact, also be interpreted as a
PTL circuit. The only difference between PTL and static CMOS
is that in static CMOS, unlike PTL, all paths from Vdd to the out-
put are connected via pMOS (the pull-up network) and paths from
output to ground are connected via nMOS (pull-down network).
Thus, static CMOS can be viewed as restricted case of PTL.
These restrictions make the task of synthesizing safe, large static
CMOS circuits easier, but reduce the potential of circuit optimi-
zation. Thus, given a methodology to synthesize safe, large cir-
cuits, PTL can be more attractive then static CMOS.

The lack of such a methodology is why the use of pass tran-
sistors in industry circuits has been very limited. While there have
been several attempts in this area ([3][7][10][13][15][16][17][18]
[22]), limitations of some of which are discussed later in the
paper, there are no algorithms which can be used to design safe,
large PTL circuits. Thus, while designers can manually design
very efficient small PTL circuits as in Fig. 1, a satisfactory solu-
tion to automatic synthesis of circuits realizing the expected bene-
fits of PTL does not exist.

In this work we address this void by proposing a decomposed
BDD-based approach which exploits some of the strengths of
PTL logic and is scalable in that it can be used to obtain compact,
multi-stage transistor-level circuits for large, arbitrary designs.

The main contribution of this work is as follows: a compre-
hensive synthesis flow is outlined for PTL design starting from an
unoptimized logic level netlist, all the way up to generating a
spice netlist. For this, a suitable logic level abstraction based on
decomposed BDDs is proposed which allows us to make logic
level optimizations similar to the traditional multi-level network
based synthesis flow for static CMOS. This representation takes
advantage of the correspondence between PTL circuits and BDDs
without suffering from the drawbacks imposed by properties of
monolithic BDDs. A straightforward mapping exists from this
logic level abstraction to a transistor-level PTL netlist which pre-
serves all the interconnection information. This makes possible
optimizations with a direct impact on area, delay and power of the
final circuit implementation. We present a set of heuristical algo-

CBA

(a) PTL

Figure 1: Comparing pass transistor and static CMOS implementations

F = A’+BC’

A

B

C

F = A’ + BC’

(b) static CMOS

of an example function F = A’+BC’

This work was supported in part by SRC contract 97-DC324 abd by DEC

0-89791-993-9/97 $10.00  1997 IEEE

rithms to synthesize PTL circuits optimized for area, delay and
power which are key to the proposed synthesis flow. Initial exper-
imental results on ISCAS benchmark circuits show that our tech-
nique yields PTL circuits with substantial improvements over
conventional static CMOS designs. To the best of our knowledge
this is the first time PTL circuits have been synthesized for the
entire ISCAS benchmark sets.

This paper is structured as follows: in Section 2, we argue
why a BDD-based approach is suitable for PTL circuit synthesis
and review the shortcomings of monolithic BDD-based
approaches. In Section 3 we motivate decomposed BDDs as a
suitable logic level abstraction for PTL synthesis. Section 4 com-
pares the proposed decomposed BDD-based synthesis flow and
the traditional approach for static CMOS. Section 5 presents
decomposition techniques to obtain PTL circuits optimized for
area, delay and power. Section 6 presents the experimental
results. Section 7 outlines issues for future research and Section 8
concludes with a summary of this work.

2 PTL Networks and BDDs
One of the main strengths of static CMOS designs is that they are
guaranteed to not have a steady-state sneak path connecting a
node to both power supply and ground at the same time under
some input combination. From Section 1, PTL admits more gen-
eral circuit structures than static CMOS. However, it suffers from
the drawback that there is no guarantee on the absence of sneak
paths in the circuit. Hence, special care needs to be taken to
ensure that the circuit is sneak path-free. For example, the PTL
circuit in Fig. 2 requires only three transistors to implement the
example function from Fig. 1. However, this circuit has a sneak
path as shown, forcing the output to be connected to both ground
and power supply at the same time when A=1, B=0, C=0. We
therefore need a methodology to synthesize PTL circuits which
ensure the absence of such sneak paths.

The basic unit in PTL is a MOS transistor which is used as a
switch. When the control signal at the MOS gate is enabled, the
input (drain/source) is connected to the output (source/drain). The
output is in a high impedance state when the control signal is dis-
abled. This switching characteristic of the MOS makes it very
easy to implement a multiplexer in PTL as a wired OR of transis-
tors.

A 2-input multiplexer implements the same functionality as a
BDD node, with the BDD node variable corresponding to the
control signal of the multiplexer and the outgoing and incoming
branches of the BDD node corresponding to the inputs and output
of the multiplexer respectively. Fig. 3 shows two different ways
of implementing a BDD node using two MOS transistors.

Thus, the BDD representation of the target function can be
very easily mapped to a multiplexer network, which in turn can
be implemented compactly using pass transistors. This provides a
way to construct efficient PTL circuits [15]. In fact, the PTL
implementation in Fig. 1(a) corresponds to the BDD of F, as
shown in Fig. 4.

