Partial Logic Synthesis

Synthesis of ECO \& Rectification Functions

Priyank Kalla

UNIVERSITY
 ${ }^{0} \mathrm{~F}$ UTAH

Professor
Electrical and Computer Engineering, University of Utah kalla@ece.utah.edu http://www.ece.utah.edu/~kalla

Problem Description

- Given: Spec function f or a gate-level circuit C_{1}
- Given: Implementation Impl function g or a gate-level circuit C_{2}
- Suppose Spec $\neq I m p l$, i.e. Equivalence checking between C_{1}, C_{2} generates a counter-example
- We have to rectify C_{2} to match the Spec, but do not resynthesize the whole circuit C_{2}
- Perform single-fix or multi-fix rectification
- Identify a set of nets $\left\{x_{i}\right\}$ in C_{2} where rectification can be applied
- Compute a rectification function U, replace $x_{i}=U$, such that $C_{1} \equiv C_{2}$

The Scenario

- Compute rectification patches for buggy implementations C_{2}
- Compute rectification patches for Engineering Change Orders (ECO)
- Suppose, given C_{1} Spec and correct Impl C_{2}
- Make slight modifications on C_{1} : small change in functionality
- New $C_{1} \neq C_{2}$ (bug!)
- Minimally modify C_{2} to match the Spec
- Topologically constrained logic synthesis, synthesize subcircuits partially

The Scenario: Miter Model

Spec C1

Single-Fix Rectification

- Irrespective of the type of bugs, or the number of error inputs (counter-examples) ...
- Does there exist a net x_{i} and a Boolean function $U\left(X_{P I}\right)$, s.t. $x_{i}=U\left(X_{P I}\right)$ makes $C_{1} \equiv C_{2}$?
- Mathematically, a Quantified Boolean Formula:
- $\exists U, \forall X_{P I} \quad C_{1} \equiv C_{2}$ is SAT
- Single-fix rectification may or may not exist
- Multi-fix: Find $x_{1}=U_{1}, x_{2}=U_{2}, \ldots, x_{t}=U_{t}$, s.t. $C_{1} \equiv C_{2}$

Single-Fix Rectification

The Problem is three-fold:

- Once C_{1} does not match C_{2}
- Identify a net x_{i} where single-fix rectification is admissible. So how to pick the net x_{i} ? (Discuss later...)
- How to ascertain that there exists a single-fix rectification function $x_{i}=U\left(X_{P I}\right)$? (Decision procedure)
- If single-fix exists at x_{i}, find the Boolean function U. (Quantification procedure).

Existence of Single-fix at net x_{i}

Theorem (Existence of Single-fix rectification at net x_{i} (Thm. 1))

Given the Spec circuit C_{1} with function f and Impl circuit C_{2} with function g, where X is the set of primary inputs, $f \neq g$, and a net $x_{i} \in C_{2}$, the circuit C_{2} can be single-fix rectified at x_{i} with function $x_{i}=U\left(X_{P I}\right)$, if and only if

$$
\begin{aligned}
{\left[f(X) \oplus g\left(X, x_{i}=0\right)\right] \wedge\left[f(X) \oplus g\left(X, x_{i}=1\right)\right] } & =\perp(U N S A T) \\
M\left(X, x_{i}=0\right) \wedge M\left(X, x_{i}=1\right) & =\perp
\end{aligned}
$$

Existence of Single-fix at net x_{i}

Theorem (Existence of Single-fix rectification at net x_{i} (Thm. 1))

Given the Spec circuit C_{1} with function f and Impl circuit C_{2} with function g, where X is the set of primary inputs, $f \neq g$, and a net $x_{i} \in C_{2}$, the circuit C_{2} can be single-fix rectified at x_{i} with function $x_{i}=U\left(X_{P I}\right)$, if and only if

$$
\begin{aligned}
{\left[f(X) \oplus g\left(X, x_{i}=0\right)\right] \wedge\left[f(X) \oplus g\left(X, x_{i}=1\right)\right] } & =\perp(\text { UNSAT }) \\
M\left(X, x_{i}=0\right) \wedge M\left(X, x_{i}=1\right) & =\perp
\end{aligned}
$$

What are $\left[f(X) \oplus g\left(X, x_{i}=0\right)\right]$ and $\left[f(X) \oplus g\left(X, x_{i}=1\right)\right]$?

