ECE 697B (667)

Spring 2003

Synthesis and Verification of Digital Systems

Multi-level Minimization
 - Factored forms

Outline

- Factored forms
- Definitions
- Examples
- Manipulation of Boolean networks
- Algebraic (structural) vs Boolean methods
- Decomposition
- Extraction
- Factorization
- Substitution (elimination)
- Collapsing

Example:
$\left(a d+b^{\prime} c\right)\left(c+d^{\prime}\left(e+a c^{\prime}\right)\right)+(d+e) f g$
Advantages

- good representative of logic complexity
$f=a d+a e+b d+b e+c d+c e \quad f^{\prime}=a^{\prime} b^{\prime} c^{\prime}+d^{\prime} e^{\prime} \Rightarrow f=(a+b+c)(d+e)$
- in many designs (e.g. complex gate CMOS) the implementation of a function corresponds directly to its factored form
- good estimator of logic implementation complexity
- doesn't blow up easily

Disadvantages

- not as many algorithms available for manipulation
- hence often just convert into SOP before manipulation

Note:
literal count \approx transistor count \approx area

- however, area also depends on
- wiring
- gate size etc.
- therefore very crude measure

Factored Forms

Definition 1：f is an algebraic expression if f is a set of cubes （SOP），such that no single cube contains another（minimal with respect to single cube containment）
Example：
$a+a b$ is not an algebraic expression（factoring gives $a(1+b)$ ）
Definition 2：The product of two expressions f and g is a set defined by $f g=\{c d / c \in f$ and $d \in g$ and $c d \neq 0\}$

Example：$(a+b)\left(c+d+a^{\prime}\right)=a c+a d+b c+b d+a^{\prime} b$

Definition 3：$f g$ is an algebraic product if f and g are algebraic expressions and have disjoint support（that is，they have no input variables in common）

Example：$(a+b)(c+d)=a c+a d+b c+b d$ is an algebraic product

Factored Form Examples

Examples of factored forms：

x
y^{\prime}
$a b c^{\prime}$
$a+b ' c$
$\left(\left(a^{\prime}+b\right) c d+e\right)\left(a+b^{\prime}\right)+e^{\prime}$
$(a+b)^{\prime} c$ is not a factored form since complementation is not allowed，except on literals．
Three equivalent factored forms（factored forms are not unique）：

$$
a b+c(a+b) \quad b c+a(b+c) \quad a c+b(a+c)
$$

Factored Forms

Definition 4：a factored form can be defined recursively by the following rules．A factored form is either a product or sum where：
－a product is either a single literal or a product of factored forms
－a sum is either a single literal or a sum of factored forms
A factored form is a parenthesized algebraic expression．

In effect a factored form is a product of sums of products ．．．or a sum of products of sums ．．．

Any logic function can be represented by a factored form，and any factored form is a representation of some logic function．

Factored Forms

Definition 5：The factorization value of an algebraic factorization
$F=G_{1} G_{2}+R$ is defined to be

$$
\begin{aligned}
\text { fact_val }\left(F, G_{2}\right) & =\operatorname{lits}(F)-\left(\operatorname{lits}\left(G_{1}\right)+\operatorname{lits}\left(G_{2}\right)+\operatorname{lits}(R)\right) \\
& =\left(\left|G_{1}\right|-1\right) \operatorname{lits}\left(G_{2}\right)+\left(\left|G_{2}\right|-1\right) \operatorname{lits}\left(G_{1}\right)
\end{aligned}
$$

assuming G_{1}, G_{2} and R are algebraic expressions．Where $/ H /$ is the number of cubes in the SOP form of H ．

Example：The algebraic expression
$F=a e+a f+a g+b c e+b c f+b c g+b d e+b d f+b d g$
can be expressed in the form $F=(a+b(c+d))(e+f+g)$ ，which requires 7 literals，rather than 24.

If $G_{1}=(a+b c+b d)$ and $G_{2}=(e+f+g)$ ，then $R=\varnothing$ ．

$$
\text { fact_val }\left(F, G_{2}\right)=2 \times 3+2 \times 5=16
$$

The factored form above saves 17 literals，not 16 ．The extra literal comes from recursively applying the formula to the factored form of G_{1} ．

Factored Forms

Factored forms are more compact representations of logic
functions than the traditional sum of products form.
Example: factored form

$$
(a+b)(c+d(e+f(g+h+i+j)
$$

while its SOP represented is:
$a c+a d e+a d f g+a d f h+a d f i+a d f j+b c+b d e+b d f g+b d f h+b d f i+b d f j$

Of course, every SOP is a factored form but it may not be a good factorization.

Factored Forms

Factored forms cam be graphically represented as labeled trees, called factoring trees, in which each internal node including the root is labeled with either + or \times, and each leaf has a label of either a variable or its complement.