The main advantage of such a BDD-based approach is that it
always gives correct, sneak-path-free circuits, since at a time,
only one path connecting the ground/power supply to the output
is active. Using the two different implementations of a BDD node
from Fig. 3 yields the two circuits shown in Fig. 5(a)and 5(b),
both smaller than the static CMOS implementation in Fig. 5(c).
Note that the nMOS-only implementation in Fig. 5(b) uses more
transistors than the implementation in Fig. 5(a) because it needs

signal andsignal for each BDD node. However, it is quite com-
petitive in terms of gate area. This is due to the fact that to obtain
a similar current drive, pMOS has to be twice as big as nMOS in
terms of the gate size (a minimum size pMOS has dimensions
3λ×λ while a minimum size nMOS is 1.5λ×λ). This results in
higher active gate area per transistor in the case of static CMOS
and a pMOS/nMOS PTL. Also, in a pMOS/nMOS PTL, a pMOS
can be in a path propagating a “1” and an nMOS can be in a path
propagating “0”, resulting in output levels of Vt and Vdd-Vt for
“0” and “1” respectively. In comparison, in the nMOS-only case,
the voltage is Vdd-Vt for output “1”, and 0V for output “0” since
nMOS are good conductors of “0”.

This has three advantages:

• Each nMOS is at a better operating point when propagating “0”
and has a higher drive, resulting in a faster circuit.

• The output has a better noise margin, which can be particularly
important if it is driving MOS gates (of buffers or subsequent
stages).

• Apart from the savings in active gate area, the smaller size of
nMOS also means a lower gate capacitance. This results in a
lower switching capacitance for the circuit making it faster and
also reducing its power dissipation.

In fact, for large circuits, we found that the overhead of gen-
eratingsignal was quite small (in most cases, particularly in case
of large circuits,signal was required in the circuit anyway asA is
in Fig. 5(a)), and the gate area savings and performance gains
more than offset this. For this reason, we have used the nMOS-
only implementation of Fig. 3(c) in synthesizing transistor-level
circuits.

Figure 2: A PTL circuit

A

B

C

F = A’+BC’ x xxx

F

G H

F F

G H G H

x

Figure 3: Implementing a BDD node in PTL

(c)(a) (b)

with a sneak path

Figure 4: Comparing pass transistor implementations of the example

A

B

C

F = A’+BC’
C

10

B

A

1

1

1

0

0

0

F = A’ + BC’

function of Fig. 1 with its BDD

(a) (b) (c)
Figure 5: alternative BDD-based implementation of the

A

B

C

F

Transistor Count = 6
Gate Area = 9λ2

Transistor Count = 8
Gate Area = 10λ2

Transistor Count = 8
Gate Area = 12λ2

example function from Fig. 1 (F = A’+BC’)

C

B

A

F’ CBA

F

While a BDD-based PTL network can be quite compact, a
naive BDD-based methodology for implementing PTL circuits
suffers from the drawback that for many functions of practical
interest, the size of a BDD representing the function can be expo-
nential in the number of inputs. Also, a circuit generated from a
monolithic BDD can have long chains of transistors correspond-
ing to long paths from the root to the 0/1 terminals for the BDD.
This is equivalent to implementing a single-stage static CMOS
circuit and can make the circuit very slow.

A technique for generating PTL circuits in which buffers are
inserted in the monolithic BDD to solve the speed problem is
given in [22]. However, this approach still suffers from the BDD
size problem. A multi-level pass transistor logic is introduced in
[17], which tries to maximize the logic shared between different
parts of the circuit by looking at the structure of a monolithic
BDD. Using a monolithic BDD as the starting point and modify-
ing its structure has two disadvantages: first, the approach will
not be viable for large circuits with exponentially sized BDDs.
Secondly, even when a monolithic BDD can be built, the result-
ing circuit is highly unoptimal in area because the optimizations
are based on the topology of the BDD and not the logic imple-
mented in it, thereby restricting the sharing to sub-graphs found
in the starting monolithic BDD.

3 PTL Networks and Decomposed BDDs
We propose a synthesis approach which does not construct mono-
lithic BDDs for the circuit at all. The common problem of the pre-
vious works outlined in Section 2 is that they try to improve a
monolithic BDD-based solution. Our approach is truly multi-
stage in that we always work with a multi-level representation of
the PTL circuit which is similar to the traditional multi-level net-
work for static CMOS. For such a flow, we propose decomposed
BDDs as a suitable logic level abstraction of the circuit which
exploits the correspondence between PTL circuits and BDDs
without suffering from the drawbacks imposed by properties of
monolithic BDDs which may be useful for logic level data repre-
sentation but are unnecessary for circuit generation (e.g. canonic-
ity).

The growth in the BDD size can be controlled by introducing
new, intermediate variables during the construction of the BDD
itself. These intermediate variables are called decomposition
points and the resulting set of BDDs (BDDs of the decomposition
points, and the BDD of the target function in terms of the primary
inputs and decomposition points) is called a decomposed BDD
[8]. An example of a decomposed BDD is shown in Fig. 61. Note
that the output of a decomposition point BDD can be a node vari-
able for the BDDs of subsequently introduced decomposition
points or the target function. From Section 2, this corresponds to
the output of a decomposition point driving MOS gates in the cir-
cuits of subsequent decomposition points or the target function.
The resulting circuit is then a multi-stage circuit with cells in any
given stage being driven by the primary inputs and the outputs of
preceding stages.

The intuition behind the savings in BDD size due to decom-
position is as follows: in general, when constructing the graph of
a functionF = G1 <op>G2, the size ofF, |F|, isO(|G1||G2|), where
|G1| and |G2| are the sizes of the input graphs. By introducing
decomposition points forG1 andG2, the size of the decomposed
BDD is reduced toO(|G1|+|G2|). Thus, decomposition can be very

1. Although a more efficient ordering for this monolithic BDD exists [4],
for the given ordering this case serves to illustrate the potential BDD
size reduction due to decomposition.

useful when there is a memory explosion due to a difficult BDD
manipulation during BDD construction. The trade-off here is that
while monolithic ROBDDs are canonical for a given ordering, a
decomposed BDD is not, since a BDD for a given function can be
decomposed in many ways. This however does not pose a prob-
lem in our case, since we are interested in generating PTL circuits
and not in manipulating BDD as a data structure.