Existence of Single-fix at net x_{i}

Theorem (Existence of Single-fix rectification at net x_{i} (Thm. 1))

Given the Spec circuit C_{1} with function f and Impl circuit C_{2} with function g, where X is the set of primary inputs, $f \neq g$, and a net $x_{i} \in C_{2}$, the circuit C_{2} can be single-fix rectified at x_{i} with function $x_{i}=U\left(X_{P I}\right)$, if and only if

$$
\begin{aligned}
{\left[f(X) \oplus g\left(X, x_{i}=0\right)\right] \wedge\left[f(X) \oplus g\left(X, x_{i}=1\right)\right] } & =\perp(\text { UNSAT }) \\
M\left(X, x_{i}=0\right) \wedge M\left(X, x_{i}=1\right) & =\perp
\end{aligned}
$$

What are $\left[f(X) \oplus g\left(X, x_{i}=0\right)\right]$ and $\left[f(X) \oplus g\left(X, x_{i}=1\right)\right]$?
The set of all test vectors for x_{i} stuck-at- 0 , and x_{i} stuck-at- 1 , resp. In other words, $\left[f(X) \oplus g\left(X, x_{i}=0\right)\right]=$ primary input assignments to X (minterms) that differentiate $f(X)$ from $g\left(X, x_{i}=0\right)$.

Single-Fix Rectification Test

- $M\left(X, x_{i}=0\right) \wedge M\left(X, x_{i}=1\right)=\perp$ means that product of positive and negative co-factors of the miter w.r.t. x_{i} is empty.
- If $M\left(X, x_{i}=0\right) \wedge M\left(X, x_{i}=1\right) \neq 0$, then: there exists a minterm X s.t. the difference between Spec and Impl is observed for both values of target net x_{i}
- Equivalently, if $M\left(X, x_{i}=0\right) \wedge M\left(X, x_{i}=1\right) \neq 0$, no matter what value x_{i} takes for this minterm X, functional difference between Spec and $/ \mathrm{mp} /$ remains.
- In other words, rectification is only feasible when $M\left(X, x_{i}=0\right) \wedge M\left(X, x_{i}=1\right)=0$.

Example

- Let $f=a b+a c+b c$ and $g=a b+a c+b$
- Clearly, $f \neq g$, can g be rectified at net x_{i} shown below?

Rectification Check Passes: Example

In the example on the previous slide:

- Let $f=a b+a c+b c$ and $g=a b+a c+b$
- $M\left(X, x_{i}=0\right)=(a b+a c+b c) \oplus(a b+a c+0)=a^{\prime} b c$
- $M\left(X, x_{i}=1\right)=(a b+a c+b c) \oplus(a b+a c+1)=a^{\prime} b^{\prime}+a^{\prime} c^{\prime}+b^{\prime} c^{\prime}$
- $M\left(X, x_{i}=0\right) \wedge M\left(X, x_{i}=1\right)=0$, so rectification is feasible

Rectification Check Fails: Example

- Let $f=a b+a c+b c$ (spec) and $g=a+b$ (buggy implementation)
- Check for single-fix rectifiability at $x_{i}=b$ (input of OR gate) in g
- $M\left(X, x_{i}=0\right)=(a b+a c+b c) \oplus(a+0)=a^{\prime} b c+a b^{\prime} c^{\prime}$
- $M\left(X, x_{i}=1\right)=(a b+a c+b c) \oplus(a+1)=a^{\prime} b^{\prime}+a^{\prime} c^{\prime}+b^{\prime} c^{\prime}$
- $M\left(X, x_{i}=0\right) \wedge M\left(X, x_{i}=1\right)=a b^{\prime} c^{\prime} \neq 0$, so rectification at the b input of the OR gate in g is not possible.

Compute Single-Fix Rectification Function $U\left(X_{P I}\right)$

Theorem (Compute Rectification function $x_{i}=U\left(X_{P I}\right)$)

When the above condition (Theorem 1) is satisfied, then the single-fix rectification function can be computed as:

$$
\begin{aligned}
{\left[f(X) \oplus g\left(X, x_{i}=0\right)\right] } & \subseteq U(X) \subseteq \overline{\left[f(X) \oplus g\left(X, x_{i}=1\right)\right]} \\
M\left(X, x_{i}=0\right) & \subseteq U(X) \subseteq \overline{M\left(X, x_{i}=1\right)}
\end{aligned}
$$

Compute Single-Fix Rectification Function $U\left(X_{P I}\right)$

Theorem (Compute Rectification function $x_{i}=U\left(X_{P I}\right)$)

