
1
ECE 667 - Synthesis & Verification - Lecture 8

ECE 697B (667)
Spring 2003

Synthesis and Verification
of Digital Systems

Multi-level Minimization
- Factored forms

Slides adopted (with permission) from A. Kuehlmann, UC Berkeley 2003

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH�� 2

Outline

• Factored forms
– Definitions
– Examples

• Manipulation of Boolean networks
– Algebraic (structural) vs Boolean methods

• Decomposition
• Extraction
• Factorization
• Substitution (elimination)
• Collapsing

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH�� 3

Factored Forms

Example:
(ad+b’c)(c+d’(e+ac’))+(d+e)fg

Advantages
• good representative of logic complexity

f=ad+ae+bd+be+cd+ce f’=a’b’c’+d’e’ ⇒⇒ f=(a+b+c)(d+e)
• in many designs (e.g. complex gate CMOS) the implementation

of a function corresponds directly to its factored form
• good estimator of logic implementation complexity
• doesn’t blow up easily

Disadvantages

• not as many algorithms available for manipulation
• hence often just convert into SOP before manipulation

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH�� 4

Factored Forms

Note:

literal count ≈ transistor count ≈ area

• however, area also depends on
– wiring

– gate size etc.

• therefore very crude measure

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH�� 5

Factored Forms

Definition 1: f is an algebraic expression if f is a set of cubes
(SOP), such that no single cube contains another (minimal with
respect to single cube containment)
Example:

a+ab is not an algebraic expression (factoring gives a(1+b))

Definition 2: The product of two expressions f and g is a set
defined by fg = {cd | c ∈∈ f and d ∈∈ g and cd ≠≠ 0}

Example: (a+b)(c+d+a’)=ac+ad+bc+bd+a’b

Definition 3: fg is an algebraic product if f and g are algebraic
expressions and have disjoint support (that is, they have no input
variables in common)

Example: (a+b)(c+d)=ac+ad+bc+bd is an algebraic product

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH�� 6

Factored Forms

Definition 4: a factored form can be defined recursively by the
following rules. A factored form is either a product or sum where:
• a product is either a single literal or a product of factored forms
• a sum is either a single literal or a sum of factored forms

A factored form is a parenthesized algebraic expression.

In effect a factored form is a product of sums of products … or a
sum of products of sums …

Any logic function can be represented by a factored form, and any
factored form is a representation of some logic function.

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH�� 7

Factored Form Examples

Examples of factored forms:

x

y’

abc’

a+b’c

((a’+b)cd+e)(a+b’)+e’

(a+b)’c is not a factored form since complementation is
not allowed, except on literals.

Three equivalent factored forms (factored forms are not unique):

ab+c(a+b) bc+a(b+c) ac+b(a+c)

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH�� 8

Factored Forms
Definition 5: The factorization value of an algebraic factorization
F=G1G2+R is defined to be

fact_val(F,G2) = lits(F)-(lits(G1)+lits(G2)+lits(R))
= (|G1|-1) lits(G2) + (|G2|-1) lits(G1)

assuming G1, G2 and R are algebraic expressions. Where |H| is the
number of cubes in the SOP form of H.

Example: The algebraic expression
F = ae+af+ag+bce+bcf+bcg+bde+bdf+bdg

can be expressed in the form F = (a+b(c+d))(e+f+g), which requires 7
literals, rather than 24.

If G1=(a+bc+bd) and G2=(e+f+g), then R=∅.

fact_val(F,G2) = 2×3+2×5=16.
The factored form above saves 17 literals, not 16. The extra literal comes
from recursively applying the formula to the factored form of G1.

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH�� 9

Factored Forms

Factored forms are more compact representations of logic
functions than the traditional sum of products form.
Example: factored form

(a+b)(c+d(e+f(g+h+i+j)
while its SOP represented is:
ac+ade+adfg+adfh+adfi+adfj+bc+bde+bdfg+ bdfh+bdfi+bdfj

Of course, every SOP is a factored form but it may not be a good
factorization.

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH�� 10

Factored Forms
When measured in terms of number of inputs, there are functions
whose size is exponential in sum of products representation, but
polynomial in factored form.

Example: Achilles’ heel function

There are n literals in the factored form and (n/2)×2n/2 literals in the
SOP form.

/ 2

2 1 2
1

()
i n

i i
i

x x
=

−
=

+∏

Factored forms are useful in estimating area and
delay in a multi-level synthesis and optimization
system.

In many design styles (e.g. complex gate CMOS
design) the implementation of a function
corresponds directly to its factored form.

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH�� 11

Factored Forms

Factored forms cam be graphically represented as labeled trees,
called factoring trees, in which each internal node including the root
is labeled with either + or ××, and each leaf has a label of either a
variable or its complement.

Example: factoring tree of ((a’+b)cd+e)(a+b’)+e’

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH�� 12

Factored Forms

Definition: The size of a factored form F (denoted ρ(F)) is the number
of literals in the factored form.
Example: ρ((a+b)ca’) = 4 ρ((a+b+cd)(a’+b’)) = 6

A factored form is optimal if no other factored form (for that function) has
fewer literals.

A factored form is positive unate in x, if x appears in F, but x’ does not.
A factored form is negative unate in x, if x’ appears in F, but x does not.

F is unate in x if it is either positive or negative unate in x, otherwise F is
binate in x.

Example:
(a+b’)c+a’ is positive unate in c, negative unate in b, and binate in a.