Note that our approach is orthogonal to the approach of [22]
in that, decomposed BDDs can be used to obtain a compact, BDD
representation of the circuit. Each individual BDD can then be
optimized by the techniques presented in this work and then
mapped to a transistor-level circuit with appropriate buffering
using [22]. Similarly, optimization algorithms for area, delay and
power presented here can be applied to BDDs generated using
[17] as well. In Section 5.2, we provide some more arguments on
why, from a delay perspective for large circuits, a decomposed
BDD approach is better than a monolithic BDD-based approach
combined with buffer insertion.

Finally, we would like to mention that the idea of introducing
intermediate variables to control the size of BDDs has previously
been used in [8][9] for unrelated problems. In these papers
decomposition was used in a different context - In [8] decomposi-
tion was used to reduce the intermediate memory requirements
during BDD construction and in [9] it was used for cycle-based
simulation. In this work, we apply decomposition to construct a
compact, decomposed BDD representation of the target logic
function which can be directly mapped to a PTL network. The
objective then is to develop decomposition techniques such that
the PTL network corresponding to the resulting BDD is opti-
mized for the desired objectives (e.g. area, speed, power).

4 A Synthesis Flow for PTL Design
Apart from proposing a decomposed BDD-based representation
for PTL synthesis, a major contribution of this work is a compre-
hensive synthesis flow for PTL design.

Fig. 7 outlines the key steps of the traditional multi-level net-
work based synthesis flow for static CMOS. We propose an anal-
ogous synthesis flow where a decomposed BDD is used to
represent a circuit similar to the multi-level network in the tradi-
tional flow and each decomposition point BDD is manipulated
similar to a complex node in the multi-level network.

A big advantage of the BDD-based PTL network design is
that the one-to-one mapping between the BDD and the PTL net-
work makes the technology mapping problem very straightfor-
ward. As a result, we can perform circuit level optimizations by
manipulating the BDD. The fact that mapping preserves the cir-
cuit structure allows us to make high-level changes which can
have significant impact on area, power and performance, but for
which gains made at the high level hold at the circuit level as
well. This addresses a big problem with the existing multi-level
network based synthesis flow where technology independent

Figure 6: Comparing monolithic and decomposed ROBDDs

B

A
B

C C
DDDD

CC

F

EE

B

10

E

10

A

D

10

C

F

10

x

z

10

F

x y z
y

F

F = AD + BE + CF x = AD, y = BE, z = CF

optimizations are becoming increasingly irrelevant with respect
to the final performance of the transistor-level design because the
technology mapping does not preserve the structure. This is par-
ticularly important in the context of deep sub-micron designs,
where logic level optimizations need to be driven by physical
issues which depend on the circuit structure and topology.

The factoring operation of the conventional flow aims at
extracting common sub-expressions out of a function description.
This is similar to selecting good decomposition points in the pro-
posed flow.Substitution is similar to using a decomposition point
as a BDD variable in the construction of the BDDs of subsequent
decomposition points and the target function.Elimination is simi-
lar to composition operation on decomposition point BDDs,
where a decomposition point BDD is composed into the BDDs of
the rest of the circuit and the BDD node variable corresponding to
the decomposition point eliminated if there is an overall saving in
BDD nodes. Design optimization using don’t cares can be
employed in the proposed flow in a fashion very similar to the
conventional flow. This is discussed in more detail in Section 7.1.

Apart from above operations which are analogous to optimi-
zation steps in the conventional synthesis flow, the decomposed
BDD-based approach allows us to optimize circuits in several
ways which have no equivalent in the conventional multi-level
network based synthesis flow. These are outlined in Section 5.

5 Decomposition Techniques for BDD-based PTL
Networks

5.1 Area Minimization

Since each node of a BDD corresponds to a PTL multiplexer cell,
minimizing the area of the final circuit implementation is the
same as minimizing the size of the decomposed BDD representa-
tion.

We employ a simple, greedy heuristic to control the size of
the decomposed BDD by monitoring the BDD size while it is
constructed. This is similar to [8]. When building the BDD depth-
first from inputs to outputs, a decomposition point is introduced
whenever the BDD size increases by a disproportionate amount.
This attempts to avoid difficult BDD manipulations. A decompo-
sition point is also introduced when an individual BDD grows
beyond a threshold value. This ensures that none of the individual
BDDs in the decomposed representation exceeds the threshold.

This is particularly important in the PTL context since both resis-
tance and capacitance increase linearly with the number of tran-
sistor in series. Thus, a very deep BDD can result in a slow
circuit.

Due to the local, greedy nature of our heuristic, it is possible
that the introduction of a decomposition point prevents Boolean
simplification in the target function BDD. To discover some of
these simplifications the decomposition points are composed
back into the target function BDD as long as the overall BDD size
reduces. An example of BDD size reduction by composition due
to Boolean simplification is shown in Fig. 8. Since the amount of
reduction is dependent on the order of composition, we experi-
ment with several different orderings to determine a good choice.

