ECE 697B (667)

Spring 2003

Synthesis and Verification of Digital Systems

Multi-level Minimization
- Algebraic division

Slides adopted (with permission) from A. Kuehlmann, UC Berkeley, 2003
ECE 667 - Synthesis \& Verification - Lecture 9

Outline

- Division and factorization
- Definitions
- Algebraic vs Boolean
- Algebraic division
- Algorithm
- Applications
- Finding good divisors
- Kernels and co-kernels
- Generation of all Kernels - algorithm
- Extraction: rectangle covering method

Division

Definition:
An operation $O P$ is called division if, given two SOP expressions F and G, it generates expressions H and R, such that:

$$
F=G H+R
$$

- G is called the divisor
- H is called the quotient
- R is called the remainder

Definition:
If $G H$ is an algebraic product, then $O P$ is called an algebraic division (denoted $\mathrm{F} / / \mathrm{G}$)
otherwise $G H$ is a Boolean product and OP is a Boolean division (denoted $F \div G$).

Division ($f=g h+r$)

Example:
$f=a d+a e+b c d+j$
$g_{1}=a+b c$
$g_{2}=a+b$

- Algebraic division:
$-f / / a=d+e, r=b c d+j$
$-f / /(b c)=d, r=a d+a e+j$
- (Also, $f / / a=d$ or $f / / a=e$, i.e. algebraic division is not unique)
- $h_{1}=f / / g_{1}=d, r_{1}=a e+j$
- Boolean division:
- $h_{2}=f \div g_{2}=(a+c) d, r_{2}=a e+j$.
i.e. $f=(a+b)(a+c) d+a e+j$

ECE 667 - Synthesis \& Verification - Lecture 9

Division

Definition:
G is an algebraic factor of F if there exists an algebraic expression H such that

$$
F=G H \text { using algebraic multiplication. }
$$

Definition:

G is an Boolean factor of F if there exists an expression H such that

$$
F=G H \text { using Boolean multiplication. }
$$

Example:

$f=a c+a d+b c+b d$
$(a+b)$ is an algebraic factor of f since $f=(a+b)(c+d)$
$f=a^{\prime} b+a c+b c$
$(a+b)$ is a Boolean factor of f since $f=(a+b)\left(a^{\prime}+c\right)$
ECE 667 - Synthesis \& Verification - Lecture 9

Why Use Algebraic Methods?

- Need spectrum of operations
- algebraic methods provide fast algorithms
- Treat logic function like a polynomial
- efficient data structures
- fast methods for manipulation of polynomials available
- Loss of optimality, but results are quite good
- Can iterate and interleave with Boolean operations
- In specific instances slight extensions available to include Boolean methods

Weak Division

Weak division is a specific case of algebraic division.

Definition:

Given two algebraic expressions F and G, a division is called weak division if

- it is algebraic and
- $\quad R$ has as few cubes as possible.

The quotient H resulting from weak division is denoted by F/G.

THEOREM:

Given expressions F and G, expressions H and R generated by weak division are unique.

Algorithm

```
ALGORITHM WEAK_DIV (F,G) { // G={ (g},\mp@code{g},\ldots,\ldots}
        f= (fi, fir , .. )
    foreach gi {
        Vgi}=
        foreach fi
            if(ff contains all literals of gi) {
                vij}=\mp@subsup{f}{j}{
            V Vi}=\mp@subsup{V}{}{gi}\cup\mp@subsup{v}{ij}{
                }
        }
    }
    H}=\mp@subsup{\cap}{\textrm{i}}{\textrm{i}}\mp@subsup{\textrm{V}}{}{\textrm{g}
    R = F - GH
    return (H,R);
}
```


Efficiency Issues

We use filters to prevent trying a division
G is not an algebraic divisor of F if:

- G contains a literal not in F.
- $\quad G$ has more terms than F.
- For any literal, its count in G exceeds that in F.
- $\quad F$ is in the transitive fanin of G.

Example of WEAK_DIV

Example: divide F by G
$F=a c e+a d e+b c+b d+b e+a ' b+a b$
$G=a e+b$
$V^{a e}=c+d$
$V^{b}=c+d+e+a^{\prime}+a$
$H=c+d=F / G \quad H=\cap V^{g_{i}}$
$R=b e+a \prime b+a b$
$R=F \backslash G H$
$F=(a e+b)(c+d)+b e+a \prime b+a b$

ECE 667 - Synthesis \& Verification - Lecture 9

Division - What do we divide with?