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH�� 13

Manipulation of Boolean Networks

Basic Techniques:
• structural operations (change topology)

– algebraic
– Boolean

• node simplification (change node functions)
– don’t cares
– node minimization

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH�� 14

Structural Operations
Restructuring Problem: Given initial network, find best network.
Example: f1 = abcd+abce+ab’cd’+ab’c’d’+a’c+cdf+abc’d’e’+ab’c’df’

f2 = bdg+b’dfg+b’d’g+bd’eg
minimizing,

f1 = bcd+bce+b’d’+a’c+cdf+abc’d’e’+ab’c’df’

f2 = bdg+dfg+b’d’g+d’eg
factoring,

f1 = c(b(d+e)+b’(d’+f)+a’)+ac’(bd’e’+b’df’)

f2 = g(d(b+f)+d’(b’+e))
decomposing,

f1 = c(x+a’)+ac’x’

f2 = gx

x = d(b+f)+d’(b’+e)
Two problems:

• find good common subfunctions

• effect the division

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH�� 15

Structural Operations

Basic Operations:
1. Decomposition (single function)

f = abc+abd+a’c’d’+b’c’d’
⇓⇓

f = xy+x’y’, x = ab, y = c+d

2. Extraction (multiple functions)
f = (az+bz’)cd+e g = (az+bz’)e’ h = cde

⇓⇓
f = xy+e, g = xe’, h = ye, x = az+bz’, y = cd

3. Factoring (series-parallel decomposition)

f = ac+ad+bc+bd+e

⇓⇓
f = (a+b)(c+d)+e

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH�� 16

Structural Operations

4. Substitution
g = a+b f = ac+bc + d

⇓⇓
f = gc+d

5. Collapsing (also called elimination)
f = ga+g’b g = c+d

⇓⇓
f = ac+ad+bc’d’

Note: “division” plays a key role in all of these

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH�� 17

Factoring vs. Decomposition

Factoring: f=(e+g’)(d(a+c)+a’b’c’)+b(a+c)

Decomposition: y(b+dx)+xb’y’,
where: x = a+c, y = e+g’

Note:: this is similar to BDD collapsing of common
nodes and using negative pointers. But not
canonical, so don’t have perfect identification of
common nodes.

Tree

DAG

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH�� 18

Value of a Node and Elimination

where

ni = number of times literals yj and yj’ occur in factored form fi
lj = number of literals in factored fj
with factoring

without factoring

• value (gain) = cost(without factoring) - cost(with factoring)

Can treat yj and yj’ the same since ρ(Fj) = ρ(Fj’).

()
()

() 1i j j
i FO j

value j n l l
∈

= − −

∑

()
j i

i FO j

l n c
∈

+ +∑

()
j i

i FO j

l n c
∈

+∑

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH�� 19

Literals before = 5+7+5 = 17

Literals after = 9+15 = 24

7

Value of a Node and Elimination

Difference after - before = value = 7

But we may not have the same value if we were to eliminate, simplify and then
re-factor.

[

()
()

1 2 3 3

() 1

()(1)

(1 2)(5 1) 5 7

i j j
i FO j

value j n l l

n n l l

∈

= − −

= + − −
= + − − =

∑

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH�� 20

Value of a Node and Elimination

Note: value of a node can change during elimination

value=3

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH�� 21

Optimum Factored Forms

• Definition:
– Let f be a completely specified Boolean function, and ρ(f) be the

minimum number of literals in any factored form of f.

• Definition:
– Let sup(f) be the true variable support of f, i.e. the set of variables f

depends on. Two functions f and g are orthogonal (f ⊥⊥ g), if
sup(f) ∩ sup(g)=∅.

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH�� 22

Optimum Factored Forms
Lemma: Let f=g+h such that g ⊥ h, then ρ(f)=ρ(g)+ρ(h).
Proof:

Let F, G and H be the optimum factored forms of f, g and h. Since G+H is a
factored form, ρ(f)=ρ(F) ≤ρ(G+H)=ρ(g)+ρ(h).

Let c be a minterm, on sup(g), of g’. Since g and h have disjoint support,
we have fc=(g+h)c=gc+hc=0+hc=hc=h.

Similarly, if d is a minterm of h’, fd=g.

Because ρ(h)=ρ(fc)≤ρ(Fc) and ρ(g)=ρ(fd)≤ρ(Fd), ρ(h)+ρ(g)≤ρ(Fc)+ρ(Fd).

Let m (n) be the number of literals in F that are from SUPPORT(g)
(SUPPORT(h)). When computing Fc (Fd), we replace all the literals from
SUPPORT(g) (SUPPORT(h)) by the appropriate values and simplify the
factored form by eliminating all the constants and possibly some literals
from sup(g) (sup(h)) by using the Boolean identities. Hence ρ(Fc)≤n and
ρ(Fd) ≤m. Since ρ(F)=m+n,

ρ(Fc)+ρ(Fd)≤m+n=ρ(F).
We have ρ(f)≤ρ(g)+ρ(h) ≤ ρ(Fc)+ρ(Fd)≤ρ(F) ⇒⇒ ρ(f)=ρ(F).

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH�� 23

Note, the previous result does not imply that all minimum literal factored
forms of f are sums of the minimum literal factored forms of g and h.

Corollary: Let f=gh such that g h, then ρ(f)=ρ(g)+ρ(h).

Proof: Let F’ denote the factored form obtained using DeMorgan’s law.
Then ρ(F)=ρ(F’), and therefore ρ(f)=ρ(f’). From the above lemma, we have

ρ(f)=ρ(f’)=ρ(g’+h’)=ρ(g’)+ρ(h’)=ρ(g)+ρ(h).

Theorem: Let such that fij fkl, ∀ i≠j or k≠l,

then

Proof:

Use induction on m and then n, and lemma 1 and corollary 1.

Optimum Factored Forms

∑∏
= =

=
n

i

m

j
ijff

1 1

∑∏
= =

=
n

i

m

j
ijff

1 1

)()(ρρ