Complementary edges can be used to reduce the size of the
BDDs even further. A complementary edge introduces an inverter
in the circuit, saves at least one BDD node and in the best case
reduces the BDD size by half [1]. Thus, the net transistor count
can only decrease. Also, these inverters provide the added benefit
of restoring the signal to the rail values, thus offsetting any signal
degradation due to its passage through a long pass transistor
chain. Additionally, the output of decomposition points are buff-
ered if they are connected to MOS gates of a subsequent stage.

Further, when synthesizing PTL networks from a decom-
posed BDD, a global variable ordering for all BDDs is not
required. This provides an additional flexibility for reducing the
size of each BDD by reordering them independently.

5.2 Performance

In a monolithic BDD implementation, the critical path cannot be
longer than the number of input variablesn and can be as low as
log n. Decomposition introduces extra control variables whose
critical paths can be in series with the critical path of the primary
outputs’ BDD. Note that the critical path length of the decompo-
sition point BDD is bounded by the number of its variables,
which can be more thenn if the decomposition point is expressed

Figure 7: The traditional static CMOS synthesis flow vs. the proposed decomposed BDD synthesis flow

Logic Description (BLIF, Verilog)

Technology Independent Optimization
via factoring, substitution, elimination,

anddon’t care optimization

Technology Dependent Optimization
via mapping

Layout

Cell Library

Transistor Level Netlist

Decomposed BDD Construction
via Area/Delay decomposition techniques,

BDD substitution, composition,
anddon’t care optimization

Boolean and structural optimizations
for Area/Delay/Power

trivial mapping which preserves
high-level gains

Transistor Level Netlist

Figure 8: BDD size reduction via composition

A

B

10

x = AB
A

10

F = A + AB
A

x

0 1

F = A + x

composition

in terms of other decomposition points. The critical path of the
decomposed BDD is then bounded bymax {critical paths of
decomposition point BDDs, length of the longest path in the pri-
mary output BDDs}. Thus, the critical path length of the decom-
posed BDD is bounded by the critical path of the corresponding
monolithic BDD. However, when circuit level issues are consid-
ered, the quadratic dependence of delay on the transistor chain
length more than offsets the advantages of a shorter critical path.
For today’s static CMOS it is known that transistor chains longer
than 3-4 transistors in series can be unacceptably slow [12]. A
monolithic BDD-based circuit would require buffer insertion as
in [22] for all but the smallest circuits. In comparison, a decom-
posed BDD-based circuit where outputs of decomposition points
are buffered allows us to exploit area gains (and the associated
reduction in switching capacitance) while controlling the length
of unbuffered chains. Selecting decomposition points with appro-
priate thresholds on the depth of decomposition point BDDs is
thus a more powerful strategy than selecting buffer insertion
points in a monolithic BDD.

Apart from controlling the depth of decomposition point
BDDs, the choice of decomposition points can be targeted at
delay minimization when speed is the main concern. If a cutset1

of the circuit is selected as the set of decomposition points, then
the critical path in the BDDs of the primary outputs is bounded by
the cutset cardinality (because BDDs of the primary outputs can
be constructed in terms of the cutset variables only). Using the
minimum cardinality cutset of the circuit as the decomposition set
is then a good heuristic to reduce the critical path length. An
example to illustrate this heuristic is shown in Fig. 9. Fig. 9(b)
and 9(c) compare the critical path length when two different cut-
sets are chosen as decomposition points. The critical path is lower
when the mincut is selected as the decomposition set (Fig. 9(b))
but longer than the monolithic ROBDD (Fig. 9(a)).

1. set of nodes such that all paths from primary inputs to primary outputs
pass through some node in the set

BDD variable ordering has a great impact on the BDD size
and consequently the circuit area. This ordering can also influ-
ence the circuit power and speed. Placing late arriving signals
closer to the outputs can speed-up the circuit by minimizing the
number of transistors that need to be charged after the late signal
arrives. Signal flow in a BDD-based PTL network corresponds to
traversing the BDD from leaf nodes up. Thus it is advantageous
to place late arriving control variables close to the top of the
BDD. Variables in a BDD can be swapped pairwise as long as the
resulting variable order does not cause the BDD size to increase
significantly. In the example of Fig. 9, placing the late arriving
signal z at the top (Fig. 9(d)) reduces the critical path by 1 unit
over Fig. 9(c). The best known dynamic reordering algorithms for
BDD size ([14][11]) move each variable or a block of variables
throughout the order to find an optimal position for the variable.
A similar reordering can be performed for delay, where the opti-
mal position is the one resulting in the smallest depth BDD
instead of the smallest sized BDD. As in Section 5.1, each
decomposition point BDD can be reordered independently to
optimize for total delay.

5.3 Low Power

Power dissipation in a circuit is a function of switching capaci-
tance and switching activity. It is thus desirable that the capaci-
tance connected to nodes with high switching activity is
minimized. Since the gate capacitance of a transistor is substan-
tially higher than the drain/source capacitances, this translates
into ensuring that the high switching activity nodes are not con-
nected to the gates of too many transistors. Note that neglecting
drain-source capacitance switching is analogous to ignoring the
internal node switching in a static CMOS gate.