- Weak_Div provides a methods to divide an expression for a given divisor
- How do we find a "good" divisor?
- Restrict to algebraic divisors
- Generalize to Boolean divisors
- Problem:
- Given a set of functions $\left\{F_{i}\right\}$, find common weak divisors (algebraic divisors).

Kernels and Kernel Intersections

Definition:

An expression is cube-free if no cube divides the expression evenly (i.e. there is no literal that is common to all the cubes).
$(a b+c)$ is cube-free
$(a b+a c)$ and $a b c$ are not cube-free

Note: a cube-free expression must have more than one cube.

Definition:

The primary divisors of an expression F are the set of expressions

$$
D(F)=\{F / c / c \text { is a cube }\} .
$$

Example

Example:
$x=a d f+a e f+b d f+b e f+c d f+c e f+g$

$$
=(a+b+c)(d+e) f+g
$$

kernels

$a+b+c$
$d+e$
$(a+b+c)(d+e) f+g$

co-kernels
$d f$, ef
af, bf, cf

Kernels and Kernel Intersections

Definition:

The kernels of an expression F are the set of expressions $K(F)=\{G \mid G \in D(F)$ and G is cube-free $\}$.

In other words, the kernels of an expression F are the cube-free primary divisors of F.

Definition:
A cube c used to obtain the kernel $K=F / c$ is called a co-kernel of K.
$C(F)$ is used to denote the set of co-kernels of F.

Fundamental Theorem

THEOREM:
If two expressions F and G have the property that

$$
\forall k_{F} \in K(F), \forall k_{G} \in K(G) \rightarrow\left|k_{G} \cap k_{F}\right| \leq 1
$$

(i.e., k_{G} and k_{F} have at most one term in common),
then F and G have no common algebraic multiple divisors (i.e. with more than one cube).

Important:

If we "kernel" all functions and there are no nontrivial intersections, then the only common algebraic divisors left are single cube divisors.

The Level of a Kernel

Definition:
A kernel is of level $0\left(K^{0}\right)$ if it contains no kernels except itself.
A kernel is of level $n\left(K^{n}\right)$ if it contains at least one kernel of level
($n-1$), but no kernels (except itself) of level n or greater

- $K^{0}(F) \subset K^{1}(F) \subset K^{2}(F) \subset \ldots \subset K^{n}(F) \subset K(F)$.
- level- n kernels $=K^{n}(F) \backslash K^{n-1}(F)$
- $K^{n}(F)$ is the set of kernels of level k or less.

Example:

$$
\begin{array}{ll}
F=(a+b(c+d))(e+g) & \\
k_{1}=a+b(c+d) & \in K^{1,} \notin K^{0}(\text { level } 1) \\
k_{2}=c+d & \in K^{0} \\
k_{3}=e+g & \in K^{0}
\end{array}
$$

Kerneling Algorithm

$\operatorname{KERNEL}(0, F)$ returns all the kernels of F.
Notes:

- The test $\left(\exists k \leq i, I_{k} \in\right.$ all cubes of $\left.G / I_{i}\right)$ is a major efficiency factor. It also guarantees that no co-kernel is tried more than once.
- Can be used to generate all co-kernels.

Kerneling Algorithm

```
Algorithm KERNEL(j, G) {
    R=\varnothing
    if(CUBE_FREE(G)) R = {G}
    for(i=j+1,...,n) {
        if(li appears only in one term) continue
```



```
        R = R \cup KERNEL (i,MAKE_CUBE_FREE (G/l i )
    }
    return R
}
MAKE_CUBE_FREE(F) removes algebraic cube factor from F
```