When the above condition (Theorem 1) is satisfied, then the single-fix rectification function can be computed as:

$$
\begin{aligned}
{\left[f(X) \oplus g\left(X, x_{i}=0\right)\right] } & \subseteq U(X) \subseteq \overline{\left[f(X) \oplus g\left(X, x_{i}=1\right)\right]} \\
M\left(X, x_{i}=0\right) & \subseteq U(X) \subseteq \overline{M\left(X, x_{i}=1\right)}
\end{aligned}
$$

- $\left[f(X) \oplus g\left(X, x_{i}=0\right)\right]=M\left(X, x_{i}=0\right)=O N$-set of the rectification function. Call this M_{0}.
- $\left[f(X) \oplus g\left(X, x_{i}=1\right)\right]=M\left(X, x_{i}=1\right)=$ OFF-set of the rectification function. Call this M_{1}.
- $\overline{\left[f(X) \oplus g\left(X, x_{i}=1\right)\right]}=$ ON-set \cup DC-set.
- DC-set $=\overline{M_{0}+M_{1}}$.

Characterizing the Rectification Function $U\left(X_{P I}\right)$

Universe
rectification function

- $\left[f(X) \oplus g\left(X, x_{i}=0\right)\right]=M\left(X, x_{i}=0\right)=O N$-set of the rectification function. Call this M_{0}.
- $\left[f(X) \oplus g\left(X, x_{i}=1\right)\right]=M\left(X, x_{i}=1\right)=$ OFF-set of the rectification function. Call this M_{1}.
- DC-set $=\overline{M_{0}+M_{1}}$.

Compute Single-Fix Rectification Function $U\left(X_{P I}\right)$

Theorem (Compute Rectification function $x_{i}=U\left(X_{P I}\right)$)

When the above condition (Theorem 1) is satisfied, then the single-fix rectification function can be computed as:

$$
\left[f(X) \oplus g\left(X, x_{i}=0\right)\right] \subseteq U(X) \subseteq \overline{\left[f(X) \oplus g\left(X, x_{i}=1\right)\right]}
$$

Compute Single-Fix Rectification Function $U\left(X_{P I}\right)$

Theorem (Compute Rectification function $x_{i}=U\left(X_{P I}\right)$)

When the above condition (Theorem 1) is satisfied, then the single-fix rectification function can be computed as:

$$
\left[f(X) \oplus g\left(X, x_{i}=0\right)\right] \subseteq U(X) \subseteq \overline{\left[f(X) \oplus g\left(X, x_{i}=1\right)\right]}
$$

Does this remind you of Craig Interpolants?

Compute Single-Fix Rectification Function $U\left(X_{P I}\right)$

Theorem (Compute Rectification function $x_{i}=U\left(X_{P I}\right)$)

When the above condition (Theorem 1) is satisfied, then the single-fix rectification function can be computed as:

$$
\left[f(X) \oplus g\left(X, x_{i}=0\right)\right] \subseteq U(X) \subseteq \overline{\left[f(X) \oplus g\left(X, x_{i}=1\right)\right]}
$$

Does this remind you of Craig Interpolants?

$$
M\left(X, x_{i}=0\right) \wedge M\left(X, x_{i}=1\right)=\perp
$$

There exists C.I. $I(X)$ s.t.:

- $M\left(X, x_{i}=0\right) \Longrightarrow I(X)$;
- $I(X) \wedge M\left(X, x_{i}=1\right)=\perp$;
- $I(X)$, where $X=$ common variables of $M\left(X, x_{i}=0\right)$ and $M\left(X, x_{i}=1\right)$.
Rectification function $U(X)=I(X)!$!

The Concept of Craig Interpolants

Craig Interlants: A concept of "abstraction", for UNSAT problems

Definition

Let $f\left(X_{A}, X_{B}, X_{C}\right)$ be a Boolean function in variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$ such that X is partitioned into disjoint subsets X_{A}, X_{B}, X_{C}. Let $f=f_{A}\left(X_{A}, X_{C}\right) \wedge f_{B}\left(X_{B}, X_{C}\right)=\emptyset$. Then there exists another Boolean function f_{l} such that:

- $f_{A} \Longrightarrow f_{l}$; or $f_{A} \subseteq f_{l}$
- $f_{l} \wedge f_{B}=\emptyset$
- $f_{l}\left(X_{C}\right)$ only contains X_{C} variables, i.e. the common variables of $f_{A}, f_{B}: \operatorname{Vars}\left(f_{l}\right) \subseteq \operatorname{Vars}\left(f_{A}\right) \cap \operatorname{Vars}\left(f_{B}\right)$