In the case of PTL networks, only control variables are con-
nected to the gate terminals of transistors. In our decomposed
BDD-based approach, the control variables consist of primary
inputs and decomposition points. Note that every node in the
BDD is implemented as a multiplexer in the corresponding circuit
and the node variable in the BDD is connected to the gates of two
transistors of the multiplexer. Minimizing the occurrences of high
switching activity node then translates into minimizing the occur-
rences of the corresponding variable in the BDD. Re-ordering
BDD variables can be used to achieve this. Fig. 10 illustrates a
case where re-ordering reduces the occurrences of the high
switching activity variable at the expense of more occurrences of

A

10

B

1

1

0

0

x = AB

C

10

D

1

1

0

0

y = CD

x

10

y

F = xy + z

z

0

1

0

0

1

1

z

0 1

x

F = xy + z

y

1

0

1

1

0

0

C

0 1

x

F = xy + x’C’

y

1

0

1

1

0

0
x0

1

A

10

B

z = (AB)’C’

C

0

1

0

0

1

1

A
B
C
D

cut 2: {AB, CD, (AB)’C’}

x=AB

y=CD z = (AB)’C’
c

cut 1: {AB, CD}

F = ABCD +

(b) cut 1 (c) cut 2
crit. path = 6

(d) cut 2

critical path = 2 critical path = 2 critical path = 3

A

B
0

0
0

1

0

F

(a) monolithic RO-

C

D

1

C

1

1

1
0

0

0

crit. path = 5

(AB)’C’

Figure 9: High performance heuristics (ordering: A,B,C,D,x,y,z)

crit. path w/
reordering = 5

BDD. crit. path = 4

B

10

C

F

A

0

1

0

0

1

1

F

B

C

B

C

A A

x1

10

F = x1x3 + x2x4

x2x2

x4

x3x3

x3

10

F = x1x3 + x2x4

x2x2

x4

x1x1high switching
activity variable

Figure 10: Reducing occurrences of high switching activity node

Figure 11: Low Power heuristic to minimize glitching:

A

0 1

B

F

C

1

0

1

1

0

0

F

A

B

A

B

C C

(a)

F = A + BC, p(A=1)≈1 ⇒ p(F=1)≈1

(b)

a lower switching activity variable.

A node in the PTL network is charged high when there is a
path connecting it to the power supply and discharged when there
is a path connecting it to ground. Even when the output does not
change, glitching (charging and discharging of internal nodes)
can consume a significant amount of power. Glitching can be
minimized by placing variables which have a low switching prob-
ability close to the bottom of the BDD. This implies that the tran-
sistors controlled by these variables are close to the power supply
and ground in the PTL network. Depending upon their state, this
will cut-off the rest of the PTL network from the power supply or
ground, resulting in a lower switching power dissipation. In the
example in Fig. 11, since the probability of A being high is
almost 1, the nMOS connected toA is almost always cut-off, and
F is almost always 1. The ordering in Fig. 11(a) can however
result in a significant power dissipation due to the internal nodes
being charged through the nMOS connected to C and discharged
through the nMOS connected toB andC. Compared to this, the
ordering in Fig. 11(b) has no internal power dissipation as the
nMOS connected toA cuts-off the rest of the circuit from ground.

Note that these heuristics are similar to re-ordering transistors
for low power at the circuit level in static CMOS ([6]). However,
in our approach, technology mapping is straightforward and there
is a one-to-one correspondence between BDDs and PTL circuits.
This allows us to perform Boolean manipulations at a high level
in which we can trade-off circuit area for power, rather then mak-
ing restricted structural changes at the circuit level.

6 Results
The techniques described in this paper have been tested on
ISCAS benchmarks circuits, which include circuits which are
hard for monolithic BDD-based approaches (e.g. C6288). In the
following we present results comparing our PTL synthesis algo-
rithm with different static CMOS synthesis algorithms to demon-
strate the area and delay gains achieved by our approach, and
HSPICE simulations to verify the validity of the logic level gains.

The PTL synthesis algorithm was implemented in the SIS
framework. It is compared against four synthesis scripts for static
CMOS: area and delay optimization scripts which do not use
don’t cares, andscript.rugged andscript.delay of SIS. Technol-
ogy mapping was performed using three different libraries:
msu.genlib, 33-4.genlib, and 44-3.genlib. All experiments were
carried out on a 400 MHz DEC Alpha with a SPECint_92 rating
of 341, DEC 21164 CPU, 4Mb cache and 2Gb total memory.

PTL circuits were synthesized with four different threshold
parameters. This threshold parameter from Section 5.1 controls
the depth of decomposition point BDDs. For a given logic circuit,
the best of the four PTL transistor-level circuits was selected and
data for this circuit is presented in all tables. Compared to this,
static CMOS circuit in each table is the best of several test runs
with different parameters. Moreover, not the same circuit is used
in all tables. That is, the same PTL circuit data is compared with
the area optimized static CMOS circuit in the area columns of the
tables and against the delay optimized static CMOS circuit in the
delay columns. The gains achieved by PTL are thus very conser-
vative, since the area-optimal static CMOS circuit is far from
delay-optimal and vice versa.

Table 1 compares the PTL results against results from area
and delay optimization scripts for static CMOS which do not use
don’t cares (mapped for area and delay respectively using
msu.genlib). Since our PTL implementation does not perform

don’t care optimization yet, this table gives the best picture of the
efficiency of our PTL algorithm. Column 1 contains the names of
the ISCAS benchmark circuits. Column 2 and 3 compare the
active gate area (measured inλ2) of circuits synthesized by the
PTL and minimum area static CMOS algorithm. Column 4 con-
tains the relative gain in area achieved by our PTL algorithm over
the static CMOS algorithm. Columns 5 and 6 compare the critical
path length of the circuits generated by PTL and minimum delay
static CMOS. Column 7 contains the relative gains of PTL over
the static CMOS algorithm.