Kernel Generation - example

$F=a c e+b c e+d e+g \quad n=6$ variables

- Call KERNEL(0,F)
- $i=1, I_{1}=a$, literal appears only once; continue
- $i=2, I_{2}=b, \quad$....... ; continue
- $i=3, I_{3}=c$,
- make_cube_free $(F / c)=(a+b)$
- recursive call to $\operatorname{KERNEL}(3,(a+b))$
- the call considers variables $4,5,6=\{d, e, g\}$ - No Kernels
- Return $R=\{(a+b)\}$
- $i=4, I_{4}=d$, literal appears only once; continue
- $i=5, I_{5}=e$,
- make_cube_free(F/e) $=(a c+b c+d)$
- recursive call to $\operatorname{KERNEL}(5,(a c+b c+d))$
- the call considers variable $6=\{g\}$ - No Kernels
- Return $R=R \cup\{(a+b),(a c+b c+d)\}$
- $i=6, I_{6}=g$, appears only once; continue; stop.
- Return $R=R \cup\{(a+b),(a c+b c+d),(a c e+b c e+d e+g)\}$

Kerneling Illustrated

$a b c d+a b c e+a d f g+a e f g+a d b e+a c d e f+b e g$

ECE 667 - Synthesis \& Verification - Lecture 9

Applications - Factoring

```
Algorithm FACTOR(F) {
    if(F has no factor) return F
            // e.g. if |F|=1, or F is an OR of single literals
            // or if no literal appears more than once
    D = CHOOSE_DIVISOR(F)
    (Q,R) = DIVIDE (F,D)
    return FACTOR(Q)\cdotFACTOR(D) + FACTOR(R) // recur
}
```

- Different heuristics can be applied for CHOOSE_DIVISOR
- Different DIVIDE routines may be applied (e.g. also Boolean divide)

Kerneling Illustrated

co-kernels	kernels
1 a $a b$ $a b c$ abd abe ac acd 	$\begin{aligned} & a((b c+f g)(d+e)+d e(b+c f)))+b e g \\ & (b c+f g)(d+e)+d e(b+c f) \\ & c(d+e)+d e \\ & d+e \\ & c+e \\ & c+d \\ & b(d+e)+d e f \\ & b+e f \end{aligned}$
Note: $f / b c=a d$ but $f / b c a$	$e=a(d+e)$, so that $f / b c a=(d+e)$, $d+e$) has been already found (no repet

ECE 667 - Synthesis \& Verification - Lecture 9

Example and Problems of Factor

Example:

$$
\begin{aligned}
F= & a b c+a b d+a e+a f+g \\
D & =c+d \\
Q & =a b \\
P & =a b(c+d)+a e+a f+g \\
O & =a b(c+d)+a(e+f)+g
\end{aligned}
$$

Notation:
$F=$ the original function,
$\boldsymbol{D}=$ the divisor,
$\boldsymbol{Q}=$ the quotient
$\boldsymbol{P}=$ the partial factored form,
$\boldsymbol{O}=$ the final factored form by FACTOR.
Restrict to algebraic operations only.
O is not optimal since not maximally factored.
Can be further factored to

$$
a(b(c+d)+e+f)+g
$$

The problem occurs when

- quotient Q is a single cube, and
- some of the literals of Q also appear in the remainder R.

Solving the Problem

Solving this problem:

- Check if the quotient Q is not a single cube, then done, else,
- Pick a literal I_{1} in Q which occurs most frequently in cubes of F.
- Divide F by I_{1} to obtain a new divisor D_{1}.

Now, F has a new partial factored form
$\left(l_{1}\right)\left(D_{1}\right)+\left(R_{1}\right)$
and literal l_{1} does not appear in R_{1}.

Note:
The new divisor D_{1} contains the original D as a divisor because I_{1} is a literal of Q. When recursively factoring D_{1}, D can be discovered again.

Second Problem with FACTOR

Example:

$$
\begin{aligned}
F=a c e & +a d e+b c e+b d e+c f+d f \\
D & =a+b \\
Q & =c e+d e \\
P & =(c e+d e)(a+b)+(c+d) f \\
O & =e(c+d)(a+b)+(c+d) f
\end{aligned}
$$

Notation:
$F=$ the original function
$\boldsymbol{D}=$ the divisor,
$\mathbf{Q}=$ the quotient,
$\boldsymbol{P}=$ the partial factored form
$\boldsymbol{O}=$ the final factored form by FACTOR
O is not maximally factored because $(c+d)$ is common to both products $\mathrm{e}(c+d)(a+b)$ and remainder $(c+d) f$.
The final factored form should have been:

$$
(c+d)(e(a+b)+f)
$$

Second Problem with FACTOR

Solving the problem:

- Essentially, we reverse D and Q !
- Make Q cube-free to get Q_{1}
- Obtain a new divisor D_{1} by dividing F by Q_{1}
- If D_{1} is cube-free, the partial factored form is $F=\left(Q_{1}\right)\left(D_{1}\right)+R_{1}$, and can recursively factor Q_{1}, D_{1}, and R_{1}
- If D_{1} is not cube-free, let $D_{1}=c D_{2}$ and $D_{3}=Q_{1} D_{2}$. We have the partial factoring $F=c D_{3}+R_{1}$. Now recursively factor D_{3} and R_{1}.