Craig Interpolants

- The ABC tool with MiniSAT solver can return an f_{l}, provided $f_{A}, f_{B}, X_{A}, X_{B}, X_{C}$ is given.
- Interpolant computed through a resolution proof

Craig Interpolants: Examples

There may be more than one interpolants:

- $f=f_{A} \cdot f_{B}$
- $f_{A}=\left(a_{1}+a_{2}^{\prime}\right)\left(a_{1}^{\prime}+a_{3}^{\prime}\right)\left(a_{2}\right)=a_{1} a_{2} a_{3}^{\prime}$
- $f_{B}=\left(a_{2}^{\prime}+a_{3}\right)\left(a_{2}+a 4\right)\left(a_{4}^{\prime}\right)=a_{2} a_{3} a_{4}^{\prime}$
- $X_{A}=\left\{a_{1}\right\}, X_{B}=\left\{a_{4}\right\}, X_{C}=\left\{a_{2}, a_{3}\right\}$
- One interpolant $f_{l_{1}}=a_{3}^{\prime} a_{2}$
- Another interpolant $f_{l_{2}}=a_{3}^{\prime}$
- The set of all interpolants forms a lattice, the smallest interpolant at the bottom, and the largest at the top
- Smallest interpolant: $f_{l}^{\text {smallest }}=\exists X_{A} f_{A}\left(X_{A}, X_{C}\right)$
- Largest interpolant: $f_{I}^{\text {largest }}=\overline{\exists X_{B} f_{B}\left(X_{B}, X_{C}\right)}$

To compute Interpolants

Use Boolean logic manipulation, or use a SAT solver

- Using Boolean manipulation, we can compute two interpolants
- Smallest interpolant: $f_{I}^{\text {smallest }}=\exists X_{A} f_{A}\left(X_{A}, X_{C}\right)$, where $\exists_{x} f(x, y, z, \ldots)$ is a Boolean function defined as
- $\exists_{x} f(x, y, z, \ldots)=f_{x}+f_{\bar{x}}, f_{x}=f(x=1)$ and $f_{\bar{x}}=f(x=0)$.
- $f_{x}=$ the positive cofactor of f w.r.t. $x, f_{\bar{x}}$ is negative cofactor.
- $\exists_{x} f(x, y, z, \ldots)$ is called existential abstraction of f w.r.t. x, also called smoothing.
- $\exists_{x} f(x, y, z, \ldots)$ is the smallest function larger than f, i.e. it contains f and does not have x in its support.
- Largest interpolant $=\overline{\exists_{X_{B}} f_{B}\left(X_{B}, X_{C}\right)}$

Craig Interpolant: Examples

From the previous slides:

- $f_{A}=a_{1} a_{2} a_{3}^{\prime}$ and $f_{B}=a_{2} a_{3} a_{4}^{\prime}$
- $X_{A}=\left\{a_{1}\right\}, X_{B}=\left\{a_{4}\right\}, X_{C}=\left\{a_{2}, a_{3}\right\}$
- Smallest interpolant: $f_{l}^{\text {smallest }}=\exists X_{A} f_{A}\left(X_{A}, X_{C}\right)=a_{2} a_{3}^{\prime}$
- Largest interpolant: $f_{I}^{\text {largest }}=\overline{\exists X_{B} f_{B}\left(X_{B}, X_{C}\right)}$
- Largest interpolant $=\overline{\exists X_{B} a_{2} a_{3} a_{4}^{\prime}}=\overline{a_{2} a_{3}}=a_{2}^{\prime}+a_{3}^{\prime}$
- Let f_{l} be any interpolant, then $f_{l}^{\text {smallest }} \subseteq f_{l} \subseteq f_{l}^{\text {largest }}$

To compute Rectification Function

$$
M\left(X, x_{i}=0\right) \wedge M\left(X, x_{i}=1\right)=\perp
$$

There exists C.I. $I(X)$ s.t.:

- $M\left(X, x_{i}=0\right) \Longrightarrow I(X)$;
- $I(X) \wedge M\left(X, x_{i}=1\right)=\perp$;
- $I(X)$, where $X=$ common variables of $M\left(X, x_{i}=0\right)$ and $M\left(X, x_{i}=1\right)$.
- Rectification function $x_{i}=U(X)=I(X)$!
- $X=$ primary inputs of the circuit, as all Pls common variables of the miter.
- $I(X)=M\left(X, x_{i}=0\right)$ is the smallest interpolant, and serves as the rectification function.