Table 2 presents results in the same format, this time compar-
ing the PTL data of Table 1 with static CMOS results optimized
using local optimizations and full don’t cares. The static CMOS
results in Column 2 are optimized usingscript.rugged and the
results in Column 5 are optimized usingscript.delay. Note that
the current PTL implementation does not perform local optimiza-
tions or don’t care optimizations. This is not an algorithmic limi-
tation and will be implemented in the near future (techniques for
this have already been outlined in Section 7). In spite of this
handicap, the current PTL implementation yields impressive
gains over thescript.rugged andscript.delay.

Table 3 compares the runtimes of the PTL synthesis algo-
rithm (Column 6) with the area and delay optimization scripts
without don’t cares, andscript.rugged andscript.delay (Columns
2, 3, 4 and 5 respectively). Note that the output of static CMOS
algorithms is a mapped logic network while the output of the PTL
algorithm is an HSPICE netlist. The results clearly indicate that
PTL synthesis is substantially faster than all static CMOS tech-
niques.

When using the critical path length as the metric to compare
delays of two circuits, it is important to ensure that the amount of
logic implemented in a cell is similar for each case, because a cir-
cuit with large individual cells can have a small critical path but
be slow due to high cell propagation delay. Table 4 compares the
cell count of the PTL circuit with the area and delay optimized
static CMOS circuits of Table 1 in Columns 2, 3 and 4 respec-
tively, and the average cell size in Columns 5, 6, and 7 respec-
tively. The data indicates that the PTL circuit indeed uses fewer
cells with more logic in each individual cell. Thus, while the
delay of each cell is not directly related to the cell size (since each
cell in the PTL circuit implements a BDD structure, while the
static CMOS cells implement a series-parallel pull-up and pull-
down tree structure), we do need further analysis to ensure that
the savings in the critical path length translate to delay reduction
in the final transistor-level circuit. We analyze a full adder circuit
and perform HSPICE analysis to examine the delay trade-off
between a larger cell implementing a BDD structure vs. a smaller
series-parallel logic cell. These results are presented in Fig. 12.

As an aside, we also synthesized static CMOS using larger
libraries like 33-4.genlib (87 cells, average cell size: 27.4λ2) and
44-4.genlib (625 cells, average cell size 43.4λ2) to see if a greater
choice of cells, including very large cells, improved the static
CMOS results. However, we found that there was no major
change in the results, and in fact, the synthesis runtimes for static
CMOS increased by factors of 5-100 due to the library size.

Table 5 presents the logic synthesis and HSPICE analysis
results for a full adder circuit implemented in PTL and static
CMOS. Columns 2, 3, 4, and 5 provide logic level data (area,
number of transistors, number of cells and average cell size
respectively) for the two test cases. Columns 6 and 7 contain the
slowest rise and fall times from an exhaustive HSPICE simula-
tion. Fig. 12(a) and 12(b) show the rise and fall time waveform

plot. The results indicate that PTL has a smaller fall time and the
same rise time as static CMOS. This is to be expected since an
nMOS-only PTL circuit is good at conducting “0”. The critical
path thus seems to be a good indicator of the fall times. In gen-
eral, a lower area implies a smaller switching capacitance, which
does indeed correlate with a faster circuits. Thus, the 20-50+%
gains achieved at logic level should translate to gains at the tran-
sistor level, albeit in slightly smaller numbers. Columns 8 and 9
present the average and rms power dissipation results. The static
CMOS circuit has a lower average power dissipation but a higher
rms power dissipation. Fig. 12(c) indicates that the static CMOS
has a higher peak power dissipation as well. While the lower
average power dissipation of static CMOS is good from the bat-
tery life perspective, a higher peak and rms power dissipation is
undesirable from the electromigration and IR drop point of view.

7 Enhancing the Decomposed BDD-based
Approach

7.1 Don’t Care Optimization

The PTL synthesis tool benchmarked in Section 6 does not use
don’t cares for design optimization. Don’t cares provide a signifi-
cant amount of flexibility in minimizing a circuit as witnessed
from the improvement of the static CMOS area and delay results
between Table 1 and Table 2 in Section 6.

Extending the proposed approach to handle don’t cares is rel-
atively straightforward. Several heuristics to minimize BDD size
using don’t cares are presented in [20]. Since the area of a decom-
posed BDD-based PTL circuit is proportional to the BDD size,
the results of [20] can be applied to PTL synthesis directly. The

Circuit
Area Delay

static
CMOS

PTL gain static
CMOS

PTL gain

C17 54.0 58.5 -8 % 3 2 33 %
C432 1620.0 1468.5 9 % 18 23 -28 %
C499 3424.5 2920.5 15 % 12 9 25 %
C880 2673.0 2433.0 9 % 16 9 44 %
C1355 3424.5 2953.5 14 % 14 6 57 %
C1908 4851.0 3174.0 35 % 20 14 30 %
C2670 5787.0 4797.0 17 % 18 11 39 %
C3540 9279.0 7495.5 19 % 28 18 36 %
C5315 13266.0 12415.5 6 % 24 11 54 %
C6288 21321.0 16180.5 24 % 120 70 42 %
C7552 18310.5 19902.0 -9 % 21 14 33 %

Table 1 : Best area & best delay static CMOS vs. PTL

Circuit
Area Delay

script.
rugged

PTL
(no DC)

gain script.
delay

PTL
(no DC)

gain

C17 49.5 58.5 -16 % 3 2 33 %
C432 1233.0 1468.5 -19 % 18 23 -28 %
C499 3244.5 2920.5 10 % 11 9 18 %
C880 2596.5 2433.0 6 % 16 9 44 %
C1355 3244.5 2953.5 9 % 11 6 45 %
C1908 3226.5 3174.0 2 % 18 14 22 %
C2670 4491.0 4797.0 -9 % - 11 -
C3540 8176.5 7495.5 8 % 26 18 31 %
C5315 9985.5 12415.5 -24 % 23 11 52 %
C6288 19885.5 16180.5 19 % 61 70 -15 %
C7552 - 19902.0 - - 14 -

Table 2 : Best area & best delay static CMOS using DC vs. PTL
(which does not use DC).