Improved Factoring

```
Algorithm GFACTOR(F, DIVISOR, DIVIDE) {
    D = DIVISOR(F)
    if(D = 0) return F
    Q = DIVIDE (F,D)
    if (|Q| = 1) return LF(F, Q, DIVISOR, DIVIDE)
    Q = MAKE_CUBE_FREE (Q)
    (D, R) = DIVIDE (F,Q)
    if (CUBE_FREE(D)) {
        Q = GFACTOR(Q, DIVISOR, DIVIDE)
        D = GFACTOR(D, DIVISOR, DIVIDE)
        R = GFACTOR(R, DIVISOR, DIVIDE)
        return Q . D + R
    }
    else {
        C = COMMON_CUBE (D)
        return LF(F, C, DIVISOR, DIVIDE)
} }

\section*{Improved Factoring}
```

```
Algorithm LF(F, C, DIVISOR, DIVIDE) {
```

```
Algorithm LF(F, C, DIVISOR, DIVIDE) {
    L = BEST_LITERAL(F, C) // most frequent
    L = BEST_LITERAL(F, C) // most frequent
    (Q, R) = DIVIDE (F, L)
    (Q, R) = DIVIDE (F, L)
    C = COMMON_CUBE (Q) // largest one
    C = COMMON_CUBE (Q) // largest one
    Q = CUBE_FREE (Q)
    Q = CUBE_FREE (Q)
    Q = GFACTOR(Q, DIVISOR, DIVIDE)
    Q = GFACTOR(Q, DIVISOR, DIVIDE)
    R = GFACTOR(R, DIVISOR, DIVIDE)
    R = GFACTOR(R, DIVISOR, DIVIDE)
    return L . C . Q + R
    return L . C . Q + R
}
```

```
}
```

```

\section*{Improving the Divisor}

Various kinds of factoring can be obtained by choosing different forms of DIVISOR and DIVIDE.
- CHOOSE_DIVISOR:
- LITERAL - chooses most frequent literal
- QUICK_DIVISOR - chooses the first level-0 kernel
- BEST_DIVISOR - chooses the best kernel
- DIVIDE:
- Algebraic division
- Boolean division

\section*{Factoring Algorithms}
```

$x=a c+a d+a e+a g+b c+b d+b e+b f+c e+c f+d f+d g$
LITERAL_FACTOR:
$x=a(c+d+e+g)+b(c+d+e+f)+c(e+f)+d(f+g)$
QUICK FACTOR:
$x=g(a+d)+(a+b)(c+d+e)+c(e+f)+f(b+d)$
GOOD_FACTOR:
$(c+d+e)(a+b)+f(b+c+d)+g(a+d)+c e$

```

\section*{Application - Decomposition}

Decomposition is the same as factoring except:
- divisors are added as new nodes in the network.
- the new nodes may fan out elsewhere in the network in both positive and negative phases
Algorithm DECOMP ( \(\mathrm{f}_{\mathrm{i}}\) ) \{
\(\mathrm{k}=\) CHOOSE_KERNEL ( \(\mathrm{f}_{\mathrm{i}}\) )
if ( \(k==0\) ) return
\(f_{m+j}=k \quad / /\) create new node \(m+j\)
\(f_{i}=\left(f_{i} / k\right) y_{m+j}+\left(f_{i} / k^{\prime}\right) y^{\prime}{ }_{m+j}+r / /\) change node \(i\) using new
// node for kernel
DECOMP ( \(\mathrm{f}_{\mathrm{i}}\) )
DECOMP ( \(\mathrm{f}_{\mathrm{m}+\mathrm{j}}\) )
\}
Similar to factoring, we can define
- QUICK_DECOMP: pick a level 0 kernel and improve it.
- GOOD_DECOMP: pick the best kernel.

\section*{Extraction}
- Recall: Extraction operation identifies common sub-expressions and manipulates the Boolean network.
- Combine decomposition and substitution to provide an effective extraction algorithm.
```

