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of Digital Systems

Functional Decomposition

Slides adopted (with permission) from A. Mishchenko, 2003
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Overview

• The concept of functional decomposition
• Two uses of BDDs for decomposition

– as a computation engine to implement algorithms
– as a representation that helps finding decompositions

• Two ways to direct decomposition using BDDs
– bound set on top (Lai/Pedram/Vardhula, DAC’93)
– free set on top (Stanion/Sechen, DAC’95)
– other approaches

• Disjoint and non-disjoint decomposition

• Applications of functional decomposition:
– Multi-level FPGA synthesis
– Finite state machine design
– Machine learning and data mining
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Functional Decomposition – previous work

• Ashenhurst [1959], Curtis [1962]
– Tabular method based on cut: bound/free variables
– BDD implementation:

• Lai et al. [1993, 1996], Chang et al. [1996]
• Stanion et al. [1995]

• Roth, Karp [1962]
– Similar to Ashenhurst, but using cubes, covers
– Also used by SIS

• Factorization based
– SIS, algebraic factorization using cube notation
– Bertacco et al. [1997], BDD-based recursive bidecomp.

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH��� 4

Two-Level Curtis Decomposition

if B ∩ A = ∅, this is disjoint decomposition
if B ∩ A ≠ ∅, this is non-disjoint decomposition

X

B = bound set   A= free set 

F(X) = H( G(B), A ),  X = B ∪ A

F

G

HA

B
F



(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH��� 5

Decomposition Types

Simple disjoint decomposition 
(Asenhurst)
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Non-disjoint decomposition
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Decomposition Chart
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Definition 1: Column Compatibility
Two columns i and j are compatible if each element in i is equal to the  
corresponding element in j or the element in either i or j is not specified

Definition 2: Column Multiplicity µ = the number of compatible sets 
(distinct column patterns)
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Fundamental Decomposition Theorems

• Theorem (Asenhurst)
Let k be the minimum number of compatible sets in the decomposition 
chart. Then function H must distinguish at least k values

• Theorem (Curtis)

Let µ (A | B) denote column multiplicity under decomposition into bound 
set B and free set A. Then:

µ (A | B) ≤ 2k ⇔ F(B,A) = H(G1(B), G2(B), …, Gk(B),  A)
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Asenhurst-Curtis Decomposition

F(a,b,c,d) = (a′b′+ ab)c'+ (a′b+ ab′)(cd+c′d′)

G(a,b)= a′b′+ab H(G,c,d) = Gc′+ G′(cd+c′d′)
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Bound Set = {a,b}

Free Set = 
{c,d}

Here µ= 2, so function H
must distinguish two values
• need 2 bits to encode inputs from G
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• Two-level decomposition is iteratively applied to new 
functions Hi and Gi, until smaller functions Gt and Ht
are created, that are not further decomposable.

• One of the possible cost functions is Decomposed 
Function Cardinality (DFC). It is the total cost of all 
blocks, where the cost of a binary block with n inputs 
and m outputs is m * 2n.

Multi-Level Curtis Decomposition
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Typical Decomposition Algorithm

• Find a set of partitions (Bi, Ai) of input variables X into 
bound set variables Bi and free set variables Ai

• For each partition, find decomposition
F(X) = Hi (Gi(Bi ), Ai )

such that the column multiplicity is minimal, and 
compute DFC

• Repeat the process for all partitions until the 
decomposition with minimum DFC is found.
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Uses of BDDs for Decomposition

• Whatever is the decomposition algorithm, BDDs can be 
used to store data and perform computation (using 
cubes, partitions, etc.)

• Alternatively, the algorithm may exploit the BDD 
structure of the function F to direct the decomposition in 
the bound set selection, column multiplicity computation, 
and deriving the decomposed functions G and H
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BDD-Based Decomposition

• Bound set on top (Lai/Pedram/Vardhula, DAC’93)
• Free set on top (Stanion/Sechen, DAC’95)

• Bi-decomposition using 1-, 0-, and EXOR-dominators 
(Yang/Ciesielski, ICDD’99)

• Recursive decomposition (Bertacco/Damiani,ICCAD’97)

• Implicit decomposition (Wurth/Eckl/Legl,DAC’95)
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Bound Set on Top (Function G)

G={g0,g1}, A=g0′g1′, B=g0g1′, C=g0′g1

g0=a′bc+ab′c+abc′, g1 = a′b′c+ abc

A=00 C=01

B=10
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Bound Set on Top (Function H)

A A AB BB CC

F(a,b,c,d,e) = H( g1(a,b,c), g2(a,b,c), d, e ) 
H=g0′g1′e′ + g0g1′d′ + g0′g1e
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“Bound Set on Top” Algorithm

• Reorder variables in BDD for F and check column 
multiplicity for each bound set

• For the bound set with the smallest column multiplicity, 
perform decomposition :

– Encode the cut nodes with minimum number  of bits (log µ)

– derive functions G and H (both depend on encoding)

• Iteratively repeat the process for functions G and H
(typically, only H)

• This algorithm can be modified to work for non-disjoint 
decompositions but does not work with DCs
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Free Set on Top (Function G)

Bound 
Set

G={g1,g2}, g1=c′de+cd, g2=d+e
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Free Set on Top (Function H)

A=00 C=01

B=10

Bound 
Set

F(a,b,c,d,e) = H( a, b, g1(c,d,e), g2(c,d,e) )

H=(a′b′+ ab) g1 + (a′b+ ab′) g2
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“Free Set on Top” Algorithm

• Find good variable order
• Derive implicit representation of all feasible cuts on 

the BDD representing F
• Use some cost function to find the best bound set

and perform decomposition
• Repeat the process for functions G and H
• This algorithms is faster than “bound set on top” but 

it does not work for non-disjoint decompositions and 
incompletely specified functins (with DCs).
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Non-Disjoint Decomposition

• Non-disjoint decomposition can be reduced to disjoint
decomposition by adding variables

• Bound Set = {a,b,c}, Free Set = {c,d}
Disjoint decomposition can be generated by 
introducing variables c1=c2=c instead of c

• In terms of the Karnaugh map, it is equivalent to 
introducing two variables instead of one in such a 
way that c1c2′ +c1′c2 is a don’t care set.

Why: c1 ≡ c2 ⇒ c1c2′ +c1′c2
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Non-Disjoint Decomposition Example

There is no disjoint decomposition with any bound set; 
there is non-disjoint decomposition with bound set {a,b,c}

A A A ABBBBA B C B


