Optimization of Finite State Machines

- State Equivalence and Distinguishability
- Minimization of FSMs: both Mealy & Moore type FSMs
- Machine equivalence
- Completely Specified and Incompletely Specified m/c
- Revisit Encoding Problems
- FSM Synthesis Demo + Verilog Design of FSMs.

Completely + Incompletely Specified FSMs

- Complete Spec: For every input + state combination, every transition (next state) is specified. Ditto w/ every output.
- Incomplete Spec:
 - In some state, a specific input may never arrive. What's the next state? Unspecified! What about the output? Unspecified!
 - Sometimes, for an input + present state combination, next state is specified, but out value is not critical - and left unspecified.
- Completely Specified FSMs easy to analyze. Not so with Incomp. specified m/c.

State and M/C Equivalence

- What do we mean by equivalent states?
- How do you identify equivalent states?
- Subsequently, how do you prove/disprove equivalence of two FSMs. FSM Equivalence ↔ Sequential circuit equivalence!
- States S_i and S_j of a machine M are equivalent if and only if, for every possible input sequence, the same output sequence will be produced regardless of whether S_i or S_j is the initial state.
- Identify ALL equivalent states, merge them = minimal FSM.
- A **unique minimal machine** exists for any (completely specified) FSM!

State Table - Mealy Machine

 Table 1: State Transition Table

P.S.	Next State, Z	
	x = 0	x = 1
А	E, 0	D, 1
В	F, 0	D, 0
С	E, 0	B, 1
D	F, 0	B, 0
Е	C, 0	F, 1
F	B, 0	C, 0

• Minimize this machine!

Minimized State Table

Table 2:	State	Transition	Table
----------	-------	------------	-------

P.S.	Next State, Z	
	x = 0	x = 1
AC	E, 0	BD, 1
BD	F, 0	BD, 0
Е	AC, 0	F, 1
F	BD, 0	AC, 0

 \bullet Encode this machine: AC: 00, BD: 01, E: 10, F: 11

P.S.	Next State, Z	
	x = 0	x = 1
y_2y_1	Y_2Y_1, z	Y_2Y_1, z
00	10, 0	01, 1
01	11, 0	01, 0
10	00, 0	11, 1
11	01, 0	00, 0

 Table 3: Encoded State Transition Table

State Table - Moore Machine (Fig. 8.51)

Table 4: State Transition Table

P.S.	Next State		Ζ
	x = 0	x = 1	
A	В	С	1
В	D	F	1
\mathbf{C}	F	Ε	0
D	В	G	1
Ε	F	С	0
F	E	D	0
G	F	G	0

Incomp. Spec. FSM

 Table 5: State Transition Table

P.S.	Next State, Z	
	x = 0	x = 1
А	C, 1	Е, -
В	С, -	E, 1
С	B, 0	A, 1
D	D, 0	E, 1
Е	D, 1	A, 0

Incomp. Spec. $\overline{\text{FSM}}$

 Table 6: State Transition Table

P.S.	Next State, Z	
	x = 0	x = 1
А	B, 1	-, -
В	-, 0	C, 0
С	A, 1	B, 0