Example: factoring tree of $\left(\left(a^{\prime}+b\right) c d+e\right)\left(a+b^{\prime}\right)+e^{\prime}$

Factored Forms

When measured in terms of number of inputs, there are functions whose size is exponential in sum of products representation, but polynomial in factored form.

Example: Achilles' heel function

$$
\prod_{i=1}^{i=n / 2}\left(x_{2 i-1}+x_{2 i}\right)
$$

There are n literals in the factored form and $(n / 2) \times 2^{n / 2}$ literals in the SOP form

Factored forms are useful in estimating area and delay in a multi-level synthesis and optimization system.
In many design styles (e.g. complex gate CMOS design) the implementation of a function corresponds directly to its factored form.
ture 8

Factored Forms

Definition: The size of a factored form F (denoted $\rho(F)$) is the number of literals in the factored form.
Example: $\quad \rho\left((a+b) c a^{\prime}\right)=4 \quad \rho\left((a+b+c d)\left(a^{\prime}+b^{\prime}\right)\right)=6$
A factored form is optimal if no other factored form (for that function) has fewer literals.

A factored form is positive unate in x, if x appears in F, but x^{\prime} does not. A factored form is negative unate in x, if x^{\prime} appears in F, but x does not.
F is unate in x if it is either positive or negative unate in x, otherwise F is binate in x.

Example:
$\left(a+b^{\prime}\right) c+a^{\prime}$ is positive unate in c, negative unate in b, and binate in a.

Manipulation of Boolean Networks

Basic Techniques：

－structural operations（change topology）
－algebraic
－Boolean
－node simplification（change node functions）
－don＇t cares
－node minimization

Structural Operations

Basic Operations：
1．Decomposition（single function）

$$
\begin{aligned}
& f=a b c+a b d+a^{\prime} c^{\prime} d^{\prime}+b^{\prime} c^{\prime} d^{\prime}, \quad y+x^{\prime} y^{\prime}, \quad x=a b, \quad \\
& t=c+d
\end{aligned}
$$

2．Extraction（multiple functions）

$$
\begin{array}{cl}
f=\left(a z+b z^{\prime}\right) c d+e & g=\left(a z+b z^{\prime}\right) e^{\prime} \quad h=c d e \\
& \Downarrow \\
f=x y+e, \quad g=x e^{\prime}, \quad h=y e, \quad x=a z+b z^{\prime}, \quad y=c d
\end{array}
$$

3．Factoring（series－parallel decomposition）

$$
\begin{gathered}
f=a c+a d+b c+b d+e \\
\Downarrow \\
f=(a+b)(c+d)+e
\end{gathered}
$$

Structural Operations

Restructuring Problem：Given initial network，find best network．

```
Example:
    \(f_{1}=a b c d+a b c e+a b\) 'cd' \(+a b{ }^{\prime} c^{\prime} d^{\prime}+a\) ' \(c+c d f+a b c^{\prime} d^{\prime} e^{\prime}+a b{ }^{\prime} c^{\prime} d f^{\prime}\)
    \(f_{2}=b d g+b\) 'dfg \(+b\) 'd'g \(+b d ' e g\)
minimizing，
        \(f_{1}=b c d+b c e+b\) ' \({ }^{\prime}+a^{\prime} c+c d f+a b c^{\prime} d^{\prime} e^{\prime}+a b '^{\prime} c^{\prime} d f^{\prime}\)
    \(f_{2}=b d g+d f g+b{ }^{\prime} d^{\prime} g+d ' e g\)
factoring，
        \(f_{1}=c\left(b(d+e)+b^{\prime}\left(d^{\prime}+f\right)+a^{\prime}\right)+a c^{\prime}\left(b d^{\prime} e^{\prime}+b^{\prime} d f^{\prime}\right)\)
    \(f_{2}=g\left(d(b+f)+d^{\prime}\left(b^{\prime}+e\right)\right)\)
decomposing
\(f_{1}=c\left(x+a^{\prime}\right)+a c^{\prime} x^{\prime}\)
\(f_{2}=g x\)
\(x=d(b+f)+d^{\prime}\left(b^{\prime}+e\right)\)
```

Two problems：
－find good common subfunctions
－effect the division
ECE6日－Synthesis\＆Verification－Lecture 8

Structural Operations

4．Substitution

$$
\begin{gathered}
g=a+b \quad f=a c+b c+d \\
\Downarrow \\
f=g c+d
\end{gathered}
$$

5．Collapsing（also called elimination）

$$
\begin{gathered}
f=g a+g^{\prime} b \quad g=c+d \\
\Downarrow \\
f=a c+a d+b c^{\prime} d^{\prime}
\end{gathered}
$$

Note：＂division＂plays a key role in all of these

Factoring vs．Decomposition

Factoring：$f=\left(e+g^{\prime}\right)\left(d(a+c)+a^{\prime} b^{\prime} c^{\prime}\right)+b(a+c)$

