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Department of Electrical and Computer Engineering
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In this lecture, we are going to review, very briefly, concepts related to set theory and graph theory. Sets are taught
in high-school, so you should know the basics. But not everyone has a working knowledge of Graph Theory. For this
reason, | will introduce graphs, and illustrate with examples how we can apply search & decision techniques to solve
fundamental CAD problems. Subsequently, we will cover algorithms and their complexity issues. Some of this stuff
would appear to be very elementary but most of these CAD techniques are quite useful in Logic Design, Test and
Verification.

I. SET THEORY

A set is a collection of elements; e.g. S = {a,b,c} isaset S of three elements a, b, and c¢. The cardinality of the
set S, denoted by |S|, is the number of elements it contains. The cover of S is a set of subsets of S whose union is
S. A partition is a cover by disjoint subsets. Partition is an often abused term - sometimes a non-disjoint cover is
also considered a partition, but puritanical mathematicians would disagree with that. Set membership is denoted by
€, inclusion by C, union by U and intersection by N, complement of X by X.

You must be aware of Venn Diagrams, so that needs no mention. But in case you have forgotten that you ever went
to high-school, here are two high-school formulas that you might find useful in switching theory:

« |AUB|=|A|+|B|—-|ANB.
« A— B = An B. Remember set difference? A simple formula, but it has applications in the VLSI domain.

A Cartesian product of sets X, Y, denoted by X x Y, is the set of all ordered pairs (z,y) such that z € X and
y € Y. Cartesian product is yet another high-school result that finds a lot of application in VLSI CAD. If we represent
the state-space of sequential circuits (finite state machines) using sets, then the cross product of these sets would create
something called a “product machine.” State space analysis of the product machine is a useful tool in equivalence
verification.

A. Relations and Functions

Given two sets A, B, a relation R between them is a subset of A x B: written aRb,a € A,b € B, (a,b) € R.
Reflexive relation: (a,a) € R. Symmetric: (a,b) € R = (b,a) € R. Transitive: (a,b) € R, (b,c) € R = (_, _)
€ R. (You fill in the blanks - this should be easy.) An equivalence relation (a very important concept) is one that is
reflexive, symmetric and transitive.

A function f is a mapping between two sets A, B, f : A — B, that associates exactly one element of B to each
element of A. Unlike relations, one element of A cannot have two associated elements in B. What is the domain of f
and what is its co-domain? What is the difference between co-domain and range? If y = f(z),z € A,y € B, then is
f (z) the co-domain or the range?

B. Image of a Function

Ify = f(z) : A — B, we say that y is the image of = under f. Given a function f : A — B, and a domain subset
C C A, the image of C under f is defined by:

IMAGE(f,C) = {f(z)|Vz € C} @)



If C = A, the image of C' under f is also called the range of f. Now do you get the difference between co-domain
and range?
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Fig. 1. Image computation.
Symmetrically, we can also define the Pre-image, also called the inverse image of a function:
PRE(f,C)={z€ A:FyeCy=[f(z)} )

In pure and simple English: Take a point z in the domain A. According to the function f, find its mapping y in the
co-domain B. y is the image of x under f. Vice-versa for inverse image. Notice, however, that image is not restricted
to just one point - but can consist of a set of points. For example, let C' C A. For EVERY point in domain subset C,
you can find a mapping in the co-domain B. The set of all these (mapped) co-domain points constitute the image set!
We’ll use image and preimage extensively for computing don’t care sets in multi-level circuits.

Il. GRAPH THEORY

Recall plotting graphs on (z,y) axes? Remember plotting some points on the graph paper, and connecting those
points with a line and generating a curve? As it turns out, the plots that you used to draw (again, in your high-school
classes) have some cool properties. In VLSI-CAD, we require a good understanding of those properties. So let us
formally define graphs and look at some of their properties that we will use throughout this course.

A graph G(V, E) is a pair (V, E) of a vertex set V and an edge set E. (The points that you plotted on the graph
paper are analogous to the vertices. The lines that you used to draw to connect these points, or vertices, are analogous
to the edges). E is in fact a binary relation on V: we say e;; = (v;,vj) € R;v;,v; € Viey; € E. If theset V is
bounded, i.e. it is finite, the graph is considered a finite graph. When an edge e has a vertex v as an end point, e is
incident on v. The edges can be directed or undirected. And the degree of a vertex is the number of edges incident
upon it. For a few examples of graphs, see lecture slides.

