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Shannon’s Expansion
• 


• When  is +ve unate in 


• When  is -ve unate in 


• Significance on Shannon’s expansion


• Break a function down to it’s co-factors, and operate on co-
factors


• any Boolean operation

f = xfx + xfx′￼

f x, then, f = xfx + fx′￼

f x, then, f = fx + x′￼fx′￼

f ⊙ g = x( fx ⊙ gx) + x′￼( fx′￼⊙ gx′￼), ⊙ =



Binate Functions
• What if the function is not unate in any variable?


• Then the function is called “binate”

• Does  


• What about unateness in variables 

fa ⊇ fa′￼
? Or fa ⊆ fa′￼

?

b, c?



Binate Functions  Unate Cofactors→
• Processing of Binate functions may be harder


• Most functions in general are binate


• But their cofactors tend to be unate: successive 
cofactoring leads to unate sub-functions, so Shannon’s 
expansion helps


• Often called the “Unate Recursive Paradigm”


• See example below….



Binate Functions  Unate Cofactors→



Boolean Function Operations: Boolean Difference
• Boolean difference or Boolean derivative:


• Is  sensitive to changes in 


• Denoted: 

f x?

∂f
∂x

= fx ⊕ fx′￼

Depict on the circuit — in the classroom, on the board



Consensus of   w.r.t. f x
• Consensus of a function   w.r.t. : 


• Product of cofactors


• Also called universal quantification of  w.r.t. 


• Gives the largest function, smaller than , contained in , 
which does not have  in it’s support

f x Cx( f ) = fx ⋅ fx′￼

f x = ∀x ( f )

f f
x

Depict on a 3D-cube …. 



Smoothing of   w.r.t. f x
• Smoothing of a function   w.r.t. : 


• OR of cofactors


• Also called existential quantification of  w.r.t. 


• Gives the smallest function larger than that contains , but does not 
have  in its support


• Makes the function independent of the variable


•

f x Sx( f ) = fx + fx′￼

f x = ∃x ( f )

f, f
x

f = ab + ac + bc, ∃a f = ?

Depict on a 3D-cube …. 



How to Perform Containment Check?
• Logic synthesis, test and verification often requires a check 

for containment


• If  are Boolean functions, then is 


• Containment is an implication: 


• Example: Unateness, does  ?


• A function is TAUTOLOGY if it is TRUE everywhere ( )


• Containment check:  if and only if 


• Solve: 

p, q p ⊆ q?

(p ⊆ q) ≡ (p ⟹ q)

fx ⊇ fx′￼

f = 1

(p ⟹ q) (p′￼+ q) = 1

p = bc, q = b + c : p ⊆ q?



Generalized Cofactors and Orthonormal Expansion

• Let  be Boolean functions such that


• , and  


• Then we have: 




• Functions generalized cofactor of 


• Special case: Let    be arbitrary Boolean functions. Then:

f, ϕi (i = 1,…, k)
k

∑
i=1

ϕi = 1 ϕi ⋅ ϕj = 0, ∀i ≠ j

f =
k

∑
i=1

ϕi ⋅ fϕi
= ϕ1 ⋅ fϕ1

+ ϕ2 ⋅ fϕ2
+ ⋯ + ϕk ⋅ fϕk

fϕi
= f w.r.t. ϕi

f, g
f = g ⋅ fg + g ⋅ fg



Generalized Cofactor
• What is a generalized cofactor and how do we compute one? Given  how 

to compute 


• Generalized cofactors are not unique but they satisfy the following bounds:


• 


• Many functions may satisfy the above bound and any one of them may be 
taken as  


• Another view:


•



• Solve examples on the board, using K-maps, and see lecture notes

f, g
fg?

f ⋅ g ⊆ fg ⊆ f + g′￼

fg

f ⋅ g⏟
ON-set

⊆ fg ⊆ f + g′￼

⏟
ON-set ⋃ DC-set