Algorithm EXTRACT
foreach node n {
DECOMP(n) // decompose all network nodes
}
foreach node n {
RESUB(n) // resubstitute using existing nodes
}
ELIMINATE_NODES_WITH_SMALL_VALUE
}

```

\section*{Re-substitution}


Idea: An existing node in a network may be a useful divisor in another node. If so, no loss in using it (unless delay is a factor).
- Algebraic substitution consists of the process of algebraically dividing the function \(\boldsymbol{f}_{i}\) at node i in the network by the function \(\vec{f}_{i}\) (or by \(\boldsymbol{f}_{i}^{\prime}\) ) at node \(j\). During substitution, if \(\boldsymbol{f}_{\boldsymbol{j}}\) is an algebraic divisor of \(\boldsymbol{f}_{\boldsymbol{i}}\), then \(\boldsymbol{f}_{\boldsymbol{i}}\) is transformed into
\[
f_{i}=q y_{j}+r \quad\left(\text { or } f_{i}=q_{1} y_{j}+q_{0} y_{j}^{\prime}+r\right)
\]
- In practice, this is tried for each node pair of the network. For n nodes in the network \(\Rightarrow O\left(n^{2}\right)\) divisions.

ECE 667 - Synthesis \& Verification - Lecture 9

\section*{Extraction}

Kernel Extraction:
1. Find all kernels of all functions
2. Choose kernel intersection with best "value"
3. Create new node with this as function
4. Algebraically substitute new node everywhere
5. Repeat \(1,2,3,4\) until best value \(\leq\) threshold


New Node

\section*{Example-Extraction}
\[
f_{1}=\underset{\text { (only level-0 kernels used in this example) }}{a b(c(d+e)+f+g)+h, \quad f_{2}=a i(c(d+e)+f+j)+k}
\]
1. Extraction: \(K^{0}\left(f_{1}\right)=K^{0}\left(f_{2}\right)=\{d+e\}\)
\[
K^{0}\left(f_{1}\right) \cap K^{O}\left(f_{2}\right)=\{d+e\}
\]
\(l=d+e \quad f_{1}=a b(c l+f+g)+h\)
\(f_{2}=a i(c l+f+j)+k\)
2. Extraction: \(\quad K^{0}\left(f_{1}\right)=\{c l+f+g\} ; K^{0}\left(f_{2}\right)=\{c l+f+j)\)
\(m=c l+f \quad K^{0}\left(f_{1}\right) \cap K^{0}\left(f_{2}\right)=c l+f\)
\(m=c l+f \quad f_{1}=a b(m+g)+h\)
\(f_{2}=a i(m+j)+k\)
No kernel intersections anymore!
3. Cube extraction:
\[
n=a m \quad \begin{array}{ll}
n=b(n+a g)+h \\
& f_{1}=h \\
f_{2}=i(n+a j)+k
\end{array}
\]

Example for Rectangle Covering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \(G=a f+b f+a c e+b c e\) & & & \(a\) & \(b\) & c & ce & de & \(f\) & \(g\) \\
\hline \(H\) = ade + cde & \(F\) & & & & & & ade & af & \(a g\) \\
\hline Kernels/Co-kernels: & \(F\) & \(b\) & & & & & bde & \(b f\) & \\
\hline \(F:(d e+f+g) / a\) & \(F\) & de & ade & bde & cde & & & & \\
\hline \((d e+f) / b\) & \(F\) & \(f\) & \(a f\) & \(b f\) & & & & & \\
\hline ( \(a+b+c / d e\) & \(M=F\) & \(c\) & & & & & cde & & cg \\
\hline \((a+b) / f\) & \(F\) & \(g\) & \(a g\) & & cg & & & & \\
\hline \((d e+g) / c\) & G & \(a\) & & & & ace & & af & \\
\hline \((a+c) / g\) & G & \(b\) & & & & bce & & \(b f\) & \\
\hline \(G:(c e+f) /\{a, b\}\) & \(G\) & ce & ace & \(b c e\) & & & & & \\
\hline \((a+b) /\{f, c e\}\) & G & & af & \(b f\) & & & & & \\
\hline \(H:(a+c) / d e\) & H & \(d e\) & ade & & cde & & & & \\
\hline
\end{tabular}

\section*{Rectangle Covering}

Alternative method for extraction
- Build co-kernel cube matrix \(M=R \times C\)
- rows correspond to co-kernels of individual functions
- columns correspond to individual cubes of kernel