Decomposition：$y(b+d x)+x b^{\prime} y^{\prime}$ ，
where：$\quad x=a+c, y=e+g^{\prime}$
Note：：this is similar to BDD collapsing of common nodes and using negative pointers．But not canonical，so don＇t have perfect identification of common nodes．

ECE6日－Synthesis\＆Verification－Lecture 8

Value of a Node and Elimination

Difference after - before $=$ value $=7$
But we may not have the same value if we were to eliminate，simplify and then re－factor．

Value of a Node and Elimination

$$
\operatorname{value}(j)=\left(\sum_{i \in F O(j)} n_{i}\right)\left(l_{j}-1\right)-l_{j}
$$

where
$n_{i}=$ number of times literals y_{j} and $y_{j}{ }^{\prime}$ occur in factored form f_{i}
$I_{j}=$ number of literals in factored f_{j}
with factoring $l_{j}+\sum_{i \in \operatorname{FO}(j)} n_{i}+c$
without factoring $\quad l_{j} \sum_{i \in F O(j)} n_{i}+c$
－value（gain）$=\operatorname{cost}($ without factoring）$-\operatorname{cost}($ with factoring）
Can treat y_{j} and y_{j}^{\prime} the same since $\rho\left(F_{j}\right)=\rho\left(F_{j}^{\prime}\right)$ ．
ECE6G－Synthesis\＆Verification－Lecture 8

Note：value of a node can change during elimination

Optimum Factored Forms

- Definition:

- Let f be a completely specified Boolean function, and $\rho(f)$ be the minimum number of literals in any factored form of f.
- Definition:
- Let $\sup (f)$ be the true variable support of f, i.e. the set of variables f depends on. Two functions f and g are orthogonal ($f \perp g$), if $\sup (f) \cap \sup (g)=\varnothing$.

Optimum Factored Forms

Note, the previous result does not imply that all minimum literal factored forms of f are sums of the minimum literal factored forms of g and h.

Corollary: Let $f=g h$ such that $g \perp h$, then $\rho(f)=\rho(g)+\rho(h)$.

Proof: Let F 'denote the factored form obtained using DeMorgan's law.
Then $\rho(F)=\rho\left(F^{\prime}\right)$, and therefore $\rho(f)=\rho\left(f^{\prime}\right)$. From the above lemma, we have $\rho(f)=\rho\left(f^{\prime}\right)=\rho\left(g^{\prime}+h^{\prime}\right)=\rho\left(g^{\prime}\right)+\rho\left(h^{\prime}\right)=\rho(g)+\rho(h)$.

Theorem: Let $\quad f=\sum_{i=1}^{n} \prod_{j=1}^{m} f_{i j} \quad$ such that $f_{i j \perp} f_{k k}, \forall i \neq j$ or $k \neq 1$,

Proof:
 then

Use induction on m and then n, and lemma 1 and corollary 1 .

Optimum Factored Forms

Lemma: Let $f=g+h$ such that $g \perp \quad h$, then $\rho(f)=\rho(g)+\rho(h)$.

Proof:

Let F, G and H be the optimum factored forms of f, g and h. Since $G+H$ is a factored form, $\rho(f)=\rho(F) \leq \rho(G+H)=\rho(g)+\rho(h)$.
Let c be a minterm, on $\sup (g)$, of g '. Since g and h have disjoint support, we have $f_{c}=(g+h)_{c}=g_{c}+h_{c}=0+h_{c}=h_{c}=h$.
Similarly, if d is a minterm of $h^{\prime}, f_{d}=g$.
Because $\rho(h)=\rho\left(f_{d}\right) \leq \rho\left(F_{d}\right)$ and $\rho(g)=\rho\left(f_{d}\right) \leq \rho\left(F_{d}\right), \quad \rho(h)+\rho(g) \leq \rho\left(F_{d}\right)+\rho\left(F_{d}\right)$. Let $m(n)$ be the number of literals in F that are from SUPPORT (g)
(SUPPORT (h)). When computing $F_{c}\left(F_{d}\right)$, we replace all the literals from $\operatorname{SUPPORT}(g)(S U P P O R T(h))$ by the appropriate values and simplify the factored form by eliminating all the constants and possibly some literals from $\sup (g)(\sup (h))$ by using the Boolean identities. Hence $\rho\left(F_{c}\right) \leq n$ and $\rho\left(F_{d}\right) \leq m$. Since $\rho(F)=m+n$,

$$
\rho\left(F_{d}\right)+\rho\left(F_{d}\right) \leq m+n=\rho(F) .
$$

We have $\rho(f) \leq \rho(g)+\rho(h) \leq \rho\left(F_{d}\right)+\rho\left(F_{d}\right) \leq \rho(F) \Rightarrow \rho(f)=\rho(F)$.