Circuit
static CMOS

PTLarea delay script.rugged script.delay
C17 0.01 0.01 0.10 0.10 0.01
C432 0.6 0.6 113.2 91.4 0.2
C499 1.1 1.0 12.9 10.5 0.6
C880 0.9 0.9 4.3 11.0 0.4
C1355 1.4 1.4 13.3 24.4 0.6
C1908 1.7 1.7 15.9 47.7 1.1
C2670 3.0 2.6 100.4 - 1.8
C3540 4.3 3.5 30.0 371.4 2.8
C5315 7.2 5.9 22.9 664.9 5.1
C6288 5.5 6.1 65.0 287.2 10.4
C7552 10.1 8.6 - - 14.3

Table 3 : Static CMOS vs. PTL: runtime (in seconds)

Circuit
Cell Count Average Cell Size

static CMOS PTL static CMOS PTL
area opt delay opt area opt delay opt

C17 6 6 3 6.0 6.0 13.0
C432 141 144 58 7.7 7.7 16.9
C499 238 243 133 9.6 9.8 14.6
C880 223 215 94 8.0 8.8 17.2
C1355 238 235 41 9.6 10.8 48.0
C1908 356 345 189 9.1 10.1 11.2
C2670 425 514 227 9.1 8.8 14.1
C3540 778 789 382 8.0 8.5 13.1
C5315 1030 1238 316 8.6 8.7 26.2
C6288 2326 2340 929 6.1 6.1 11.6
C7552 1596 1512 989 7.6 8.3 13.4

Table 4 : Static CMOS vs. PTL: cell counts and average cell size

Logic Area
(λ2)

#
MOS

#
Cell

Avg
Cell
Size
(λ2)

Delay Power
Crit
Path

HSPICE
Avg. RMStrise tfall

PTL 42 22 1 42.0 1 0.6ns 0.2ns 30µW 83µW
CMOS 81 36 8 10.1 4 0.6ns 0.5ns 17µW 122µW

Table 5 : Simulation data for a full adder circuit

power_cmos

−800.00

−600.00

−400.00

−200.00

0.00

0.00 20.00 40.00 60.00 80.00
time (ns)

power_ptl

watts x 10
−6

Figure 12: HSPICE results on timing and power dissipation of

(a) (b)

(c)

static CMOS and PTL circuits for a full adder

volts

0.00

0.50

1.00

1.50

2.00

2.50

3.00

10.00 10.20 10.40 10.60 10.80 11.00 ns

out_cmos
out_ptl
in

volts

0.00

0.50

1.00

1.50

2.00

2.50

3.00

50.00 50.20 50.40 50.60 50.80 ns

out_cmos

out_ptl

in

synthesis algorithm would then be modified as follows: after gen-
erating the decomposed BDD representation, we minimize the
target function BDD and each decomposition point BDD travel-
ling from the primary outputs of the circuit to primary inputs. In
the context of the multi-stage circuit represented by the decom-
posed BDDs, travelling from the outputs to the inputs amounts to
first minimizing the target function BDD and then each decom-
posed BDD in the reverse order of decomposition point introduc-
tion. For each BDD, we compute the compatible observability
don’t cares for the output function in terms of the primary inputs.
This is mapped to a local don’t care set via image computation.
The don’t care set construction is the same as in the case of the
multi-level network minimization and we refer the reader to [18]
for more details. The heuristics of [20] are then applied to mini-
mize the BDD. Based on the results reported in [20], we expect
this extension to yield significant reduction in the area of the PTL
circuits.

7.2 Synthesis of Mixed static CMOS/PTL Circuits

This work has proposed the use of PTL for large deep sub-micron
designs. PTL can provide substantial gains in area and delay over
static CMOS, while the static CMOS has the advantage of a well-
established design flow for synthesizing robust circuits. Static
CMOS may be preferable over PTL in cases where a static
CMOS implementation of a gate is particularly efficient, or where
an nMOS conducting “1” is not allowed.

The PTL synthesis flow proposed in this work is very general
in nature and allows synthesis of mixed static CMOS/PTL cir-
cuits which can leverage the strengths of static CMOS as well as
PTL as appropriate. Each decomposition point BDD can be
viewed as a complex node and can be implemented by static
CMOS logic or PTL as desired.

Among other issues, currently we use ROBDDs as the under-
lying data structure for the decomposed BDDs. General BDDs
([2]), which allow input variables to appear multiple times along
any path in the BDD, may be more appropriate from the PTL net-
work design point of view since we are more interested in com-
pactness than in canonicity. We plan to look into incorporating
general BDDs in our synthesis algorithm.

8 Conclusions
PTL can be a promising alternative to static CMOS for deep sub-
micron design. In this work, we have motivated the need for CAD
algorithms for PTL circuit design and have proposed a methodol-
ogy for synthesizing PTL circuits. The main contributions of this
work are the following:

• A decomposed BDD-based representation is proposed to take
advantage of the correspondence between PTL circuits and
BDDs without suffering from the drawbacks imposed by prop-
erties of monolithic BDDs.