\[
m_{i j}=\left\{\begin{array}{l}
1 \text { (cubes of functions) } \\
0 \text { if cube is not there }
\end{array}\right.
\]
- Rectangle covering:
- identify sub-matrix \(M^{\prime}=R^{\prime} \times C^{\prime}\), where \(R^{\prime} \subseteq R, C^{\prime} \subseteq C\), and \(m_{i j}^{\prime} \neq 0\)
- construct divisor \(D\) corresponding to \(M^{\prime}\) as new node
- extract \(D\) from all functions

Example for Rectangle Covering
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & \\
\hline \multirow[t]{2}{*}{\(H=a d e+c d e\)} & \(F \quad a\) & & & & ade & af & ag \\
\hline & \(F \quad b\) & & & & bde & \(b f\) & \\
\hline - Pick sub-matrix (rectangle) \(M^{\prime}\) & \({ }^{\prime} \quad F \quad d e\) & ade bde & cde & & & & \\
\hline - Extract new expression \(X\) & \(F \quad f\) & \(a f \quad b f\) & & & & & \\
\hline \(X=a+b \quad M\) & \(M=F \quad c\) & & & & cde & & c \\
\hline \multirow[t]{2}{*}{\(F=f x+a g+c g+d e x+c d e\)} & \(F \quad g\) & \(a g\) & cg & & & & \\
\hline & \(G \quad a\) & & & ace & & af & \\
\hline \(G=f x+c e x\) & \(G \quad b\) & & & \(b c e\) & & \(b f\) & \\
\hline \(H\) =ade + cde & \(G \quad c e\) & ace bce & & & & & \\
\hline \multirow[t]{2}{*}{- Update M} & \(G \quad f\) & af bf & & & & & \\
\hline & \(H\) de & ade & cde & & & & \\
\hline
\end{tabular}

\section*{Value of a Sub-Matrix}
- Number literals before - Number of literals after
\(V\left(R^{\prime}, C^{\prime}\right)=\sum_{i \in R, j \in C} v_{i j}-\sum_{i \in R^{\prime}} w_{i}^{r}-\sum_{j \in C} w_{j}^{c}\)
\(v_{i j}\) : Number of literals of cube \(m_{i j}\)
\(w_{i}^{r}\) : (Number of literals of the cube associated with row \(\left.i\right)+1\)
\(w_{j}^{c}\) : Number of literals of the cube associated with column \(j\)
- For the example
\(V=20-10-2=8\)

ECE 667 - Synthesis \& Verification - Lecture 9

\section*{Pseudo-Boolean Division}
- Idea: consider entries in covering matrix that are don't cares
- overlap of rectangles \((a+a=a)\)
- product that cancel each other out \(\left(a+a^{\prime}=0\right)\)
- Example: \(F=a b^{\prime}+a c^{\prime}+a^{\prime} b+a^{\prime} c+b c^{\prime}+b^{\prime} c\)
- Result
\(X=a^{\prime}+b^{\prime}+c^{\prime}\)
\(F=a x+b x+c x\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & \(a\) & \(b\) & \(c\) & \(a^{\prime}\) & \(b\) & \(c\) \\
\hline \(F\) & \(a\) & & & & * & \(a b^{\prime}\) & \(a c\) \\
\hline \(F\) & \(b\) & & & & \(a^{\prime} b\) & * & \\
\hline \(M=F\) & \(c\) & & & & \(a^{\prime} c\) & & * \\
\hline \(F\) & \(a^{\prime}\) & * & \(a b\) & a c & & & \\
\hline \(F\) & \(b^{\prime}\) & \(a b^{\prime}\) & * & \(b c\) & & & \\
\hline \(F\) & \(c^{\prime}\) & \(a c\) & \(b c\) & '* & & & \\
\hline
\end{tabular}

ECE 667 - Synthesis \& Verification - Lecture 9

\section*{Faster "Kernel" Extraction}
- Non-robustness of kernel extraction
- Recomputation of kernels after every substitution: expensive
- Some functions may have many kernels (e.g. symmetric functions)
- Cannot measure if kernel can be used as complemented node
- Solution: compute only subset of kernels:
- Two-cube "kernel" extraction [Rajski et al '90]
- Objects:
- 2-cube divisors