A walk is an alternating sequence of vertices and edges; when the edges encountered in a walk are distinct (never
re-visited) the walk is called a trail. Similarly, if the vertices in a walk are distinct, it is called a path. A closed walk
is a cycle. A graph is connected if there is a path from any vertex to every other vertex. Remember, in a path, you
cannot repeat a vertex. If a closed walk in a graph contains all the edges then the graph is called an Euler graph. See
slides for an example of a connected graph:

If there are no cycles in a graph, the graph is acyclic. A connected acyclic graph is a tree. What is a binary tree?
Often, in VLSI-CAD we are going to deal with graphs with directed edges: called direct graphs or digraphs for short.
The concepts of walks, paths, connectivity, etc. follow straightforwardly to digraphs. If we take a combinational
circuit, represent the gates with nodes (vertices) and the connections between them by directed edges, we get a
directed acyclic graph. What if there are directed cycles in a circuit?

Now that we know what is connectivity in terms of walks, trails, paths, etc., let us look at where would you use
these concepts. Consider the circuit shown below. Represent the circuit as a directed graph: represent the inputs,
outputs and gates with nodes and the wires with edges. Let us call each input vertex as the source and the output as
the sink. Starting from source a, can you find the shortest path to any sink? The longest path to any sink? Can you find
the shortest and longest paths from any and all sources to any and all sinks? Given a tree and starting from the root,



you have to visit all the nodes: you can do it in a depth-first manner or in a breadth-first manner - hence a depth-first
search (DFS) and a breadth-first search (BFS). These are really the bread-and-butter algorithms in VLSI-CAD.

f u

)
c LDFE y V
d

I11. ALGORITHMS AND COMPLEXITY

An algorithm is a computational procedure that takes a set of inputs, performs a finite number of (unambiguously
defined) operations and delivers a set of outputs [?]. Usually, the number of computational steps involved in an
algorithm is defined by the number of inputs to it. This defines the computational effort of the algorithm, and it is
usually measured in terms of time and memory. The behaviour of the algorithm also depends upon the data and its
characteristics. That is why the worst-case and average-case behaviour of an algorithm is a good indication of the
amount of effort required to solve the problem.

Consider the following problem. Given a list of 5 numbers, we want to find the largest of them. The fundamental
computation involved in this search is a “comparison”. What is the maximum number of comparisons required?
Answer: 4. If the data size is increased to 10, the number of computations = 9. If the data size is n, we require no
more than n-1 comparisons. That means, an upper bound on the comparisons needed is of the order of n-1, written as
O(n — 1). Usually, constants are ignored in this notation, and that is because as n increases to a very large number,
the constant becomes meaningless. So to compute an upper bound on the computational steps (or the computational
complexity) of the algorithm, we can always say that: upper bound = O(n — 1) < O(n). If we have to sort this array,
then we can do it in no more than O(n?) time.

All the algorithms that have a computational complexity of polynomial nature, i.e. O(n), O(nlogn), O(n?), O(n3),
etc., are generally considered tractable. Unfortunately, in Boolean logic, most problems do not have polynomial time
or space complexity. For example, let there be a Boolean function of n variables. The size of the truth table for that
function is going to be 2™ (exponential space complexity). If we are to search for some element in the truth table
that has some property, in the worst-case we would have to go through the entire table; time complexity is O(2") or
exponential in nature. Exponential complexity generally means that we are in trouble!

Suppose | have a circuit with n inputs; i.e. my design space has possibly 2™ points. Let me randomly assign some
arbitrary cost ¢; to each point. | want to now pick a point in the design space that has the least (or highest) cost. In the
worst-case | would have to visit each and every point and look-up its cost - exponential complexity! Now suppose that
I have a “magical computer that can make correct guesses all the time”. This hypothetical computer does not perform
any deterministic computation: it makes guesses. Such a non-deterministic computational procedure (a euphemism for
a guess) may solve the problem in polynomial time. Hence, my problem is N P, or non-deterministically polynomial-
time solvable. But a deterministic machine cannot make correct guesses all the time. That means, for the above
problem the data can always be arranged in such a way that a deterministic computation will end up searching the
design space exhaustively, or 2™ times. Problems that exhibit this kind of behaviour are called intractable. And the
bad news is, almost all the problems in VLSI-CAD, at least the important ones, are all (drum-roll please) intractable!

IV. DECISION AND OPTIMIZATION PROBLEMS

A decision problem has a binary solution: true/False or Yes/No. Most problems in Verification and Circuit testing
are decision problems. For example: Given a circuit with two outputs, does there exist a set of inputs that will excite
the first output to 1 and the second output to 0? This is a decision problem. Another example: Suppose a gate in my
circuit is faulty, can | find a set of inputs that will excite the faulty behaviour in that gate?

An optimization problem is a problem whose solution can be measured in terms of a cost, which has to be minimized
or maximized. Moreover, the solution has to satisfy a set of constraints; this implies that it can be solved by employing
sequences of decision problems and are thus as hard as (if not more) the constituent decision problems. Two-level



logic minimization using Karnaugh-maps is an optimization problem: What is the cost to be minimized and what are
the constraints?
In the class we are going to analyze solutions to various optimization problems involving:
« graph traversal
« Depth-first search and breadth-first search.
« Greedy search
» Branch and Bound search
« Any other property.....



