
ECE/CS 5740/6740
CAD of Digital Circuits: Logic

Synthesis & Optimization

Operations on Boolean functions

Priyank Kalla
Professor

Electrical & Computer Engineering

Shannon’s Expansion
•

• When is +ve unate in

• When is -ve unate in

• Significance on Shannon’s expansion

• Break a function down to it’s co-factors, and operate on co-
factors

• any Boolean operation

f = xfx + xfx′￼

f x, then, f = xfx + fx′￼

f x, then, f = fx + x′￼fx′￼

f ⊙ g = x(fx ⊙ gx) + x′￼(fx′￼⊙ gx′￼), ⊙ =

Binate Functions
• What if the function is not unate in any variable?

• Then the function is called “binate”

• Does

• What about unateness in variables

fa ⊇ fa′￼
? Or fa ⊆ fa′￼

?

b, c?

Binate Functions Unate Cofactors→
• Processing of Binate functions may be harder

• Most functions in general are binate

• But their cofactors tend to be unate: successive
cofactoring leads to unate sub-functions, so Shannon’s
expansion helps

• Often called the “Unate Recursive Paradigm”

• See example below….

Binate Functions Unate Cofactors→

Boolean Function Operations: Boolean Difference
• Boolean difference or Boolean derivative:

• Is sensitive to changes in

• Denoted:

f x?

∂f
∂x

= fx ⊕ fx′￼

Depict on the circuit — in the classroom, on the board

Consensus of w.r.t. f x
• Consensus of a function w.r.t. :

• Product of cofactors

• Also called universal quantification of w.r.t.

• Gives the largest function, smaller than , contained in ,
which does not have in it’s support

f x Cx(f) = fx ⋅ fx′￼

f x = ∀x (f)

f f
x

Depict on a 3D-cube ….

Smoothing of w.r.t. f x
• Smoothing of a function w.r.t. :

• OR of cofactors

• Also called existential quantification of w.r.t.

• Gives the smallest function larger than that contains , but does not
have in its support

• Makes the function independent of the variable

•

f x Sx(f) = fx + fx′￼

f x = ∃x (f)

f, f
x

f = ab + ac + bc, ∃a f = ?

Depict on a 3D-cube ….

How to Perform Containment Check?
• Logic synthesis, test and verification often requires a check

for containment

• If are Boolean functions, then is

• Containment is an implication:

• Example: Unateness, does ?

• A function is TAUTOLOGY if it is TRUE everywhere ()

• Containment check: if and only if

• Solve:

p, q p ⊆ q?

(p ⊆ q) ≡ (p ⟹ q)

fx ⊇ fx′￼

f = 1

(p ⟹ q) (p′￼+ q) = 1

p = bc, q = b + c : p ⊆ q?

Generalized Cofactors and Orthonormal Expansion

• Let be Boolean functions such that

• , and

• Then we have:

• Functions generalized cofactor of

• Special case: Let be arbitrary Boolean functions. Then:

f, ϕi (i = 1,…, k)
k

∑
i=1

ϕi = 1 ϕi ⋅ ϕj = 0, ∀i ≠ j

f =
k

∑
i=1

ϕi ⋅ fϕi
= ϕ1 ⋅ fϕ1

+ ϕ2 ⋅ fϕ2
+ ⋯ + ϕk ⋅ fϕk

fϕi
= f w.r.t. ϕi

f, g
f = g ⋅ fg + g ⋅ fg

Generalized Cofactor
• What is a generalized cofactor and how do we compute one? Given how

to compute

• Generalized cofactors are not unique but they satisfy the following bounds:

•

• Many functions may satisfy the above bound and any one of them may be
taken as

• Another view:

•

• Solve examples on the board, using K-maps, and see lecture notes

f, g
fg?

f ⋅ g ⊆ fg ⊆ f + g′￼

fg

f ⋅ g⏟
ON-set

⊆ fg ⊆ f + g′￼

⏟
ON-set ⋃ DC-set