- 2-literal cube divisors
- Example: \(f=a b d+a b^{\prime} d+a{ }^{\prime} c d\)
- \(a b+a^{\prime} b^{\prime}, b^{\prime}+c\) and \(a b+a^{\prime} c\) are 2-cube divisors.
- \(a\) 'd is a 2-literal cube divisor.

\section*{Fast Divisor Extraction}

Properties of fast divisor (kernel) extraction:
- \(O\left(n^{2}\right)\) number of 2-cube divisors in an \(n\)-cube Boolean expression.
- Concurrent extraction of 2-cube divisors and 2-literal cube divisors.
- Handle divisor and complemented divisor simultaneously
- Example: \(f=a b d+a^{\prime} b^{\prime} d+a^{\prime} c d\).
\[
\begin{array}{ll}
k=a b+a b^{\prime}, & k^{\prime}=a b^{\prime}+a^{\prime} b \\
j=a b+a^{\prime} c, \quad j^{\prime}=a^{\prime} b^{\prime}+a c^{\prime} & \text { (both 2-cube divisors) } \\
\text { (both 2-cube divisors) } \\
c=a b \quad(2 \text {-literal cube }), \quad c^{\prime}=a^{\prime}+b^{\prime}(2 \text {-cube divisor) }
\end{array}
\]

\section*{Generating All 2-cube Divisors}
\[
F=\left\{c_{i}\right\}, \quad D(F)=\left\{d \mid d=\text { make_cube_free }\left(c_{i}+c_{j}\right)\right\}
\]

This takes all pairs of cubes in \(F\) and makes them cube-free.
\(c_{i}, c_{j}\) are any pair of cubes of cubes in \(F\)
Divisor generation is \(O\left(n^{2}\right)\), where \(n=\) number of cubes in \(F\)

Example:
\(F=a x e+a g+b c x e+b c g\)
make_cube_free \(\left(c_{i}+c_{j}\right)=\{x e+g, a+b c, a x e+b c g, a g+b c x e\}\)

\section*{Note}
- the function \(F\) is made into an algebraic expression before generating double-cube divisors
- not all 2-cube divisors are kernels (why ?)

\section*{Key Result For 2-cube Divisors}

Example:
Suppose that \(C=a b+a c+f\) is a multiple divisor of \(F\) and \(G\).
If \(e=a c+f, \quad e\) is cube-free and \(e \in D(F) \cap D(G)\).
If \(e=a b+a c, d=\{b+c\} \in D(F) \cap D(G)\)

As a result of the Theorem, all multiple-cube divisors can be "discovered" by using just double-cube divisors.

\section*{Key Result For 2-cube Divisors}

\section*{THEOREM:}

Expressions \(F\) and \(G\) have a common multiple-cube divisors if and only if \(D(F) \cap D(G) \neq 0\).
Proof:
If:
If \(D(F) \cap D(G) \neq 0\) then \(\exists d \in D(F) \cap D(G)\) which is a double-cube divisor of \(F\) and \(G\). \(d\) is a multiple-cube divisor of \(F\) and of \(G\).
Only if:
Suppose \(C=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}\) is a multiple-cube divisor of \(F\) and of \(G\).
Take any \(e=\left(c_{i}+c_{j}\right)\). If \(e\) is cube-free, then \(e \in D(F) \cap D(G)\). If \(e\) is not cube-free, then let \(d=\) make_cube_free \(\left(c_{i}+c_{j}\right)\). Then \(d\) has 2 cubes since \(F\) and \(G\) are algebraic expressions.
Hence \(d \in D(F) \cap D(G)\).

ECE 667 - Synthesis \& Verification - Lecture 9

\section*{Fast Divisor Extraction}

Algorithm:
- Generate and store all 2-cube kernels (2-literal cubes) and recognize complement divisors.
- Find the best 2 -cube kernel or 2-literal cube divisor at each stage and extract it.
- Update 2-cube divisor (2-literal cubes) set after extraction
- Iteratate extraction of divisors until no more improvement
- Results:
- Much faster
- Quality as good as that of kernel extraction```

