ECE 697B (667)

Spring 2003

Synthesis and Verification of Digital Systems

Functional Decomposition

Slides adopted (with permission) from A. Mishchenko, 2003
ECE 667 - Synthesis \& Verification - Lecture 12

Overview

- The concept of functional decomposition
- Two uses of BDDs for decomposition
- as a computation engine to implement algorithms
- as a representation that helps finding decompositions
- Two ways to direct decomposition using BDDs
- bound set on top (Lai/Pedram/Vardhula, DAC'93)
- free set on top (Stanion/Sechen, DAC'95)
- other approaches
- Disjoint and non-disjoint decomposition
- Applications of functional decomposition:
- Multi-level FPGA synthesis
- Finite state machine design
- Machine learning and data mining

Two-Level Curtis Decomposition

if $B \cap A=\varnothing$, this is disjoint decomposition
if $B \cap A \neq \varnothing$, this is non-disjoint decomposition

Decomposition Types

Simple disjoint decomposition

Disjoint decomposition (Curtis)

Decomposition Chart

Definition 1: Column Compatibility
Two columns i and j are compatible if each element in i is equal to the corresponding element in j or the element in either i or j is not specified
Definition 2: Column Multiplicity $\mu=$ the number of compatible sets (distinct column patterns)

ECE6G - Synthesis\&Verification - Lecture 12

Asenhurst-Curtis Decomposition

Bound Set $=\{a, b\}$					
Free Set =	00	01	11	10	Here $\mu=2$, so function H must distinguish two values - need 2 bits to encode inputs from G
$\begin{array}{ll}\{c, d\} & 00 \\ & 01 \\ & 11 \\ & 10\end{array}$	1	1	1	1	
	1	0	1	0	
	0	1	0	1	
	0	0	0	0	$b-a-F$
	1	2	3	4	$\stackrel{c}{d}={ }^{H}$
$F(a, b, c, d)=\left(a^{\prime} b^{\prime}+a b\right) c^{\prime}+\left(a^{\prime} b+a b^{\prime}\right)\left(c d^{\prime}+c^{\prime} d^{\prime}\right)$					
$G(a, b)=a^{\prime} b^{\prime}+a b \quad H(G, c, d)=G c^{\prime}+G^{\prime}\left(c d+c^{\prime} d^{\prime}\right)$					

Multi-Level Curtis Decomposition

- Two-level decomposition is iteratively applied to new functions H_{i} and G_{j}, until smaller functions G_{t} and H_{t} are created, that are not further decomposable.
- One of the possible cost functions is Decomposed Function Cardinality (DFC). It is the total cost of all blocks, where the cost of a binary block with n inputs and m outputs is $m * 2^{n}$.

Typical Decomposition Algorithm

- Find a set of partitions $\left(B_{i}, A_{j}\right)$ of input variables X into bound set variables B_{i} and free set variables A_{i}
- For each partition, find decomposition

$$
F(X)=H_{i}\left(G_{i}\left(B_{i}\right), A_{i}\right)
$$

such that the column multiplicity is minimal, and compute DFC

- Repeat the process for all partitions until the decomposition with minimum DFC is found.

Uses of BDDs for Decomposition

- Whatever is the decomposition algorithm, BDDs can be used to store data and perform computation (using cubes, partitions, etc.)
- Alternatively, the algorithm may exploit the BDD structure of the function F to direct the decomposition in the bound set selection, column multiplicity computation, and deriving the decomposed functions G and H

BDD-Based Decomposition

- Bound set on top (Lai/Pedram/Vardhula, DAC'93)
- Free set on top (Stanion/Sechen, DAC'95)
- Bi-decomposition using 1-, 0-, and EXOR-dominators (Yang/Ciesielski, ICDD'99)
- Recursive decomposition (Bertacco/Damiani,ICCAD'97)
- Implicit decomposition (Wurth/Eckl/Legl,DAC'95)

Bound Set on Top（Function G）

$$
\begin{aligned}
& G=\left\{g_{0}, g_{1}\right\}, A=g_{0}^{\prime} g_{1}^{\prime}, B=g_{0} g_{1}^{\prime}, C=g_{0}{ }^{\prime} g_{1} \\
& g_{0}=a^{\prime} b c+a b^{\prime} c+a b c^{\prime}, g_{1}=a^{\prime} b^{\prime} c+a b c
\end{aligned}
$$

＂Bound Set on Top＂Algorithm

－Reorder variables in BDD for F and check column multiplicity for each bound set
－For the bound set with the smallest column multiplicity， perform decomposition ：
－Encode the cut nodes with minimum number of bits $(\log \mu)$
－derive functions G and H（both depend on encoding）
－Iteratively repeat the process for functions G and H （typically，only H）
－This algorithm can be modified to work for non－disjoint decompositions but does not work with DCs

Bound Set on Top（Function H）

$F(a, b, c, d, e)=H\left(g_{1}(a, b, c), g_{2}(a, b, c), d, e\right)$

\square	$=0$
\square	$=1$

$H=g_{0}{ }^{\prime} g_{1}{ }^{\prime} e^{\prime}+g_{0} g_{1}{ }^{\prime} d^{\prime}+g_{0}{ }^{\prime} g_{1} e$

ECE6G－Synthesis\＆Verification－Lecture 12

Free Set on Top（Function G）

$\begin{aligned} & =-0 \\ & =1\end{aligned} \quad G=\left\{g_{1}, g_{2}\right\}, \quad g_{1}=c^{\prime} d e+c d, g_{2}=d+e$

Free Set on Top (Function H)

$F(a, b, c, d, e)=H\left(a, b, g_{1}(c, d, e), g_{2}(c, d, e)\right)$
— $=0$
$=1$

$$
H=\left(a^{\prime} b^{\prime}+a b\right) g_{1}+\left(a^{\prime} b+a b^{\prime}\right) g_{2}
$$

ECE6日 - Synthesis\&Verification - Lecture 12

Non-Disjoint Decomposition

- Non-disjoint decomposition can be reduced to disjoint decomposition by adding variables
- Bound Set $=\{a, b, c\}$, Free Set $=\{c, d\}$ Disjoint decomposition can be generated by introducing variables $c_{1}=c_{2}=c$ instead of c
- In terms of the Karnaugh map, it is equivalent to introducing two variables instead of one in such a way that $c_{1} c_{2}{ }^{\prime}+c_{1}{ }^{\prime} c_{2}$ is a don't care set.

$$
\text { Why: } c_{1} \equiv c_{2} \Rightarrow c_{1} c_{2}^{\prime}+c_{1}^{\prime} c_{2}
$$

"Free Set on Top" Algorithm

- Find good variable order
- Derive implicit representation of all feasible cuts on the BDD representing F
- Use some cost function to find the best bound set and perform decomposition
- Repeat the process for functions G and H
- This algorithms is faster than "bound set on top" but it does not work for non-disjoint decompositions and incompletely specified functins (with DCs).

Non-Disjoint Decomposition Example

There is no disjoint decomposition with any bound set; there is non-disjoint decomposition with bound set $\{a, b, c\}$