• A comprehensive synthesis flow is outlined for PTL design. We
showed that the proposed approach allows us to make logic
level optimizations similar to the traditional multi-level network
based synthesis flow for static CMOS, and also makes possible
optimizations with a direct impact on area, delay and power of
the final circuit implementation which do not have any equiva-
lent in the traditional approach. Using these techniques we were
able to synthesize PTL circuits for the entire ISCAS benchmark
set.

• A set of heuristical algorithms to synthesize PTL circuits opti-
mized for area, delay and power which are key to the proposed
synthesis flow, are presented. These algorithms are very intui-

tive and simple and have a great impact on the optimality of the
resulting circuit.

Initial experimental results on ISCAS benchmark circuits
show that our technique yields PTL circuits with substantial
improvements in area and delay over conventional static CMOS
designs. We believe that with more research in this area PTL can
become a viable alternative to static CMOS, and that this work is
the first step in that direction.

9 Acknowledgments
The authors would like to thank Prof. Takayasu Sakurai and

Ravi Gunturi for useful discussions on this work.

References
[1] S. Akers, “Binary decision diagrams,”IEEE Trans. on Computers,

vol. C-27, no. 6, June 1978.
[2] P. Ashar. A. Ghosh, S. Devadas, “Boolean satisfiability and equiva-

lence checking using general binary decision diagrams,”ICCD 1991.
[3] W. Al-Assadi, A.P. Jayasumana, and Y.K. Malaiya, “Pass-transistor

logic design,”Int’l J. Electronics, vol. 70, no. 4, 1991.
[4] R.E. Bryant, “Graph-Based Algorithms for Boolean Function Manip-

ulation,” IEEE Trans. on Computers, vol. C-35, no. 8, Aug.1986.
[5] A. P. Chandrakasan, S. Sheng, and R.W. Brodersen, “Low Power

CMOS Digital Design,”IEEE JSSC, vol. SC-20, 1985.
[6] R. Hossain, M. Zheng, and A. Albicki, “Reducing power dissipation

in CMOS circuits by signal probability based transistor reordering,”
IEEE Trans. CAD, vol.15, no. 3, March 1996.

[7] A. Jaekel, G.A. Jullien, and S. Bandyopadhyay, “A multilevel factor-
ization technique for pass transistor logic,”9th Int’l Conf. on VLSI
Design, Jan. 1996.

[8] J. Jain, A. Narayan, C. Coelho, S.P. Khatri, A. Sangiovanni-Vincen-
telli, R.K. Brayton, and M. Fujita, “Decomposition techniques for
efficient ROBDD construction,”,Int’l Conf. in FM-CAD, 1996.

[9] P.C. McGeer, K.L. McMillan, A. Saldanha, A. Sangiovanni-Vincen-
telli, and P. Scaglia, “Fast discrete function evaluation using decision
diagrams,”ICCAD, Nov. 1995.

[10] J.L. Neves, and A. Albicki, “A pass transistor regular structure for
implementing multi-level combinational circuits,”7th Int’l ASIC
Conf. and Exhibit, 1994.

[11]S. Panda, and F. Somenzi, “Who are the variables in your neighbor-
hood,” ICCAD, Nov. 1995.

[12] J. Rabaey,Digital Integrated Circuits, Prentice-Hall, Inc. 1996.
[13]D. Radhakrishnan, S.R. Whitaker, and G.K. Maki, “Formal design

procedures for pass transistor switching circuits,”IEEE JSSC, vol.
SC-20, no. 2, April 1985.

[14]R. Rudell, “Dynamic variable ordering for ordered binary decision
diagrams,”ICCAD, Nov. 1993.

[15]T. Sakurai, B. Lin, and A.R. Newton, “Multiple-Output Shared Tran-
sistor Logic (MOSTL) Family Synthesized Using Binary Decision
Diagram,”Tech. Report, Univ. of California, Berkeley, M90/21, 1990.

[16]F. Salice, “Automatic synthesis of logic functions using transmission
gates,”J. Microelectronic Systems Integration, vol. 3, no.1, 1995.

[17]Y. Sasaki, K. Yano, S. Yamashita, H. Chikata, K. Rikino, K.
Uchiyama, and K. Seki, “Multi-level pass-transistor logic for low-
power ULSIs,”Int’l Symp. on Low Power Electronics, Oct. 1995.

[18]H. Savoj, “Don’t cares in multi-level network optimization,”Ph.D.
Dissertation, Univ. of California, Berkeley, M92/122, Oct. 1992.

[19]M. Shamanna, K. Cameron, S.R. Whitaker, “Multiple-input, multi-
ple-output pass transistor logic,”Int’l J. Elect., vol.79, no.1, 1995.

[20]T. Shiple, R. Hojati, A. Sangiovanni-Vincentelli, R.K. Brayton,
“Heuristic minimization of BDDs using don’t cares,”DAC 1994.

[21]K. Yano, T. Yamanaka, T. Nishida, M. Saito, K. Shimohigashi, and A.
Shimizu, “A 3.8-ns CMOS 16x16-b multiplier using complementary
pass-transistor logic,”IEEE JSSC, vol. 25, no. 2, April 1990.

[22]K. Yano, Y. Sasaki, K. Rikino, and K. Seki, “Top-down pass-transis-
tor logic design,”IEEE JSSC, vol. 31, no. 6, June 1996.

	CD-ROM Home Page
	ICCAD97
	Front Matter
	Table of Contents
	Session Index
	Author Index