Example: Compute $U\left(X_{P I}\right)$

- Let $f=a b+a c+b c$ and $g=a b+a c+b$
- $U(X)=I(X)=M\left(X, x_{i}=0\right)=a^{\prime} b c$, the smallest interpolant works as a rectification function $g=a b+a c+a^{\prime} b c$
- Largest interpolant: $\overline{M\left(X, x_{i}=1\right)}=a b+a c+b c$ also works:
$g=a b+a c+a b+a c+b c$
- Any interpolant works as a rectification function:
$M\left(X, x_{i}=0\right) \subseteq I(X) \subseteq \overline{M\left(X, x_{i}=1\right)}$
- $I(X)=b c$ also rectifies g

For Logic Synthesis of $U\left(X_{P I}\right)$, synthesize: M_{0} as the care-set of U, M_{1} as the offset of U, and $\overline{M_{1}}-M_{0}$ as the don't care set of U.

Why $U\left(X_{P I}\right)=I(X)$ rectifies the circuit?

- $M_{0}=M\left(X, x_{i}=0\right)$ gives the error cubes for the implementation when $x_{i}=0$
- Since $I(X) \supseteq M_{0}$, and $I(X)$ evaluates to 1 for all minterms of M_{0}, it fixes all the mismatches that occured when $x_{i}=0$
- $M_{1}=M\left(X, x_{i}=1\right)$ gives the error cubes for the implementation when $x_{i}=1$
- $I(X) \wedge M_{1}=0$, i.e. $I(X)$ evaluates to 0 for all minterms of M_{1}, so it fixes all the mismatches that occured when $x_{i}=1$
- Thus $I(X)$ computes the rectification patch Important References [1] [2] [3] [4]

Identify Single-Fix Rectification Target Net x_{i}

- Perform Combinational Equivalence Checking (CEC) between C_{1}, C_{2}
- Use the following command in ABC: ABC> cec C1.blif C2.blif
- Since $C_{1} \neq C_{2}$, ABC identifies the outputs of the circuits which are affected by the bug
- Say, there exists an input (counter-example to CEC) X_{1} s.t. $f_{i}\left(X_{1}\right) \neq f_{j}\left(X_{1}\right)$
- Identify the transitive fanin-cones of f_{i}, f_{j}
- Identify the set of nets \mathcal{N} (gate-outputs) that lie in the intersection of fanin-cones of f_{i}, f_{j}
- Then the nets $x_{i} \in \mathcal{N}$ are candidates for single-fix rectification

Identify Single-Fix Target Net x_{i}

Example Circuit:

The circuit is buggy, bug = gate change at net e_{3}, which should have been an AND gate. Both outputs z_{0}, z_{1} affected by the bug.

Identify Single-Fix Target Net x_{i}

- In the previous figure, e_{3} should have been an AND gate in the correct circuit C_{1}
- Bug introduced, $e_{3}=X O R$ gate
- The bug affects both outputs z_{0}, z_{1}
- Fanin cone $z_{0}=\left\{s_{0}, e_{0}, s_{1}, e_{2}, e_{3}, s_{3}, s_{4}, X_{P I}\right\}$
- Fanin cone $z_{1}=\left\{r_{0}, s_{5}, e_{1}, s_{2}, e_{2}, e_{3}, s_{3}, s_{4}, e_{0}, s_{1}, X_{P I}\right\}$
- Intersection of fanin cones: $\mathcal{N}=\left\{s_{3}, e_{3}, e_{2}, s_{4}, e_{0}, s_{1}, s_{2}, X_{P I}\right\}$ are targets for rectification x_{i}
- Select a net $x_{i} \in \mathcal{N}$ to see if Theorem 1 ascertains rectifiability at x_{i}

C．C．Lin，K．C．Chen，S．C．Chang，and M．Marek－Sadowska，＂Logic Synthesis for Engineering Change，＂in Proc．Design Automation Conf． （DAC），1995，pp．647－652．

击 K．－F．Tang，C．－A．Wu，P．－K．Huang，and C．－Y．R．Huang， ＂Interpolation based incremental ECO Synthesis for Multi－Error Logic Rectification，＂in Proc．Design Automation Conf．，2011，pp．146－151．

目 A．Dao，N．－Z．Lee，L．－C．Chen，M．Lin，J．－H．Jiang，A．Mishchenko， and R．Brayton，＂Efficient Computations of ECO Patch Functions，＂in Proc．Design Auto．Conf．， 2018.

國 M．Fujita，＂Toward Unification of Synthesis and Verification in Topologically Constrained Logic Design，＂Proceedings of the IEEE， 2015.

