Optimization of Finite State Machines

- State Equivalence and Distinguishability
- Minimization of FSMs: both Mealy \& Moore type FSMs
- Machine equivalence
- Completely Specified and Incompletely Specified m/c
- Revisit Encoding Problems
- FSM Synthesis Demo + Verilog Design of FSMs.

Completely + Incompletely Specified FSMs

- Complete Spec: For every input + state combination, every transition (next state) is specified. Ditto w/ every output.
- Incomplete Spec:
- In some state, a specific input may never arrive. What's the next state? Unspecified! What about the output? Unspecified!
- Sometimes, for an input + present state combination, next state is specified, but out value is not critical - and left unspecified.
- Completely Specified FSMs - easy to analyze. Not so with Incomp. specified m/c.

State and M/C Equivalence

- What do we mean by equivalent states?
- How do you identify equivalent states?
- Subsequently, how do you prove/disprove equivalence of two FSMs. FSM Equivalence \Longleftrightarrow Sequential circuit equivalence!
- States S_{i} and S_{j} of a machine M are equivalent if and only if, for every possible input sequence, the same output sequence will be produced regardless of whether S_{i} or S_{j} is the initial state.
- Identify ALL equivalent states, merge them $=$ minimal FSM.
- A unique minimal machine exists for any (completely specified) FSM!

State Table - Mealy Machine

Table 1: State Transition Table

P.S.	Next State, Z	
	$x=0$	$x=1$
A	E, 0	D, 1
B	F, 0	D, 0
C	E, 0	B, 1
D	F, 0	B, 0
E	C, 0	F, 1
F	B, 0	C, 0

- Minimize this machine!

Minimized State Table

Table 2: State Transition Table

P.S.	Next State, Z	
	$x=0$	$x=1$
AC	$\mathrm{E}, 0$	$\mathrm{BD}, 1$
BD	$\mathrm{F}, 0$	$\mathrm{BD}, 0$
E	$\mathrm{AC}, 0$	$\mathrm{~F}, 1$
F	$\mathrm{BD}, 0$	$\mathrm{AC}, 0$

- Encode this machine: AC: 00, BD: 01, E: 10, F: 11

Table 3: Encoded State Transition Table

P.S.	Next State, Z	
	$x=0$	$x=1$
$y_{2} y_{1}$	$Y_{2} Y_{1}, z$	$Y_{2} Y_{1}, z$
00	10,0	01,1
01	11,0	01,0
10	00,0	11,1
11	01,0	00,0

Table 4: State Transition Table

P.S.	Next State		Z
	$x=0$	$x=1$	
A	B	C	1
B	D	F	1
C	F	E	0
D	B	G	1
E	F	C	0
F	E	D	0
G	F	G	0

Incomp. Spec. FSM

Table 5: State Transition Table

P.S.	Next State, Z	
	$x=0$	$x=1$
A	C, 1	E, -
B	C, -	E, 1
C	B, 0	A, 1
D	D, 0	E, 1
E	D, 1	A, 0

Incomp. Spec. FSM

Table 6: State Transition Table

P.S.	Next State, Z	
	$x=0$	$x=1$
A	B, 1	,--
B	,- 0	C, 0
C	A, 1	B, 0

